New Jersey Institute of Technology Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-2010

Variance reduction techniques for estimating and value- at-risk

Fang Chu New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Databases and Information Systems Commons, and the Management Information Systems Commons

Recommended Citation Chu, Fang, " reduction techniques for estimating quantiles and value-at-risk" (2010). Dissertations. 212. https://digitalcommons.njit.edu/dissertations/212

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Cprht Wrnn & trtn

h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl.

Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt,

h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l.

l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn

rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. ASAC

AIACE-EUCIO ECIQUES O ESIMAIG QUAIES A AUE-A-ISK b n Ch

Qntl prfrn r r n n prtl ntxt In fnn n- tl r lld vl-t-r (A nd th r dl d n th fnnl ndtr t r prtfl r Whn th ltv dtrbtn fntn nnn th ntl n nt b ptd xtl nd t b ttd In ddtn t ptn pnt t- t fr th ntl t prtnt t l prvd nfdn ntrvl fr th ntl f ndtn th rrr n th tt A prbl th rd Mnt Crl tht th rltn nfdn ntrvl b lr hh ftn th hn ttn xtr ntl h tvt ppln vrn-rdtn thn ( t tr t btn r ffnt ntl ttr Mh f th prv r n ttn n- tl n dd nt prvd thd fr ntrtn pttll vld nfdn ntrvl h rrh dvlpd pttll vld nfdn ntrvl fr ntl tht r ttd n ltn th h ndrd r prtn - pln (IS trtfd pln (SS nttht vrt (A nd ntrl vrt (C h thd f prvn th ptt vldt t frt h tht th ntl ttr btnd th tf hdr-Ghh rprnttn hn th pld t prv ntrl lt thr (C nd t btn ntnt ttr f th vrn n th C hh r d t ntrt nfdn ntrvl Aftr th thrtl fr- r tblhd xplt lrth r prntd t ntrt nfdn ntrvl fr ntl hn ppln IS+SS A nd C An prl td f th fnt-pl b- hvr f th nfdn ntrvl l prfrd n t tht dl tndrd nrl/bvrt nrl dtrbtn nd tht tvt ntr (SA •

AIACE EUCIO ECIQUES O ESIMAIG QUAIES A AUEAISK

b n Ch

A rttn Sbttd t th lt f r Inttt f hnl n rtl lfllnt f th rnt fr th r f tr f hlph n Infrtn St prtnt f Infrtn St

M 200 Cprht © 1 b n Ch A IGS ESEE AOA AGE

AIACE EUCIO ECIQUES O ESIMAIG QUAIES A AUEAISK

n Ch

r Mrvn rttn Advr l At rfr f Cptr Sn nd Infrtn St I

r nr Chn Ctt Mbr t rfr f nn rdh Unvrt

r Gr Wdr Ctt Mbr t At rfr f Infrtn St I

r ln Shr Ctt Mbr t A dt rfr f Infrtn St I

f A Clvn Ctt Mbr t At rfr f Cptr Sn I

r Mhl Ctt Mbr t At rfr f Infrtn St I IOGAICA SKEC

Athr: n Ch r: tr f hlph t: M 1

Undrrdt nd Grdt Edtn: • tr f hlph n Infrtn St r Inttt f hnl r r 1 • hlr f Sn n Cptr Sn (Sftr Ennrn njn Unvrt Chn 5 Mjr: Infrtn St bltn: Ch, ., nd M K Constructing Confidence Intervals for Quantiles When Us- ing Variance-Reduction Techniques, xtndd btrt ptd fr th Intrntnl Wrhp n r Evnt Sltn n 1 Cbrd UK Ch, ., nd M K Confidence Intervals for Quantiles Estimated Using Im- portance Sampling, 1 nvtd nd t b bttd t Proceedings of the 2010 Winter Simulation Conference. Ch, ., nd M K Confidence Intervals for Quantiles When Applying Variance- Reduction Techniques, 1 t b bttd t jrnl

