Good Practices for the Feed Sector Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feedstock List (As of 3/2018)
Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse -
Fish Processing Wastes Used As Feed Ingredient for Animal Feed and Aquaculture Feed
Journal of Survey in Fisheries Sciences 6(2) 55-64 2020 Fish processing wastes used as feed ingredient for animal feed and aquaculture feed Afreen M.1; Ucak I.1* Received: May 2019 Accepted: July 2019 Abstract: Fish wastes management has become a global problem from the last years. Dispose of seafood wastes cause environmental pollution. To overcome this issue these unwanted seafood products are used for the formation of animal feed and aquaculture feed. These unwanted products include small fish and those parts of fish which are not used as human food. These unwanted parts include viscera, head, fins and skin of fish. These byproducts are rich source of protein, minerals and vitamins so these can be used as a supplement in animal feed. These are also used to fulfill the deficiency of protein in animals. These byproducts can be used in the form of fish meal, fish oil, and protein hydrolysates and fish silage. Protein hydrolysates provide high amount of nitrogen and fish oil provide triglycerides of fatty acids and phospholipids in the animal feed industry. These are also used in the formation of pet feed and in the formation of fertilizers. These byproducts are processed for feeding by using fermentation, biotechnological and bio preservation techniques. Keywords: Seafood, Byproduct, Supplement, Fish silage, Fish oil, Protein hydrolysate. Downloaded from sifisheriessciences.com at 14:03 +0330 on Wednesday October 6th 2021 [ DOI: 10.18331/SFS2020.6.2.7 ] 1-Department of Animal Production and Technologies, Niğde Ömer Halisdemir University, -
C12) United States Patent (IO) Patent No.: US 10,011,854 B2 San Et Al
I 1111111111111111 1111111111 11111 1111111111 11111 1111111111111111 IIII IIII IIII US010011854B2 c12) United States Patent (IO) Patent No.: US 10,011,854 B2 San et al. (45) Date of Patent: Jul. 3, 2018 (54) FATTY ACID PRODUCTIVITY WO W02012052468 4/2012 WO WO 2012-087963 * 6/2012 (71) Applicant: WILLIAM MARSH RICE WO WO 2012-109221 * 8/2012 WO W02013059218 4/2013 UNIVERSITY, Houston, TX (US) WO W02013096665 6/2013 (72) Inventors: Ka-Yiu San, Houston, TX (US); Wei OTHER PUBLICATIONS Li, Houston, TX (US) Whisstock et al. Quaterly Reviews of Biophysics, 2003, "Prediction (73) Assignee: William Marsh Rice University, of protein function from protein sequence and structure", 36(3): Houston, TX (US) 307-340.* Witkowski et al. Conversion of a beta-ketoacyl synthase to a ( *) Notice: Subject to any disclaimer, the term ofthis malonyl decarboxylase by replacement of the active-site cysteine patent is extended or adjusted under 35 with glutamine, Biochemistry. Sep. 7, 1999;38(36)11643-50.* U.S.C. 154(b) by O days. Kisselev L., Polypeptide release factors in prokaryotes and eukaryotes: same function, different structure. Structure, 2002, vol. 10: 8-9.* (21) Appl. No.: 15/095,158 Gurvitz Aner, The essential mycobacterial genes, fabG 1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast (22) Filed: Apr. 11, 2016 mitochondrial fatty acid synthase type 2, Mo! Genet Genomics (2009), 282: 407-416.* (65) Prior Publication Data Bergler H, et a., Protein EnvM is the NADH-dependent enoyl-ACP reductase (Fahl) of Escherichia coli, J Biol Chem. 269(8):5493-6 US 2016/0215309 Al Jul. -
Screening Local Feed Ingredients of Benin, West Africa, for Fish Feed
Aquaculture Reports 17 (2020) 100386 Contents lists available at ScienceDirect Aquaculture Reports journal homepage: www.elsevier.com/locate/aqrep Screening local feed ingredients of Benin, West Africa, for fish feed formulation T Adékambi Désiré Adéyèmia, Adéchola P. Polycarpe Kayodéa,*, Ifagbemi Bienvenue Chabia, Oloudé B. Oscar Odouaroa, Martinus J.R. Noutb, Anita R. Linnemannc a Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin b Ronfostec, Papenpad 14, 6705 AX Wageningen, the Netherlands c Food Quality and Design, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands ARTICLE INFO ABSTRACT Keywords: The cost of fish feed is a major constraint to fish farming in Sub-Sahara Africa. In the aquaculture value chain, Fish feed feed is a determining factor and accounts for 60-75% of the total cost of fish production in