Importance of Blood-Collectiontubes in Plasma Lidocaine Determinations

Total Page:16

File Type:pdf, Size:1020Kb

Importance of Blood-Collectiontubes in Plasma Lidocaine Determinations CLIN. CHEM. 25/4, 617-619 (1979) Importance of Blood-CollectionTubes in Plasma Lidocaine Determinations W. W. Stargel, Charles R. Roe,2 P. A. Routledge,3 and 0. G. Shand3 Downloaded from https://academic.oup.com/clinchem/article/25/4/617/5671205 by guest on 24 September 2021 In 25 clinical samples serum lidocaine concentrations patients and transferred to Vacutainer Tubes from which the fell from a mean of 6.5 ± 2.1 mg/L (mean ± SD) to 4.9 ± red stopper had been removed. One aliquot was allowed to 1.8 mgIL(p < 0.001)whenthe blood sample was allowed clot,while another aliquot was placed in a red-stoppered tube, to make contact with the stopper of the Vacutainer#{174}col- allowed to contact the stopper, and clot. The two serum lection tube. In vitro experiments showed that this effect samples were assayed for lidocaine with one lot of EMIT5-cad of the stopper occurred only with whole blood and was (Syva Corp., Palo Alto, CA) reagents. dependenton sample concentration. The plasma binding In Vitro Experiments of lidocaine decreasedfrom a normalvalueof 56% ± 2.2 (mean ± SD)to 28% ± 2.2 (p < 0.001)whenexposedto One hundred milliliters of whole blood from a normal vol- the Vacutainer stopper. We conclude that a chemical unteer receiving no medication was collected by direct veni- leached from such stoppers displaces lidocaine from its puncture in a plastic syringe and immediately transferred to plasma- binding sites and that the drugis then redistributed a glass tube containing 500 USP units of heparin. Lidocaine into the erythrocytes, producing spuriously low lidocaine hydrochloride was added to give a final concentration of 3 g concentrations in plasma or serum. Such artifacts are of lidocaine per milliliter of blood. Two-milliliter aliquots were important in therapeutic drug monitoring and can lead to then transferred to five glass-stoppered tubes, five green- erroneous clinical decisions. stoppered Vacutainer Tubes, fivered-stoppered Vacutainer Tubes, and five red-stoppered Monojecte tubes (Sherwood Medical Industries, St. Louis, MO). The remaining blood was Additional Keyphrases drug assay . blood-collection tubes then centrifuged, and 1-mL aliquots of the plasma layer were - variation, source of added to various tubes, as described for whole blood. All tubes Therapeutic monitoring of drug concentrations in plasma were then inverted 10 times and plasma obtained from the has now become an accepted part of clinical practice, and blood samples. All plasma samples were assayed for lidocaine many new assay procedures are being developed. Although with one lot of EMIT reagent. itisknown that spurious values can resultfrom the use of The effect of increased concentrations of lidocaine(up to certaintubes forblood collection(1), thisinformationhas not 12 izg/mL) added to blood collected in Vacutainer Tubes or been very widely disseminated. Itwas firstshown that lower in an all-glass system was also investigated in quadrupli- plasma propranololconcentrationsresultedwhen Vacutainer cate. Tubes (Becton-Dickinson,Rutherford,NJ 07070) ratherthan Plasma Binding an all-glasssystem were used forblood collection.Since then, the same artifacthas been noted with the other basicdrugs: Plasma was obtained afterblood collectionintoVacutainer alprenolol,imipramine, chlorimipramine, and nortriptyline Tubes or glass-stopperedtubes,and lidocainewas added to (2), as wellas meperidine (3). Diminished plasma binding of a finalconcentrationof 2 zg/mL. Five 1-mL samples of plasma quinidine from blood collectedinVacutainer Tubes has also from each collectionsystem were dialyzed against I mL of been noted, but the resultingeffecton plasma concentration Sorensen’s phosphate buffer (pH 7.38)at 37 #{176}Cfor 6 h by was small (4,5). means of Teflon dialysiscellsand Spectrapor membranes We recently noted erraticconcentrations of the antiar- (Spectrum Medical