Feedstock List (As of 4/2017)

Total Page:16

File Type:pdf, Size:1020Kb

Feedstock List (As of 4/2017) Feedstock List (as of 4/2017) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Gossypium Brassica napus Cottonseed ( ) *Rapeseed ( )* Yellow grease Cuphea (Cuphea viscossisima) Rice Bran Flax / Linseed (Linum usitatissimum) Safflower (Carthamus tinctorius) Gourds / Melons (Cucumis melo) Sesame (Sesamum indicum) Grapeseed (Vitis vinifera) Soybean (Glycine max) Hemp seeds (Cannabis sativa) Sunflower (Helianthus annuus) Jojoba (Simmondsia chinensis) Tallow tree (Triadica sebifera) Jatropha curcas Nicotiana tabacum Jatropha ( ) Tobacco ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse (Saccharum officinale) Algal / Aquatic Residues Includes coppice, forestry Big bluestem grass (Andropogon gerardii) Corn cobs (Zea mays) Black and brown liquor (short rotation), invasive woody species, sawdust, slash, small round, and thinnings Energy cane (Saccharum officinale) Corn stover (Zea mays) Brassicaceae Species: Hemp (Cannabis sativa) Cotton (Gossypium hirsutum) Duckweed (Lemnoideae) Alder (Alnus spp.) Indian grass (Sorghastrum nutans) Empty fruit bunch (Elaeis Fungi guineensis) Bamboo (Bambusa vulgaris) Millenium Fescue (Festuca arundinacea) Grain hulls Kudzu (Pueraria montana) Beech (Fagus spp.) *Miscanthus (Miscanthus x giganteus)* Guayule (Parthenium argentatum) Birch (Betula spp.) *Napier grass (Pennisetum purpureum)* Nut shells Blackwood (Acacia Sorghum, energy (Sorghum bicolor) Oil palm fronds (Elaeis guineensis) melanoxylon) Brazilwood (Caesalpinia *Switchgrass (Panicum virgatum)* Oil palm shells (Elaeis guineensis) echinata) Cottonwood (Populus) *Wheatgrass (Thinopyrum intermedium)* Soybean husk, hull (Glycine max) Eucalyptus (Eucalyptus Straw globulus) *Juniper (Juniperus spp.)* Tobacco (Nicotiana tabacum) Laurel (Laurus nobilis) Wine Lees (Vitis vinifera) Mallee (Eucalyptus spp.) Yard waste Mesquite (Prosopis glandulosa) Populus . *Poplar, hybrid ( spp )* Salix spp. Willow, shrub ( ) White pine (Pinus strobus) Yellow pine (Pinus taeda) Carbohydrates / Sugars Crop Sugars Industrial Agave (Agave americana) Food Processing Cassava (Manihot esculenta) Grape marcs (Vitis vinifera) Corn (Zea mays) Vinasse (Saccharum officinale; Beta vulgaris vulgaris) *Sugar Beet (Beta vulgaris subsp. vulgaris convar. vulgaris var. altissima)* Whey *Sugar Cane (Saccharum officinarum) * *Sweet Sorghum (Sorghum bicolor) * Sweet Tubers (Ipomea batatas) Industrial Waste Streams Fossil / Hydrocarbon / Other Black liquor CO2 Brewery Waste Coal Coffee waste (Coffea arabica) Natural gas, biogas Community /Industrial bio waste Food waste Manure Methane Municipal Solid Waste (MSW) Plastics Sludge Synthesis gas Waste carbon gases Feedstocks in red and designated by * are those that have been scored through the Feedstock Readiness Evaluation Tool (FSRL). To view the full evaluations for these feedstocks, see the FSRL Repository. If you’d like to provide an evaluation or add a feedstock to this list, please contact us. .