many African Ingredient countries. Therefore, 284 actors from all eight agro-ecological areas of Benin were interviewed and 28 local feed Nutritional quality ingredients were collected as alternative ingredients for new fish feed formulations for, predominantly, Clarias Availability gariepinus and Tilapia niloticus. Three categories of feeds were used, namely imported (84% of farmers), locally Cost produced to complement imported feeds (76%) and natural ingredients (81%). The main imported feeds were Clarias gariepinus from the Netherlands (59% of farmers), Ghana (52%) and France (15%). Natural ingredients were mostly Moringa leaves (52%), cassava leaves (26%) and maggots (43%). The best available ingredients were cereal bran, soybean meal, cottonseed meal, cassava chips, palm kernel cake, soybean and maize. -
Phylogeny and Systematics of Lemnaceae, the Duckweed Family
Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella. -
Common Terms Used in Animal Feeding and Nutrition
Common Terms Used in Animal Feeding and Nutrition Uttam Saha, Program Coordinator, Feed and Environmental Water Laboratory Leticia Sonon, Program Coordinator, Soil, Plant, and Water Laboratory Dennis Hancock, Assistant Professor, Extension Forage Specialist Nicholas Hill, Professor, Crop and Soil Sciences Lawton Stewart, Assistant Professor, Extension Beef Specialist Gary Heusner, Professor, Extension Equine Specialist David E. Kissel, Professor and Director, Agricultural and Environmental Services Laboratories The largest operating cost in a livestock production enterprise is the feed bill. To keep this cost low, one must sup- ply the right amount of feed to the animals. Overfeeding is wasteful. Underfeeding will decrease animal perfor- mance and profitability. Therefore, proper animal feeding and nutrition are crucial to the profitability of the live- stock enterprise. Laboratory analyses of the composition of feed or forage are used to assess their nutritive value (Figure 1). A typi- cal feed analysis includes measurements of some important quality attributes or parameters (e.g., crude protein, fiber, digestibility, etc.) used to define nutritive value. Other parameters are analyzed under some special circum- stances. For example, acid detergent insoluble crude protein (ADICP) is usually only measured if heat damage to the feed is suspected. Feed or Forage Sample Dry Water Removed Organic Matter (Burned) Burn Moisture Free Feed/Dry Matter (Remains) Ash (Remains): Neutral Detergent Extraction Various Minerals and Sand Neutral Detergent -
Resources for Fish Feed in Future Mariculture
Vol. 1: 187–200, 2011 AQUACULTURE ENVIRONMENT INTERACTIONS Published online March 10 doi: 10.3354/aei00019 Aquacult Environ Interact OPENPEN ACCESSCCESS AS I SEE IT Resources for fish feed in future mariculture Yngvar Olsen* Trondhjem Biological Station, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway ABSTRACT: There is a growing concern about the ability to produce enough nutritious food to feed the global human population in this century. Environmental conflicts and a limited freshwater supply constrain further developments in agriculture; global fisheries have levelled off, and aquaculture may have to play a more prominent role in supplying human food. Freshwater is important, but it is also a major challenge to cultivate the oceans in an environmentally, economically and energy- friendly way. To support this, a long-term vision must be to derive new sources of feed, primarily taken from outside the human food chain, and to move carnivore production to a lower trophic level. The main aim of this paper is to speculate on how feed supplies can be produced for an expanding aquaculture industry by and beyond 2050 and to establish a roadmap of the actions needed to achieve this. Resources from agriculture, fish meal and fish oil are the major components of pellet fish feeds. All cultured animals take advantage of a certain fraction of fish meal in the feed, and marine carnivores depend on a supply of marine lipids containing highly unsaturated fatty acids (HUFA, with ≥3 double bonds and ≥20 carbon chain length) in the feed. The availability of HUFA is likely the main constraint for developing carnivore aquaculture in the next decades. -
Building the Case for Innovative Animal Feeds