v M lvd Wf, rnt nd Grndprnt ACKOWEGME

I dpt rttd t r Mrvn drttn dvr I hv bn nrdbl frtnt t hv n dvr h fll ndrtd rr l nd hlhrtdl hlpd rlz t ntrhp prnt n nrn t b rrhr nd t prtntl n ndpndnt thnr r vrthn hv dn fr r thn I ld l lv t thn ll f tt br fr thr dn nd pprt r Gr Wdr n h dn-pprt t l hd nprd t xplr th ltn ppltn n bn hh vntll dvlpd nt th fr- r f rrh tp r nr Chn h nt nl ntrdd t ntttv fnn th h nlhtnn ltr bt l tvtd t ndt rrh nd pr- rr n th hllnn fld th nth Wtht th vlbl fdb nd nr tn fr r ln Shr r Mhl nd r Clvn th r ld nvr hd bn pltd I ld l t t th pprtnt t thn r Mhl br nd r r W fr ttn rdt rr trtd n th rht ft nd prvdn th fndtn fr bn rrhr hn l t t ll th flt br h brht ndrtndn f nfrtn t t hhr lvl thrh thr pn n rrh nd thn I ld l l t xtnd rttd t ll th ll n th t IS lb A vr pl thn t frnd Y nd Qn Wn fr th pprt nd tn th hv lnt vr r hn lt fr vrthn hn l t t Yn Y Yn W Wn n W Y n n C Yxn brt Kn-E Chn Al Avn Mr lr n Chn xn hn Yn Yn nd n "l pln" bdd fr prvdn h ndd hr nd ntrtnnt n ht ld hv bn thr ht trfl h

v lf nll nd t prtntl I ld l t thn f nn Sh r pprt nrnt t ptn nd nvrn lv r ndnbl th bdr pn hh th pt fv r f lf hv bn blt r nldn dvtn nd lv hv vd fr th t dprn nt n lf It ndr hr thfl tht I nd h drv nd n blt t tl hlln hd n I thn prnt nd rndprnt fr thr fth n nd lln t b bt I ntd Al I thn nn prnt fr lln t t thr dhtr vr x thnd l fr th "rd Ct" n Chn nd prvdn th nndn nrnt nd pprt

TABLE OF CONTENTS

Chapter Page 1 IOUCIO 1 EIEW O ECIQUES O ESIMAIG MEAS 1 1 Crd Mnt Crl 1 rn dtn 1 1 Anttht rt 1 Cntrl rt 15 3 Strtfd Spln 17 Iprtn Spln 19 3 Appltn 1 31 Un Crd Mnt Crl t r n An Optn 3 Un C t r n An Optn 33 Un A t r Kn-t Optn 5 3 Un IS t r Kn-n Optn 7 3 QUAIE ESIMAIO O CUE MOE CAO 3 AAU-GOS EESEAIO WE AYIG S 33 1 rf 3 11 rf f hr 1 3 1 Sffnt Cndtn fr Aptn A 13 rf f hr 1 rf f hr 3 5 QUAIE ESIMAIO USIG IS+SS 3 51 rf 9 511 rf f hr 9 51 rf f hr 5 5

viii AE O COES (Cntnd

Chptr

QUAIE ESIMAIO USIG A 5 1 rf 57 11 rf f hr 57 1 rf f hr 9 7 QUAIE ESIMAIO USIG C 1 71 rf 711 rf f hr 1 EMIICA SUY 7 1 rl trbtn 7 Stht Atvt tr 1 IS fr SA 9 IS+SS fr SA 7 3 A fr SA 7 3 Chn th Sthn rtr 7 n f Eprl lt 7 5 rr rptn nd tn 9 51 rr rptn 9 5 rr tn 1 Mtlb Cd 19 1 A/C/CMC 19 IS nd IS+SS 13 9 COCUIG EMAKS 155 EEECES 157