Recommended publications
  • Feedstock List (As of 3/2018)
    Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse
    [Show full text]
  • C12) United States Patent (IO) Patent No.: US 10,011,854 B2 San Et Al
    I 1111111111111111 1111111111 11111 1111111111 11111 1111111111111111 IIII IIII IIII US010011854B2 c12) United States Patent (IO) Patent No.: US 10,011,854 B2 San et al. (45) Date of Patent: Jul. 3, 2018 (54) FATTY ACID PRODUCTIVITY WO W02012052468 4/2012 WO WO 2012-087963 * 6/2012 (71) Applicant: WILLIAM MARSH RICE WO WO 2012-109221 * 8/2012 WO W02013059218 4/2013 UNIVERSITY, Houston, TX (US) WO W02013096665 6/2013 (72) Inventors: Ka-Yiu San, Houston, TX (US); Wei OTHER PUBLICATIONS Li, Houston, TX (US) Whisstock et al. Quaterly Reviews of Biophysics, 2003, "Prediction (73) Assignee: William Marsh Rice University, of protein function from protein sequence and structure", 36(3): Houston, TX (US) 307-340.* Witkowski et al. Conversion of a beta-ketoacyl synthase to a ( *) Notice: Subject to any disclaimer, the term ofthis malonyl decarboxylase by replacement of the active-site cysteine patent is extended or adjusted under 35 with glutamine, Biochemistry. Sep. 7, 1999;38(36)11643-50.* U.S.C. 154(b) by O days. Kisselev L., Polypeptide release factors in prokaryotes and eukaryotes: same function, different structure. Structure, 2002, vol. 10: 8-9.* (21) Appl. No.: 15/095,158 Gurvitz Aner, The essential mycobacterial genes, fabG 1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast (22) Filed: Apr. 11, 2016 mitochondrial fatty acid synthase type 2, Mo! Genet Genomics (2009), 282: 407-416.* (65) Prior Publication Data Bergler H, et a., Protein EnvM is the NADH-dependent enoyl-ACP reductase (Fahl) of Escherichia coli, J Biol Chem. 269(8):5493-6 US 2016/0215309 Al Jul.
    [Show full text]
  • Balancing Bioenergy and Biosecurity Policies: Estimating Current and Future Climate Suitability Patterns for a Bioenergy Crop
    GCB Bioenergy (2014) 6, 587–598, doi: 10.1111/gcbb.12068 Balancing bioenergy and biosecurity policies: estimating current and future climate suitability patterns for a bioenergy crop D. J. KRITICOS*,† ,H.T.MURPHY‡ , T. JOVANOVIC*, J. TAYLOR§ ,A.HERR*,J.RAISON* and D. O’CONNELL* *CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT, 2601, Australia, †EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia, ‡CSIRO Ecosystem Sciences, PO Box 780, Atherton, QLD, Australia, §CSIRO Ecosystem Sciences, Box 312, Clayton South, VIC, 3169, Australia Abstract In an apparent paradox, bioenergy crops offer potential benefits to a world adjusting to the challenges of climate change and declining fossil fuel stocks, as well as potential ecological and economic threats resulting from bio- logical invasions. In considering this paradox it is important to understand that benefits and threats may not always be apparent in equal measure throughout the potential range of each candidate biofuel species. In some environments, a species could potentially produce valuable biological materials without posing a significant invasion threat. In this study, we develop a bioclimatic niche model for a candidate biofuel crop, Millettia pinnat- a, and apply the model to different climatic and irrigation scenarios to estimate the current and future patterns of climate suitability for its growth and naturalization. We use Australia as a case study for interpreting the niche model in terms that may be informative for both biofuels proponents and biosecurity regulators to plan management programmes that reflect the invasive potential in different areas. The model suggests that suitable growing conditions for M.