MARGIN MARGIN MARGIN CROP MARKS CROP MARGIN CROP MARKS CROP Building the case for innovative animal feeds How KPMG True Value helped KPMG in Germany January 2020 CROP MARKS CROP © 2020 KPMG AG Wirtschaftsprüfungsgesellschaft, a member firm of the KPMG network of independent member firms affiliated with KPMG International 1 Cooperative (“KPMG International”), a Swiss entity. All rights reserved. Printed in Germany. The KPMG name and logo are registered trademarks of KPMG International. MARGIN CROP MARKS CROP MARGIN MARGIN MARGIN MARGIN MARGIN MARGIN CROP MARKS CROP MARGIN CROP MARKS CROP The results of this analysis could change perceptions within the livestock production industry. They could trigger meaningful dialogue across the value chain and help to shift farming towards more sustainable practices. Dr. Emmanuel Auer Head of Animal Nutrition, Evonik Nutrition & Care GmbH CROP MARKS CROP © 2020 KPMG AG Wirtschaftsprüfungsgesellschaft, a member firm of the KPMG network of independent member firms affiliated with KPMG International 2 Cooperative (“KPMG International”), a Swiss entity. All rights reserved. Printed in Germany. The KPMG name and logo are registered trademarks of KPMG International. MARGIN CROP MARKS CROP MARGIN MARGIN MARGIN MARGIN MARGIN MARGIN CROP MARKS CROP MARGIN CROP MARKS CROP How KPMG True Value helped Innovative animal feed can reduce environmental and social impacts As the world’s population grows, so does demand for meat, fish, milk and eggs. However, livestock farming also contributes to some of the world’s most serious challenges, including climate change, land degradation, and pollution. More sustainable methods of livestock farming are therefore urgently needed and altering the composition of animal feeds is one potential solution. -
Differential Effects of Synthetic Media on Long-Term Growth, Starch
www.nature.com/scientificreports OPEN Diferential efects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata Chokchai Kittiwongwattana Murashige & Skoog (MS) and Hoagland’s media were previously used for in vitro culture of Landoltia punctata. During subsequent ex vitro culture, the use of MS medium resulted in a higher growth rate, compared to Hoagland’s medium. Thus, a higher starch content of L. punctata in MS medium was previously hypothesized. Here, L. punctata strain 5632 was isolated and characterized using morphological characteristics and the atpF-atpH intergenic region. During early cultivation stage, fresh weight and relative growth rate in MS medium were lower than Hoagland’s medium. Conversely, starch content in MS medium was considerably higher than in Hoagland’s medium. Medium efects on expression of genes coding for starch-biosynthesis ADP-glucosepyrophosphorylase (AGPase) were determined. Genomic fragments of small (LeAPS) and large (LeAPL1) AGPase subunits were characterized. Diferential expression between each AGPase subunit genes was observed in both media. Additionally, in MS medium, the highest correlation coefcients between starch content and gene expression was found with LeAPS (0.81) and followed by LeAPL3 (0.67), LeAPL2 (0.65) and LeAPL1 (0.28). In Hoagland’s medium, the coefcients of LeAPL3 (0.83) and LeAPL2 (0.62) were higher than LeAPS (0.18) and LeAPL1 (−0.62). This suggested diferent levels of contributions of these genes in starch biosynthesis in both media. Starch functions as an important energy reserve in plants1. During photosynthesis, carbon compounds are generated and converted into glucose that serves as the precursor for starch formation1. -
Breeding Oats As High Quality Animal Feed Sandy Cowan*, Irene Griffiths
Breeding oats as high quality animal feed Sandy Cowan*, Irene Griffiths Catherine Howarth, Tim Langdon and Athole Marshall IBERS, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, Wales, UK In contrast to many other parts of the world, oats in the UK are mainly used for human consumption with oats not of milling quality sold for animal feed. However some dedicated markets for feed oats exist including feed for racehorses. At IBERS we breed husked and naked varieties of winter and spring oats that are marketed by our commercial partners Senova Ltd. There has been considerable effort in recent years aimed at the development of naked oats predominantly for poultry and monogastrics. Naked oats have some of the highest metabolizable energy (ME) values of the cereals and we have made good progress breeding high yielding