x IS O AES

bl

1 Cvr fr IS th c = 1 fr th rl hn p = 95

Avr lf-Wdth fr IS th c = 1 fr th rl hn p = 95

3 Cvr fr IS th c = 5 fr th rl hn p = 95

Avr lf-Wdth fr IS th c = 5 fr th rl hn p -- 95 5

5 Cvr fr IS+SS th c 5 n th vrt rl trbtn th p = 9 hn p = 95 5

Avr lf-Wdth fr IS+SS th c = 5 fr th vrt rl th p = 9 Whn p 95 5

7 Cvr fr IS+SS th c = 5 n th vrt rl trbtn th p = 9 hn p = 95

Avr lf-Wdth fr IS+SS th c = 5 fr th vrt rl th p = 9 Whn p = 95

9 Cvr fr A th = 1 fr th rl hn p = 95

1 Avr lf-Wdth fr A th = 1 fr th rl hn p = 95 7

11 Cvr fr A th 5 fr th rl hn p = 95 7

1 Avr lf-Wdth fr A th = 5 fr th th rl hn p = 95 7

13 Cvr fr C th c = 1 fr th vrt rl th p = 9 hn p = 95 7

1 Avr lf-Wdth fr C th c = 1 fr th rl th p = 9 hn p 95

15 Cvr fr C th c = 5 fr th vrt rl th p = 9 hn p = 95

1 Avr lf-Wdth fr C th c = 5 fr th vrt rl th p = 9 hn p = 95

17 Cvr fr CMC th c = 1 fr th rl hn p = 95 9

1 Avr lf-Wdth fr CMC th c = 1 fr th rl hn p = 95 9 IS O AES (Cntnd bl

19 Cvr fr CMC th c = 5 fr th rl hn p = 95 9

Avr lf-Wdth fr CMC th c = 5 fr th rl hn p = 95 9

1 Cvr fr IS th c = 1 fr th SA hn p = 95 9

Avr lf-Wdth fr IS th c = 1 fr th SA hn p = 95 9

3 Cvr fr IS th c = 5 fr th SA hn p = 95 9

Avr lf-Wdth fr IS th c = 5 fr th SA hn p = 95 9

5 Cvr fr IS+SS th c = 5 fr th SA hn p = 95 91

Avr lf-Wdth fr IS+SS th c = 5 fr th SA hn p = 95 91

7 Cvr fr IS+SS th c = 5 fr th SA hn p = 95 91

Avr lf-Wdth fr IS+SS th c = 5 fr th SA hn p = 95 91

9 Cvr fr A th c = 1 fr th SA hn p = 0.95 9

3 Avr lf-Wdth fr A th c = 1 fr th SA hn p = 95 9

31 Cvr fr A th c = 5 fr th SA hn p = 95 9

3 Avr lf-Wdth fr A th c = 5 fr th SA hn p = 95 9

33 Cvr fr C th c = 1 fr th SA hn p = 95 93

3 Avr lf-Wdth fr C th c = 1 fr th SA hn p = 0.95 93

35 Cvr fr C th c = 5 fr th SA hn p = 95 93

3 Avr lf-Wdth fr C th c = 5 fr th SA hn p = 95 93

37 Cvr fr CMC th c = 1 fr th SA hn p = 95 9

3 Avr lf-Wdth fr CMC th c = 1 fr th SA hn p 95 9

39 Cvr fr CMC th c = 5 fr th SA hn p = 95 95

Avr lf-Wdth fr CMC th c = 5 fr th SA hn p = 95 95

x LIST OF FIGURES

Figure Page

11 95-ntl f dtrbtn 3

1 Invrtn th C 3

13 Invrtn th prl C 5

1 Stht tvt ntr

Cvr fr IS-nl fr th nrl fr p = 77

3 Cvr fr IS-nl fr th nrl fr p = 95 77

Cvr fr IS+SS fr p = fr th bvrt nrl th p = 5 77

5 Cvr fr IS+SS fr p = 95 fr th bvrt nrl th p 5 7

Cvr fr IS+SS fr p = fr th bvrt nrl th p = 9 7

7 Cvr fr IS+SS fr p = 95 fr th bvrt nrl th p = 9 7

Cvr fr A fr p = fr th nrl 79

9 Cvr fr A fr p = 95 fr th nrl 79

1 Cvr fr C fr p = fr th bvrt nrl th p 5 79

11 Cvr fr C fr p 95 fr th bvrt nrl th p = 5

1 Cvr fr C fr p = fr th bvrt nrl th p = 9

13 Cvr fr C fr p = 95 fr th bvrt nrl th p = 9

1 Cvr fr CMC fr p = fr th nrl 1

15 Cvr fr CMC fr p = 95 fr th nrl 1

1 Cvr fr IS-nl fr p 95 fr th SA

17 Cvr fr IS+SS fr p = 95 fr th SA

1 Cvr fr A fr p = 95 fr th SA

x IS O IGUES (Cntnd r

19 Cvr fr C fr p = 95 fr th SA 3

Cvr fr CMC fr p = 95 fr th SA 3 CHAPTER 1

INTRODUCTION