    [Show full text]
  • Harnessing Potential of Selected Underutilized Bio Energy Crop Pongamia Pinnata
    Harnessing potential of selected underutilized bio energy crop Pongamia pinnata Archana Godbole, Sameer Punde , Jayant Sarnaik, & Rahul Mungikar Applied Environmental Research Foundation www.aerfindia.org GIPB Case Study Pongamia pinnata Godbole India … Draft Final Harnessing potential of selected underutilized bio energy crop Pongamia pinnata A report for Global Partnership Initiative for Plant Breeding Capacity Building (GIPB ) And International Bio- energy Platform and cross sectoral Collaboration of the FAO Interdepartmental Working Group on Bio Energy By Archana Godbole, Sameer Punde , Jayant Sarnaik, & Rahul Mungikar Applied Environmental Research Foundation www.aerfindia.org 1 GIPB Case Study Pongamia pinnata Godbole India … Draft Final Section I Introduction 1.Background………………………………………………………….. 4 2.Objectives …………………………………………………………… 7 3.Why Pongamia pinnata? …………………………………………. 8 Section II State of the art genetic resources, pre breeding & breeding work … 1.Introduction …………………………………………………………….. 9 2.Distribution & botanical knowledge ………………………………..10 3.Genetic Relationship ………………………………………………….12 4.Uses ………………………………………………………………………12 5.Resource Assessment of Pongamia pinnata ……………………..14 6.Ethnobotany of Pongamia pinnata ………………………………….18 7.Genetic variability in Pongamia pinnata …………………………...21 8.Variability Assessment for Biofuel production…………………...23 9.Seed & seedling traits ………………………………………………….25 10.Germination & seed storage behavior……………………………...25 11.Pongamia Cultivation …………………………………………..28 11.1Propagation methods……………………………………………...29
    [Show full text]
  • Bioenergy and Invasive Plants: Quantifying and Mitigating Future Risks
    Invasive Plant Science and Management 2014 7:199–209 Bioenergy and Invasive Plants: Quantifying and Mitigating Future Risks Jacob N. Barney* The United States is charging toward the largest expansion of agriculture in 10,000 years with vast acreages of primarily exotic perennial grasses planted for bioenergy that possess many traits that may confer invasiveness. Cautious integration of these crops into the bioeconomy must be accompanied by development of best management practices and regulation to mitigate the risk of invasion posed by this emerging industry. Here I review the current status of United States policy drivers for bioenergy, the status of federal and state regulation related to invasion mitigation, and survey the scant quantitative literature attempting to quantify the invasive potential of bioenergy crops. A wealth of weed risk assessments are available on exotic bioenergy crops, and generally show a high risk of invasion, but should only be a first-step in quantifying the risk of invasion. The most information exists for sterile giant miscanthus, with preliminary empirical studies and demographic models suggesting a relatively low risk of invasion. However, most important bioenergy crops are poorly studied in the context of invasion risk, which is not simply confined to the production field; but also occurs in crop selection, harvest and transport, and feedstock storage. Thus, I propose a nested-feedback risk assessment (NFRA) that considers the entire bioenergy supply chain and includes the broad components of weed risk assessment, species distribution models, and quantitative empirical studies. New information from the NFRA is continuously fed back into other components to further refine the risk assessment; for example, empirical dispersal kernels are utilized in landscape-level species distribution models, which inform habitat invasibility studies.
    [Show full text]
  • Phylogeny and Systematics of Lemnaceae, the Duckweed Family
    Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella.
    [Show full text]
  • Chinese Tallow Tree (Triadica Sebifera)
    THE WEEDY TRUTH ABOUT BIOFUELS TIM LOW & CAROL BOOTH Invasive Species Council October 2007 Title: The Weedy Truth About Biofuels Authors: Tim Low & Carol Booth Published by the Invasive Species Council, Melbourne October 2007 Updated March 2008 The INVASIVE SPECIES COUNCIL is a non-government organisation that works to protect the Australian environment from invasive pest species. Address: PO Box 166, Fairfield, Vic 3078 Email: [email protected] Website: www.invasives.org.au Further copies of this report can be obtained from the ISC website at www.invasives.org.au Cover photo: Spartina alterniflora, by the US Department of Agriculture CCOONNTTEENNTTSS Introduction ............................................................................................................................ 1 What are biofuels? ................................................................................................................ 2 The Biofuel industry .............................................................................................................. 4 The problems with biofuels ................................................................................................ 6 Social and economic issues ............................................................................................ 6 Greenhouse issues ............................................................................................................ 7 Biodiversity issues ...........................................................................................................