Industries,Los Angeles,CA). Lidocaine rhythmic drug lidocainein plasma, and have investigated concentrationsinboth plasma and bufferwere measured and whether this involvesbinding displacement and redistribution calculated from appropriatestandard curves,and the per cent because of the use of the blood-collectiontubes. plasma binding was calculated. Materials and Methods Results Patients’ Samples In the 25 clinical samples, exposure to the rubber stopper lowered lidocaine concentration in serum from 6.5 ± 2.1 Blood sampleswerecollectedinto plastic syringes from tg/mL (mean ± SD) to 4.9 ± 1.8zg/mL (p <0.001 by a paired t-test). Departments ofPharmacy’ and Pediatrics,2and the Divisionof Clinical Pharmacology,3 Duke University Medical Center, Durham, In the in vitro experiment, there was a significant reduction NC 27710.Correspondence to W. W. S., Box 3028, Divn. Pediat. in the lidocaine concentration of plasma obtained from blood Metabolism,at the Center. collectedin the commercial tubes (Table 1).This was not seen Received Dec. 22, 1978; accepted Jan. 29, 1979. when plasma was added to the tubes,which shows that er- CLINICAL CHEMISTRY, Vol. 25, No.4, 1979 617 Table 1. Effect of Various Blood-Collection Tubes on Measured Lidocaine Concentration (g/mL) in Plasma Control (all glass) Green Vacutalner Tube Rod Vacutalner Tube Red Monoject Mean a SD b Mean a SD b Mean a SD b Mean a so b Whole blood 3.12 0.13 2.42’ 0.08 2.22c 0.15 2.28c 0.08 Plasma 3.16 0.06 3.02 0.19 3.08 0.13 3.18 0.28 Mean of five separatealiquots of the sameblood sample or plasma derivedfrom the blood sample; lidocaine was added to freshly withdrawn blood tomake a concentrationofabout3 sg of lidocalne per milliliter of whole blood. b SD = standard deviation. C p < 0.001 by analysis of variance. ythrocytes were involved in producing the spuriously low glycoprotein,a probable major binding sitefor these basic Downloaded from https://academic.oup.com/clinchem/article/25/4/617/5671205 by guest on 24 September 2021 concentrations. ligands (2). In our studies we have found a similar phenome- The effect of increasing concentrations of lidocaine from non with lidocaine, with reduced binding in plasma confirmed. 2 to 12 zg/mL in whole blood from Vacutainer Tubes or from It is therefore likelythat TBEP isthe compound that dis- an all-glass system on the subsequent lidocaine concentrations placeslidocainefrom its binding sitesinplasma, although the in plasma isshown inFigure 1.With eithercollectionsystem, relevant binding protein for lidocaine has not yet been iden- increasingthe initialblood concentration produced a lesser tified (8). It is interesting that the magnitude of the effect of increaseinsubsequent plasma concentration,which implies this phenomenon on lidocaine concentrations in plasma is very a decrease in the blood/plasma concentration ratio.Fur- similar to the mean percentage effect on plasma propranolol thermore, the effect of using Vacutainer Tubes diminished concentration (28%) in plasma, calculated from the data of progressively as whole blood concentration was increased, Cotham and Shand (1), despite the fact that propranolol is until there was no effect at 12 zg/mL. 90-95% bound at therapeutic concentrations whereas lido- Finally, when Vacutainer Tubes were used in blood col- caine is only about 60% bound at a plasma concentration of lection, lidocaine binding in plasma fell significantly from a 3 tg/mL (8). Presumably, the relative affinity of TBEP for normal value of 56% ± 2.2 (mean ± SD) to 28% ± 2.2 (p < the binding sites in plasma is much greater than the affinity 0.001 by an unpaired t-test). of lidocaine. Tucker and coworkers also showed that the binding of ii- Discussion docaine varied from approximately 70% at 1 ig/mL of plasma Cotham and Shand (1) postulated that there was in some to around 40% at 12 ig/mL (8). Theoretically, therefore, the rubber stoppers a chemical that could leach intoblood and effect of Vacutainer Tubes on the lidocaine concentration in reduce the plasma binding of propranolol.The increasedfree plasma measured