May sysems a ocesses eii come eaios a oeae i uceai eio- mes Eames icue comue ewoks aaase sysems eecommuicaio e- woks asoaio sysems a iacia makes aom ees suc as aiues o comoes ukow uue emas a ices a aua isases ae iee o ese sysems A sysem esige mus eemie e eomace o a oose sysem eoe imemeig i a a oeao ees o esimae e eec o maageme eci- sios o uue eomace o ee uesa ow suc a sysem o ocess eaes oe oe wi ui a maemaica moe We e suie ocess o sysem icues aomess e moe is oe a socasic ocess iscee-ee socasic simuaio a Moe Cao simuaio (eg aw ( ae oweu oos i sciece a egieeig o suyig e eaio o socasic sys- ems a ae oo comicae o aow o iec maemaica aaysis Wie aayica meos oe equie simiyig a ueaisic assumios we aie o come sysems o ocesses e simuaio aoac aows e use o icooae as muc eai a uceaiy as eee o moe accuaey e sysem o ocess ue suy Simu- aio o e moe eais geeaig aom sames om e oaiiy isiuios i e moe o imiae e socasic eaio o e sysem o ocess oe ime e simuaio ouces ouu aa wic is coece a aaye ecause a simuaio icues aomess is ouu is aso aom us ecessi- aig e use o saisica meos o aaye e ouu Mos eious wok o saisica aaysis o simuaio ouu ocuses o esimaig e mea eomace o e sysem ue suy We cosieig e mea eomace o e sysem oe a iie ime oi- o e saa aoac is o u ieee a ieicay isiue (ii eica- ios o e sysem oe e iie ime oio a e use cassica saisica meos

1

(eg ogg e a ( o aaye e ouus om e eicaios Moe seciicay e e a aom aiae eoig e (aom eomace o a socasic sysem oe a iie ime oio a suose a we ae ieese i comuig e mea eomace a = E[X], wee E eoes eecaio o eame i oec aig may eese e (aom ime o comee a oec wic is moee as a socasic aciiy ewok a we ae ieese i comuig e mea ime o comee e oec uig ii eicaios o e sysem e yies ii sames 1 Xn . e same aeage I = (1/ Σ i=1 X, is e a esimae o e ue mea a

o oie a esimae o e eo i n we ca aso gie a coiece iea o a wic is yicay eie om a cea imi eoem (C; eg see Secio 19 o

Seig (19 Seciicay a C o e same aeage n ougy saes a (Xn D — α/σ = (1 o age same sies wee is e aiace o X, (1 eoes a oma aom aiae wi mea a aiace 1 a meas aoimaey equa i isiuio us sice (( 1 19 = 975 a y e symmey o e oma esiy ucio e C imies

(11

wic gies ( 19c/ as a aoimae 95% coiece iea o a owee

e aiace cosa i e C is yicay ukow so we eace i wi a esima-

o e same aiace S = (1/( — 1 Σi=1 (i — is e eas o a aoimae

95% coiece iea o a as (I + 19S/ I ac sice S is a cosise esima-

o o a (ie Sn coeges i oaiiy o a as co; eg see 9 o Seig (19 we ca sow a e aoe aoimae 95% coiece iea is asymoicay ai

r . 0.95- of a distribution.

r .2 Inverting the CDF.

in the sense that {a E (In ± -+ 0.95 as n

In some situations, one may be interested in performance measures that are not simply . One such measure is a quantile. For 0 < p < 1, the pth quantile of a con- tinuous random variable X is defined as the smallest constant 4p such that P {X < gp } = p.

Figure 1.1 gives an example of the 0.95-quantile of a distribution. In terms of the cumula- tive distribution function (CDF) F of X, we can express the pth quantile as 413 = F -1 (p), where F -1 (p) is the smallest value of x such that F(x) > p; see Figure 1.2. For example, the 0.5-quantile is the . Quantiles arise in many practical contexts and are some- times of more interest than means. For example, some internet service providers charge a user based on the 0.95 quantile of the user's traffic load in a billing cycle (Goldenberg et al.