    [Show full text]
  • Chinese Tallow Invasion in Maritime Forests: Understand Invasion Mechanism and Develop Ecologically-Based Management Lauren Susan Pile Clemson University
    Clemson University TigerPrints All Dissertations Dissertations 12-2015 Chinese Tallow Invasion in Maritime Forests: Understand Invasion Mechanism and Develop Ecologically-Based Management Lauren Susan Pile Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Forest Sciences Commons Recommended Citation Pile, Lauren Susan, "Chinese Tallow Invasion in Maritime Forests: Understand Invasion Mechanism and Develop Ecologically-Based Management" (2015). All Dissertations. 1807. https://tigerprints.clemson.edu/all_dissertations/1807 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. CHINESE TALLOW INVASION IN MARITIME FORESTS: UNDERSTAND INVASION MECHANISM AND DEVELOP ECOLOGICALLY-BASED MANAGEMENT A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Forest Resources by Lauren Susan Pile December 2015 Accepted by: G. Geoff Wang, Committee Chair William C. Bridges Jr. Patricia A. Layton Thomas A. Waldrop Joan L. Walker ABSTRACT Invasion by highly aggressive, non-native, invasive plants is a significant threat to management and conservation priorities as these plants can transform ecosystem functions and processes. In this study, I investigated the non-native, invasive tree, Chinese tallow
    [Show full text]
  • 2020 Invasive Species Update
    Quiet Invasion: 2020 Invasive Species Update Lisa Gonzalez Invasive Species: The Continuing Problem • New species being reported • Invasive species management is multi‐ faceted and long‐term • Few eradication success stories Policy Research Management Education & & Awareness Restoration What We Know Common Characteristics Impacts • fast seed germination • nutrient cycling • high population growth • local hydrology • early reproductive maturity • fire regimes • reproduction vegetatively as well as sexually • geomorphological processes (such as dune formation or stream profile) • generalized pollination • species and structural diversity • wide tolerance to many habitat types • disease • adaptation to disturbance • impacts available wildlife resources • high rate of biomass accumulation • prevents recruitment of native species due to • long‐range seed dispersal capabilities competition for light, nutrients, and/or moisture • fruit used by wildlife (including humans) • economic losses and costs • relative lack of predators or diseases in • sense of place and quality of life present location Pathways of Introduction • Landscaping and horticulture • Mowing equipment and soils • Shipping materials • Aquarium trade and aquarists • Shipping and boating • Agriculture and livestock • Internet sales • Live seafood markets, bait • Biological control • Scientific research institutions, public aquaria, zoos, arboreta, wildlife preserves Longstanding Invaders • Giant reed Arundo donax • Yellow bluestem Bothriochloa ischaemum • Japanese honeysuckle Lonicera
    [Show full text]
  • Chinese Tallowtree and Carolina Ash Seedlings
    Species: Triadica sebifera Page 1 of 30 SPECIES: Triadica sebifera z Introductory z Distribution and occurrence z Botanical and ecological characteristics z Fire ecology z Fire effects z Management considerations z References INTRODUCTORY SPECIES: Triadica sebifera z AUTHORSHIP AND CITATION z FEIS ABBREVIATION z SYNONYMS z NRCS PLANT CODE z COMMON NAMES z TAXONOMY z LIFE FORM z FEDERAL LEGAL STATUS z OTHER STATUS Jeff Hutchison, Archbold Biological Station AUTHORSHIP AND CITATION: Meyer, Rachelle. 2005. Triadica sebifera. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [ ]. FEIS ABBREVIATION: TRISEB SYNONYMS: Sapium sebiferum (L.) Roxb. [36,88,132,134] NRCS PLANT CODE [129]: TRSE6 COMMON NAMES: tallowtree Chinese tallow popcorn tree Florida aspen chicken tree http://www.fs.fed.us/database/feis/plants/tree/triseb/all.html 9/26/2007 Species: Triadica sebifera Page 2 of 30 TAXONOMY: The scientific name of tallowtree is Triadica sebifera (L.) Small (Euphorbiaceae) [30,57,129]. LIFE FORM: Tree FEDERAL LEGAL STATUS: None OTHER STATUS: Tallowtree is considered a noxious weed in Florida. Its sale there was prohibited in 1998 [127]. The Southern Region of the Forest Service has listed it as a Category 1 weed species [128]. It is also included in the top 10 exotic pest plants in Georgia by the Georgia Exotic Pest Plant Council [34] and listed as a "red alert" species in California by the California Invasive Pest Plant Council [9]. DISTRIBUTION AND OCCURRENCE SPECIES: Triadica sebifera z GENERAL DISTRIBUTION z ECOSYSTEMS z STATES/PROVINCES z BLM PHYSIOGRAPHIC REGIONS z KUCHLER PLANT ASSOCIATIONS z SAF COVER TYPES z SRM (RANGELAND) COVER TYPES z HABITAT TYPES AND PLANT COMMUNITIES Cheryl McCormick, The University of Georgia, IPM Images GENERAL DISTRIBUTION: Tallowtree is a native of China and Japan [29,68,69,76,131,134].