from a whole blood sample should fall with drug could then partitionwith the drug bound to erythrocytes, increasing lidocaine concentration, and we found this to be which would lead to spuriously low plasma concentrations. the case (Figure 1). However, the percentage change of lido- The plasticizertris(2-butoxyethyl)phosphate (TBEP) has caine concentration in plasma was still marked throughout been reported to be a contaminant in plasma collectedin the “therapeutic” range (1.5 to 5.0 ig/mL of plasma). The Vacutainer Tubes (6)and identifiedas an inhibitorof drug figure also shows that the concentration ratioof blood-to- binding to protein (7).Borga and coworkers subsequently plasma increases with increasing lidocaine concentration in have showed that TBEP-inhibited protein binding of aipre- whole blood. nololand imipramine isdue to a selectiveeffecton a,-acid The enzyme immunoassay (EMIT) of lidocaine inserum or plasma has been shown to be rapid, specific, and sensitive and therefore particularly suitable for therapeutic monitoring (9). IC We feel it is important to emphasize that these advantages may be nullified and patients exposed to risk if clinical deci- 0 sions are made on the basis of spuriously low concentrations of lidocaine in plasma or serum because of the use of certain types of commercially available collection tubes. 8 Plasma We are grateful to Jan Admiraal and Peggy Rogers for their ex- Lidocoine cellent technical assistance and to Syva Corporation for the re- 6 Concentration agents. (ug/ml) References 4 - - - . au 9Ia ystea 1. Cotham, R. H.,and Shand, D. C.,Spuriouslylowplasma propra- - acutaIne, laDe, nolol concentrations resulting from blood collection methods. GUn. 2 Phormacol. Ther. 18,535 (1975). 2. Borga, 0., Piafsky, K. M., and Nilsen, 0. C., Plasma protein binding of basic drugs. 1. Selective displacement from a,-acid gly- coprotein by tris(2-butoxyethyl) phosphate. Clin. Pharmacol. Ther. 2 4 6 8 10 12 22,539(1977). Whole Blood Lidocaine Concentration 3. Wilkinson, G. R., and Schenker, S., Pharmacokinetics of meperi- Fig. 1. Effects of Increasing lidocaine concentrations in whole dine in man. Gun.
Recommended publications
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Drug-Facilitated Sexual Assault Panel, Blood
    DRUG-FACILITATED SEXUAL ASSAULT PANEL, BLOOD Blood Specimens (Order Code 70500) Alcohols Analgesics, cont. Anticonvulsants, cont. Antihistamines, cont. Ethanol Phenylbutazone Phenytoin Cyclizine Amphetamines Piroxicam Pregabalin Diphenhydramine Amphetamine Salicylic Acid* Primidone Doxylamine BDB Sulindac* Topiramate Fexofenadine Benzphetamine Tapentadol Zonisamide Guaifenesin Ephedrine Tizanidine Antidepressants Hydroxyzine MDA Tolmetin Amitriptyline Loratadine MDMA Tramadol Amoxapine Oxymetazoline* Mescaline* Anesthetics Bupropion Pyrilamine Methcathinone Benzocaine Citalopram Tetrahydrozoline Methamphetamine Bupivacaine Clomipramine Triprolidine Phentermine Etomidate Desipramine Antipsychotics PMA Ketamine Desmethylclomipramine 9-hydroxyrisperidone Phenylpropanolamine Lidocaine Dosulepin Aripiprazole Pseudoephedrine Mepivacaine Doxepin Buspirone Analgesics Methoxetamine Duloxetine Chlorpromazine Acetaminophen Midazolam Fluoxetine Clozapine Baclofen Norketamine Fluvoxamine Fluphenazine Buprenorphine Pramoxine* Imipramine Haloperidol Carisoprodol Procaine 1,3-chlorophenylpiperazine (mCPP) Mesoridazine Cyclobenzaprine Rocuronium Mianserin* Norclozapine Diclofenac Ropivacaine Mirtazapine Olanzapine Etodolac Antibiotics Nefazodone Perphenazine Fenoprofen Azithromycin* Nordoxepin Pimozide Hydroxychloroquine Chloramphenicol* Norfluoxetine Prochlorperazine Ibuprofen Ciprofloxacin* Norsertraline Quetiapine Ketoprofen Clindamycin* Nortriptyline Risperidone Ketorolac Erythromycin* Norvenlafaxine Thioridazine Meclofenamic Acid* Levofloxacin* Paroxetine
    [Show full text]
  • Hallucinogens: an Update