2004). In project planning, a planner may want to determine a time t such that the project

has a 95% chance of completing by t, so t = 95 is the 0.95-quantile. In finance, where 4 a quaie is kow as a aue-a-isk a aays may e ieese i e 99-quaie

o99 o e oss o a ooio oe a ceai ime eio (eg wo weeks so ee is a

1% cace a e oss oe is eio wi e geae a 199 aue-a-isk (a is wiey use i e iacia iusy as a measue o ooio isk; eg see ue a a (1997 I a oae sese a is aso a eee aoac o comue make isk oe o e ee comoes o e is ia o ase II e seco o e ase Accos (ecommeaios o akig aws a eguaios issue y e ase Commiee o akig Sueisio e ase II amewok escies a moe comeesie measue a miimum saa o caia aequacy Geeay seakig quaie esimaio is o gea iees o e iacia iusy wic moiaes ou eoaio i ow o esimae a quaie a measue e "accuacy" o quaie esimaos y cosucig coiece ieas Oe i acice e C F is ukow o cao e comue eiciy u we si may e ae o coec sames om F. We us seek a samig-ase esimao o 4. Oe comicaio aises om e ac a a quaie is o a mea (o a ucio o a mea o a aom aiae so we cao esimae a quaie usig a same aeage

Isea e oowig aoac (eg see Secio 3 o Seig (19 ca e aie is coec ii sames ,X2,... ,X, om isiuio F, a use ese o cosuc a esimao o F. Oe suc esimao o F is e empirical CDF Fn , wee Fri (x) is

e acio o e n sames ess a o equa o x. e e ac a 4/3 = F -1 (p)

suggess cosucig a quaie esimao as 4Thn = — 1 (p). We ca aeaiey comue e quaie esimao i is case as oows So e sames 1 io asceig oe as ( 1 (2 • • • ( n wee X(i) is e i smaes o e sames

e 4 n = Xo-npl), wee is e ou-u ucio igue 13 iusaes a eame o is We ayig simuaio o geeae e ii sames o X use o cosuc Fn , we ca e meo crude Monte Carlo. I aiio o comuig a oi esimae o a quaie i is imoa o aso o- 5

Figure 1.3 Inverting the empirical CDF. vide a confidence interval for the quantile as a way of indicating the error in the estimate.

A common approach to developing a confidence interval is to first show that the quantile estimator satisfies a CLT, and then replace the variance constant in the CLT with a con- sistent estimator of it to construct a confidence interval. For crude Monte Carlo, one can appeal to the CLT for quantile estimators formed from i.i.d. samples; e.g., see Section 2.3.3 of Serfling (1980). More specifically, let 4,, = Fp I ( be the estimator of the p-quantile

A CLT for „ roughly states that i(112 — 4 )/(p(1 — I ( (1 for large sample sizes where is the density function of Using a similar derivation to (1.1), we then obtain 1.96p(1 — 1 ( (i as an approximate 95% confidence in- terval for 4 . Typically, (1 is unknown and must be estimated. Bloch and Gastwirth

(1968), Bofinger (1975) and Babu (1986) provide consistent estimators of (1 that are applicable for crude Monte Carlo, which we can then use to construct an approximate 95% confidence interval for as (4,, t 1.96p(1 — I („A A problem with crude Monte Carlo is that the resulting confidence interval may be large, which is often the case when estimating extreme quantiles (i.e., when is close to 0 or 1). This motivates applying variance-reduction techniques (VRTs) to try to obtain more efficient quantile estimators; see Chapter 4 of Glasserman (2004) for an overview of VRTs for estimating a . VRTs often increase efficiency by collecting additional data not or- 6