    [Show full text]
  • Differential Effects of Synthetic Media on Long-Term Growth, Starch
    www.nature.com/scientificreports OPEN Diferential efects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata Chokchai Kittiwongwattana Murashige & Skoog (MS) and Hoagland’s media were previously used for in vitro culture of Landoltia punctata. During subsequent ex vitro culture, the use of MS medium resulted in a higher growth rate, compared to Hoagland’s medium. Thus, a higher starch content of L. punctata in MS medium was previously hypothesized. Here, L. punctata strain 5632 was isolated and characterized using morphological characteristics and the atpF-atpH intergenic region. During early cultivation stage, fresh weight and relative growth rate in MS medium were lower than Hoagland’s medium. Conversely, starch content in MS medium was considerably higher than in Hoagland’s medium. Medium efects on expression of genes coding for starch-biosynthesis ADP-glucosepyrophosphorylase (AGPase) were determined. Genomic fragments of small (LeAPS) and large (LeAPL1) AGPase subunits were characterized. Diferential expression between each AGPase subunit genes was observed in both media. Additionally, in MS medium, the highest correlation coefcients between starch content and gene expression was found with LeAPS (0.81) and followed by LeAPL3 (0.67), LeAPL2 (0.65) and LeAPL1 (0.28). In Hoagland’s medium, the coefcients of LeAPL3 (0.83) and LeAPL2 (0.62) were higher than LeAPS (0.18) and LeAPL1 (−0.62). This suggested diferent levels of contributions of these genes in starch biosynthesis in both media. Starch functions as an important energy reserve in plants1. During photosynthesis, carbon compounds are generated and converted into glucose that serves as the precursor for starch formation1.
    [Show full text]
  • Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using The
    Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of Instant Controlled pressure Drop (DIC) : process performance and biofuel quality Fanar Bamerni To cite this version: Fanar Bamerni. Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of In- stant Controlled pressure Drop (DIC) : process performance and biofuel quality. Chemical and Process Engineering. Université de La Rochelle, 2018. English. NNT : 2018LAROS004. tel-02009827 HAL Id: tel-02009827 https://tel.archives-ouvertes.fr/tel-02009827 Submitted on 6 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NIVERSITÉ DE LA ROCHELLE UFR des SCIENCES et TECHNOLOGIE Année: 2018 Numéro attribué par la bibliothèque: THÈSE pour obtenir le grade de DOCTEUR de L’UNIVERSITÉ DE LA ROCHELLE Discipline : Génie des Procédés Industriels Présentée et soutenue par Fanar Mohammed Saleem Amin BAMERNI Le 23 février 2018 TITRE: Procédé de Fabrication de Biodiesel assistée par Texturation par Détente Instantanée Contrôlée (DIC) de Camelina Sativa : Performance des Procédés et Qualité du Produit. Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using the Technology of Instant Controlled Pressure Drop (DIC); Process performance and biofuel Quality. Dirigée par : Professeur Ibtisam KAMAL et Professeur Karim ALLAF JURY: Rapporteurs: M.
    [Show full text]