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Hallucinogens: An Update 146 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Hallucinogens: An Update Editors: Geraline C. Lin, Ph.D. National Institute on Drug Abuse Richard A. Glennon, Ph.D. Virginia Commonwealth University NIDA Research Monograph 146 1994 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGEMENT This monograph is based on the papers from a technical review on “Hallucinogens: An Update” held on July 13-14, 1992. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]
  • Clinical Manual of Geriatric Psychopharmacology This Page Intentionally Left Blank Clinical Manual of Geriatric Psychopharmacology
    Clinical Manual of Geriatric Psychopharmacology This page intentionally left blank Clinical Manual of Geriatric Psychopharmacology Sandra A. Jacobson, M.D. Assistant Professor, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, Rhode Island Ronald W. Pies, M.D. Clinical Professor of Psychiatry, Tufts University School of Medicine, Boston, Massachusetts Ira R. Katz, M.D. Professor of Psychiatry and Director, Section of Geriatric Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania Washington, DC London, England Note: The authors have worked to ensure that all information in this book is accurate at the time of publication and consistent with general psychiatric and medical standards, and that information concerning drug dosages, schedules, and routes of administration is accurate at the time of publication and consistent with standards set by the U.S. Food and Drug Administration and the general medical community. As medical research and practice continue to advance, however, therapeutic standards may change. Moreover, specific situations may require a specific therapeutic response not included in this book. For these reasons and because human and mechanical errors sometimes occur, we recommend that readers follow the advice of physicians directly involved in their care or the care of a member of their family. Books published by American Psychiatric Publishing, Inc., represent the views and opinions of the individual authors and do not necessarily represent the policies and opinions of APPI or the American Psychiatric Association. Copyright © 2007 American Psychiatric Publishing, Inc. ALL RIGHTS RESERVED Manufactured in the United States of America on acid-free paper 11 10 09 08 07 5 4 3 2 1 First Edition Typeset in Adobe’s Formata and AGaramond.
    [Show full text]
  • EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices
    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General notices......................................................................... 3 2.2.66. Detection and measurement of radioactivity........... 119 2.1. Apparatus ............................................................................. 15 2.2.7. Optical rotation................................................................ 26 2.1.1. Droppers ........................................................................... 15 2.2.8. Viscosity ............................................................................ 27 2.1.2. Comparative table of porosity of sintered-glass filters.. 15 2.2.9. Capillary viscometer method ......................................... 27 2.1.3. Ultraviolet ray lamps for analytical purposes............... 15 2.3. Identification...................................................................... 129 2.1.4. Sieves ................................................................................. 16 2.3.1. Identification reactions of ions and functional 2.1.5. Tubes for comparative tests ............................................ 17 groups ...................................................................................... 129 2.1.6. Gas detector tubes............................................................ 17 2.3.2. Identification of fatty oils by thin-layer 2.2. Physical and physico-chemical methods.......................... 21 chromatography...................................................................... 132 2.2.1. Clarity and degree of opalescence of
    [Show full text]
  • 2019 Prohibited List