iaiy use o y geeaig sames i a iee way Ee wi oays ig-owee comues s ae si useu (a i ceai seigs esseia ecause come sim- uaio moes eseciay ig-imesioa oes wi may souces o aomess a comicae asiio mecaisms may ake a eemey og ime us o comee a sige eicaio Eames o s icue imoace samig saiie samig aieic aiaes a coo aiaes a we iey eiew ese meos eow I imoace samig (Gy a Igea (199 wic is yicay use i ae- ee simuaios e oaiisic yamics o e sysem ae cage o make e ae ee o iees (eg sysem aiues o eeme ooio osses occu moe equey Uiase esimaes ae ecoee y muiyig e sames y a coecio aco kow as e ikeioo aio We aie oey imoace samig ca ea o aiace eucios o oes o magiue; eg see eieege (1995 owee i o ao- iaey use imoace samig ca acuay icease aiace (o ee ea o iiie aiace Saiie samig (eg Secios 3 a 93 o Gassema ( cosais e ooio o sames o e ouu X io iee saa o e same sace e sames i eac saum ae aeage a e same aeages acoss saa ae comie o om a oea esimao is ca ea o a aiace eucio we e samig ooios ae cose aoiaey Aieic aiaes (eg Secio 113 o aw ( geeaes same ouus i ais wee e ouus wii a ai ae egaiey coeae e asic iuiio is a i oe ouu is geeae y "aoae" aom ucuaios e is is aie wi aoe ouu wi "uaoae" ucuaios Aeagig e wo egaiey coeae ouus e smoos ou e "goo" a "a" ouus wic eas o a eucio i aiace Coo aiaes (eg Secio 11 o aw ( euces aiace y akig a- aage o e coeaio ewee a auiiay aiae C, wose mea is kow a e ouu X, wose mea a we wa o comue We ca C a control variate, a C 7 uses e kow eo C — i C o coec o e ukow eo o as a esimae o e ukow a o eame i a socasic aciiy ewok we kow e isiuios o e imes o eac o e eges so we wou aso ikey kow ei meas e we ca eemie e a oug e ewok wi e ages mea a e se C o e e aom eg o a a ee as ee some eious wok o ayig s o esimae a quaie su a eso (199 a eseeg a eso (199 eeo quaie esimaos usig coo aiaes Aamiis a Wiso (199 cosie quaie esimaio wi a geea cass o coeaio-iucio eciques wic icues aieic aiaes a ai y- ecue samig (S i e a (3 esais eoeia coegece aes o qua- ie esimaos icuig ose usig S a aso eeo a ye o comie saiie- S quaie esimao Gy (199 uses imoace samig o quaie esimaio a Gassema e a ( comie imoace samig wi saiie samig o esimae aue-a-isk aiace eucio o quaie esimaio yicay eais ayig

s o esimae e C a e ieig e esuig C esimao n Mos eious wok o esimaig quaies usig s oes o oie me- os o cosucig asymoicay ai coiece ieas (A eceio is su a eso (199 wo geeaie a iea esimaio ecique ase o e iomia is- iuio o ei coo-aiae esimao Oe aoac o cosucig a coiece iea is o is esais a C o e quaie esimao Seciicay suose a

= i 1 ( is e esimao o e -quaie ξ ome y ieig En e esi- mao o e C e a C o ougy saes a (ξ ξ/κ C■-% ( 1 o age o some cosa κ We ca e uo is o oai a aoimae

95% coiece iea o o e (n + 19κ / o is iea o e use-

u we ee o oie a cosise esimae o κ I us ou a κ = ψ/ (4), wee yi is e aiace cosa i e C o (ξ (ie yip is eie i e C n (Fn (4) (ξp / yip ( 1a ( is e esiy ucio o e (ukow

C eauae a e (ukow quaie Gy (199 oes a o cosuc coi-

ece ieas "e mao caege is iig a goo way o esimaig" (1 "eie eiciy o imiciy" u e oes o oie a meo o oig is Iee Gasse- ma e a ( sae ( 1357 a esimaio o (ξ "is iicu a eyo e scoe o is ae" e cosisecy oos o eiousy eeoe meos (eg oc a

Gaswi (19 oige (1975 a au (19 o esimaig (ξ (o 1/(ξ we usig cue Moe Cao o o geeaie we usig s (iewe as a uc- io o 1 11 ( is someimes cae e sasiy ucio (ukey (195 o e

quaie - esiy ucio (ae (1979 a ese wo eeeces iscuss is useuess aa om quaie esimaio i aayig aa a isiuios I ou isseaio we oie a way o cosisey esimae 1/ ( a 1 we usig s a akig e ouc o ese esimaos yies a cosise esimao o κ is eaes us o cosuc a asymoicay ai coiece iea o e quaie we ayig s wic is e mai coiuio o ou wok We esais ou esus wii a geea amewok o s seciie y a se o assumios o e esuig C esimao We is oe e quaie esimao esuig om ieig e C es- imao saisies a weake om o a so-cae aau (19 eeseaio esaise y Gos (1971 a we ca is a aau-Gos eeseaio Aso o ieee iees is esu sows a e quaie esimao ca e aoimae y a iea uc- io o e C esimao eauae a wi a emaie em aisig i oaiiy as e same sie gows We e ay e aau-Gos eeseaio o oe a C a o eie a cosise esimao o e asymoic aiace i e C We sow a iee s icuig a comiaio o imoace samig a saiie samig aieic aiaes a coo aiaes i i ou amewok a we oie agoims o cosucig coiece ieas o quaies esimae usig ese s As a aeaie aoac oe cou iie a e aa io aces (aso kow as susames a e ouce a coiece iea y cosucig a quaie esimae