naked oat varieties with high energy and protein. Recent studies in the Quoats project demonstrated the value of naked oats for animal feed. Their high oil content together with good protein content and the composition of essential amino acids make them an ideal ingredient. Naked oats also have some established niche markets such as inclusion into feed for companion animals, racehorses and as wild bird food. However they have not yet achieved mainstream adoption as animal feed probably due to the lower yield compared to husked oats. Husked oats produce higher yields and are more widely available than naked oats. For the ruminant market we are now developing oat varieties that combine a high oil groat with low lignin husk (trade mark “HiDioat” Senova Ltd). The high oil provides the high ME value for the feed ration and the low lignin husk is more digestible than a standard husk, making an ideal ruminant feed and as a husked oat will immediately be 20-30 % higher yielding than naked oat. -
Prevention of Muddy Taints in Farmed Barramundi
Prevention of muddy taints in farmed Barramundi Sue Poole and Paul Exley Project No. 2009/775 February 2015 This project was conducted by: Department of Agriculture and Fisheries Queensland Government 39 Kessels Road, Coopers Plains, Brisbane In collaboration with: Australian Barramundi Farmers Association PO Box 26, Cooroy, QLD 4563 ISBN: 978 0 7345 0447 0 Copyright, 2012: The Seafood CRC Company Ltd, the Fisheries Research and Development Corporation and [Insert other organisations here]. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Australian Seafood CRC is established and supported under the Australian Government’s Cooperative Research Centres Program. Other investors in the CRC are the Fisheries Research and Development Corporation, Seafood CRC company members, and supporting participants. Office Mark Oliphant Building, Laffer Drive, Bedford Park SA 5042 Postal Box 26, Mark Oliphant Building, Laffer Drive, Bedford Park SA 5042 Tollfree 1300 732 213 Phone 08 8201 7650 Facsimile 08 8201 7659 Website www.seafoodcrc.com ABN 51 126 074 048 Important Notice Although the Australian Seafood CRC has taken all reasonable care in preparing this report, neither the Seafood CRC nor its officers accept any liability from the interpretation or use of the information set out in this document. Information contained in this document is subject to change without notice. - - 2 - - Non-Technical Summary Seafood CRC 2009/775 Prevention of muddy taints in farmed barramundi PRINCIPAL INVESTIGATOR: Sue Poole Innovative Food Technologies Department of Agriculture and Fisheries Queensland Government [email protected] Mob 0428 101 032 ADDRESS: 39 Kessels Road, Coopers Plains Brisbane QLD 4108 PROJECT OBJECTIVES: 1. -
0615 Ingredients Column
[INGREDIENTS] PREVIEW By Karen Nachay and Melanie Zanoza Bartelme Chicago Will Be the Ingredients Capital in July or more than a century, Chicago of candy capital of the world because spices and flavorings for sauces, leav- has been a mecca of food product of the large number of confectionery ening agents and grains for bread, Fdevelopment and culinary explora- manufacturers located in and around antimicrobials to keep meat safe, and tion. The city is even named for a food; the city. And Carl Sandburg in his oils with less saturated fat and more the name Chicago derives from a word poem “Chicago” called the city “hog monounsaturated fat—that and so that local Native Americans gave to butcher for the world,” a reference to much more are all represented. And wild leeks. Chicago’s location on Lake the Union Stock Yards, which from what is a food show without samples? Michigan and the waterways that 1865 until they closed in 1971, pro- Exhibitors plan to feature their top connected it to the Mississippi River cessed more than one billion animals. ingredients in such product concepts as well as it being a central hub for Much of the confection manufac- as Reduced-Sugar Root Beer Craft railroads contributed to the growth of turing has moved elsewhere, and the Soda, Savory Kimchi Pancake, High- industry, including food manufactur- only structure that exists of the infa- Protein Pudding, and Pie-Flavored ing. The significant population growth mous Union Stock Yards is a limestone Milk Shakes. from the mid-19th century through the arch called the Union Stock Yard Gate.