    THE WORLD ANTI-DOPING CODE INTERNATIONAL STANDARD PROHIBITED LIST JANUARY 2019 The official text of the Prohibited List shall be maintained by WADA and shall be published in English and French. In the event of any conflict between the English and French versions, the English version shall prevail. This List shall come into effect on 1 January 2019 SUBSTANCES & METHODS PROHIBITED AT ALL TIMES (IN- AND OUT-OF-COMPETITION) IN ACCORDANCE WITH ARTICLE 4.2.2 OF THE WORLD ANTI-DOPING CODE, ALL PROHIBITED SUBSTANCES SHALL BE CONSIDERED AS “SPECIFIED SUBSTANCES” EXCEPT SUBSTANCES IN CLASSES S1, S2, S4.4, S4.5, S6.A, AND PROHIBITED METHODS M1, M2 AND M3. PROHIBITED SUBSTANCES NON-APPROVED SUBSTANCES Mestanolone; S0 Mesterolone; Any pharmacological substance which is not Metandienone (17β-hydroxy-17α-methylandrosta-1,4-dien- addressed by any of the subsequent sections of the 3-one); List and with no current approval by any governmental Metenolone; regulatory health authority for human therapeutic use Methandriol; (e.g. drugs under pre-clinical or clinical development Methasterone (17β-hydroxy-2α,17α-dimethyl-5α- or discontinued, designer drugs, substances approved androstan-3-one); only for veterinary use) is prohibited at all times. Methyldienolone (17β-hydroxy-17α-methylestra-4,9-dien- 3-one); ANABOLIC AGENTS Methyl-1-testosterone (17β-hydroxy-17α-methyl-5α- S1 androst-1-en-3-one); Anabolic agents are prohibited. Methylnortestosterone (17β-hydroxy-17α-methylestr-4-en- 3-one); 1. ANABOLIC ANDROGENIC STEROIDS (AAS) Methyltestosterone; a. Exogenous*
    [Show full text]
  • Open Thesis2.Pdf
    The Pennsylvania State University The Graduate School Department of Chemistry SOLUTE ATTRIBUTES AND MOLECULAR INTERACTIONS CONTRIBUTING TO RETENTION ON A FLUORINATED HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY STATIONARY PHASE A Thesis in Chemistry by David S. Bell © 2005 David S. Bell Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2005 The thesis of David S. Bell was reviewed and approved* by the following: A. Daniel Jones, III Senior Scientist Thesis Advisor Chair of Committee Alan J. Benesi Senior Lecturer II Mark Maroncelli Professor of Chemistry Christopher A. Mullin Professor of Entomology Ayusman Sen Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT The structural attributes and molecular interactions contributing to “U-shape” retention on pentafluorophenylpropyl (PFPP) HPLC stationary phases are systematically investigated. Only basic analytes exhibit retention that increases with the acetonitrile content in mixtures of acetonitrile and aqueous ammonium acetate, with some basic analytes not eluting at all from PFPP columns using 100% acetonitrile. U-shaped retention as a function of mobile phase acetonitrile content was more dramatic on a PFPP column relative to C18. Retention of the quaternary ammonium salt bretylium on these stationary phases and on the same bare silica support showed minimal influence of ion- exchange mechanisms on the C18 phase, however a significant influence of ion-exchange mechanisms was observed for both PFPP and bare silica. The retention of bretylium on PFPP was only slightly less than on bare silica. These findings suggest ion-exchange mechanisms dominate retention of basic analytes in the high acetonitrile realm on PFPP.
    [Show full text]
  • Cytochrome P450 Drug Interaction Table
    SUBSTRATES 1A2 2B6 2C8 2C9 2C19 2D6 2E1 3A4,5,7 amitriptyline bupropion paclitaxel NSAIDs: Proton Pump Beta Blockers: Anesthetics: Macrolide antibiotics: caffeine cyclophosphamide torsemide diclofenac Inhibitors: carvedilol enflurane clarithromycin clomipramine efavirenz amodiaquine ibuprofen lansoprazole S-metoprolol halothane erythromycin (not clozapine ifosfamide cerivastatin lornoxicam omeprazole propafenone isoflurane 3A5) cyclobenzaprine methadone repaglinide meloxicam pantoprazole timolol methoxyflurane NOT azithromycin estradiol S-naproxen_Nor rabeprazole sevoflurane telithromycin fluvoxamine piroxicam Antidepressants: haloperidol suprofen Anti-epileptics: amitriptyline acetaminophen Anti-arrhythmics: imipramine N-DeMe diazepam Nor clomipramine NAPQI