Under consideration for publication in Euro. Jnl of Applied Mathematics 1 A Statistical Application of the Quantile Mechanics Approach: MTM Estimators for the Parameters of t and Gamma Distributions A. KLEEFELD 1 and V. BRAZAUSKAS 2 1 Brandenburgische Technische Universit¨at, Department I (Mathematics, Natural Sciences, Computer Science), P.O. Box 101344, 03013 Cottbus, Germany. email:
[email protected] 2 Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA. email:
[email protected] (Received 18 January 2011) In this article, we revisit the quantile mechanics approach which was introduced by Stein- brecher and Shaw [18]. Our objectives are: (i) to derive the method of trimmed moments (MTM) estimators for the parameters of gamma and Student’s t distributions, and (ii) to examine their large- and small-sample statistical properties. Since trimmed moments are defined through the quantile function of the distribution, quantile mechanics seems like a natural approach for achieving the objective (i). To accomplish the second goal, we rely on the general large-sample results for MTMs, which were established by Brazauskas, Jones, and Zitikis [3], and then use Monte Carlo simulations to investigate small-sample behaviour of the newly derived estimators. We find that, unlike the maximum likelihood method which usually yields fully efficient but non-robust estimators, the MTM estima- tors are robust and offer competitive trade-offs between robustness and efficiency. These properties are essential when one employs gamma or Student’s t distributions in such outlier-prone areas as insurance and finance. Key Words: Point estimation (62F10), Asymptotic properties of estimators (62F12), Robust- ness and adaptive procedures (62F35), Method of trimmed moments (62F99), Computational problems in statistics (65C60).