quinidine 3OH (not mexilletine Oral Hypoglycemic phenytoin(O) desipramine aniline2 3A5) naproxen Agents: S-mephenytoin imipramine benzene olanzapine tolbutamide phenobarbitone paroxetine chlorzoxazone Benzodiazepines: ondansetron glipizide ethanol alprazolam phenacetin_ amitriptyline Antipsychotics: N,N-dimethyl diazepam 3OH acetaminophen NAPQI Angiotensin II carisoprodol haloperidol formamide midazolam propranolol Blockers: citalopram perphenazine theophylline triazolam riluzole losartan chloramphenicol risperidone 9OH 8-OH ropivacaine irbesartan clomipramine thioridazine Immune Modulators: tacrine cyclophosphamide zuclopenthixol cyclosporine theophylline Sulfonylureas: hexobarbital tacrolimus (FK506) tizanidine glyburide imipramine N-DeME alprenolol verapamil glibenclamide indomethacin
    [Show full text]
  • Flockhart Table – Medication Metabolism
    Flockhart Table ™ “The effective, intelligent management of many problems related to drug interactions in clinical prescribing can be helped by an understanding of how drugs are metabolized. Specifically, if a prescriber is aware of the dominant cytochrome P450 isoform involved in a drug's metabolism, it is possible to anticipate, from the inhibitor and inducer lists for that enzyme, which drugs might cause significant interactions.” • Substrates: drugs that are metabolized as substrates by the enzyme • Inhibitors: drugs that prevent the enzyme from metabolizing the substrates • Activators: drugs that increase the enzyme's ability to metabolize the substrates Taken from: http://medicine.iupui.edu/CLINPHARM/ddis/pocket-card Furthermore, Pocket Cards can be ordered from: http://medicine.iupui.edu/CLINPHARM/ddis/pocket-card The Flockhart Table™ is © 2016 by The Trustees of Indiana University. All rights reserved. Retrieved December 27, 2016, from http://medicine.iupui.edu/clinpharm/ddis/main-table P450 Drug Interaction Table SUBSTRATES drugs that are metabolized as substrates by the enzyme 1A2 2B6 2C8 2C9 2C19 2D6 2E1 3A4,5,7 amitriptyline artemisinin amodiaquine NSAIDs: PPIs: tamoxifen: Anesthetics: Macrolide 2 1 caffeine2 bupropion1 diclofenac esomeprazole TAMOXIFEN enflurane antibiotics: clomipramine cyclophosphamid cerivastatin ibuprofen lansoprazole GUIDE halothane clarithromycin clozapine e paclitaxel lornoxicam omeprazole2 isoflurane erythromycin2 cyclobenzaprine efavirenz1 repaglinide meloxicam pantoprazole Beta Blockers: methoxyflurane
    [Show full text]
  • Tardive Dyskinesia
    Task Force Reports This is the eighteenth in a series of reports approved by the Board of Trustees of the American Psychiatric Association to give wider dissemination to the findings of APA's many commissions, committees, and task forces that are called upon to evaluate the state of the art in a problem area of current concern to the profession, to related disciplines, and to the public. The findings, opinions, and conclusions of the report do not necessarily represent the views of the officers, trustees, or all members of the Association. Each report, however, does represent the thoughtful judgment and findings of the task force of experts who composed it. These reports are considered a substantive contribution to the ongoing analysis and evaluation of problems, programs, issues, and practices in a given area of concern. Alan A. Stone, M.D. President, APA, 1979-80 Library of Congress Catalogue No. 80-65372 Copyright 1980 by the American Psychiatric Association 1400 K Street, N.W., Washington, D.C. 20005 Printed in U.S.A. 2nd Printing October, 1983 TARDIVE DYSKINESIA Report of the American Psychiatric Association Task Force on Late Neurological Effects of Antipsychotic Drugs Ross J. Baldessarini, M.D., Chairperson Jonathan O. Cole, M.D. John M. Davis, M.D. George Gardos, M.D., Consultant Sheldon H. Preskorn, M.D., Falk Fellow George M. Simpson, M.D. Daniel Tarsy, M.D., Invited Neurologist Approved for Publication by the Council on Research and Development John M. Davis, M.D., Chairperson Charles Gaitz, M.D. Edward Joel Sachar, M.D. George Winokur, M.D.
    [Show full text]