om eac ac a comuig e same aiace o e (ii quaie esimaes; eg see 91 o Gassema ( owee a awack o acig is a accuae quaie esimaio oe equies age same sies; eg see Aamiis a Wiso (199 us i is eeae o ae meos a use a o e same aa o cosuc a sige quaie esimao as we o e es o e isseaio as e oowig ogaiaio Cae eiews aiace-eucio eciques o esimaig a mea I is cae a ew iacia e- ames ae cose o emosae a wie age o aicaios o Moe Cao meos o esimae e "mea eomace" i iace Cae 3 iscusses quaie esimaio a oies e ackgou o e aau-Gos eeseaio o cue Moe Cao I Cae we esais a geea amewok o oig a aau-Gos eeseaio a o eeoig asymoicay ai coiece ieas o quaies we ayig a geeic We e emoy is amewok i Caes 5-7 o eamie seciic s (comie imoace samig a saiie samig aieic aiaes a coo aiaes Cae eses eeimea esus A oos wii a cae ae coece a e e o a cae CAE

EIEW O ECIQUES O ESIMAIG MEAS

eoe eseig eciques o esimaig quaies i e ae caes we is eiew meos o esimaig meas wic is e mos commo use o simuaio We iscuss iee Moe Cao eciques o esimaig e mea a = E[] o a aom aiae

aig C We sa y eiewig esimaig a usig cue Moe Cao a e we iscuss ow o ay s o esimae a We aso eiew some coegece coces om oaiiy Aoug e iscussio ee ocuses o esimaig meas e eciques esee aso ay o esimaig e C o eca a ( = { } o eac a we ca wie ( = E[I ( ] wee 1(A is e iicao ucio o e ee A wi 1(A = 1 i A occus a / (A = oewise us ( is e mea o 1( As oe i Cae 1 we esimae a quaie y is esimaig e C a e ieig e C esimao We wi seciaie e eciques eeoe ee o esimae a C i Caes 3 a 5-7 o simiy oaio we wi use a o eoe e esimao o a o a o e iee s ae a eeo iee oaio o eac meo

1 Cue Moe Cao

o imeme cue Moe Cao o esimae a = E [] wee is a aom ai- ae wi C we aw ii oseaios 1 om a e comue e same aeage (1 as a oi esimao o a e esimao α is uiase sice o a

1 11

ecause e i ae ii wi E[i] = a As e same sie ges age a ges cose o a a is coce ca e mae ecise oug e (weak o sog aw o age umes Seciicay e weak aw o age umes (W saes a i a is iie

e ( an — a E as o eey ε We oe wie is as an 4 a as

wic is aso kow as coegece i oaiiy a we say a an is a (weaky cosise esimao o a e sog aw o age umes (S saes a i a is iie

e (im--∞ an = a = 1 wic is aso wie as an a amos suey (as o moe eais o e weak a sog aws see Secio o iigsey (1995

Aoug e W a S guaaee a a n wi e cose o a we e same sie is age we wou ike o ge a sese o ow cose ey ae o a age u

ie e cea imi eoem (C oies a way o oig is Seciicay e a = a[] = E[( — a ] eoe e aiace o e C saes a i e

as on o a wee (a 2 eoes a oma aom aiae wi mea a a

aiace We oe eoe is as (α — α/σ (1 as wee " eoes coegece i isiuio; see Secio 5 o iigsey (1995 o eais om e C we ca use e eiaio i (11 o oai a aoimae 95% coiece iea o a as (

(O couse we cou aso cosuc a aoimae coiece iea o ay oe co-

iece ee 1(1 — 3% y eacig 19 wi e ciica aue = φ-¹(1 — 5/ wee is e C o a (1 aom aiae owee sice o is yicay ukow we ee o esimae i o e aoe coiece iea o e useu A esimao o c is e same aiace 2

As oe i Cae 1 n a as (eg see 9 o Seig (19 so a is a cosise esimao o a e coiuous-maig eoem ( 33 o iigsey

(1995 e esues a σ n a as so à is a cosise esimao o a ece sice σ / σ 1 as y e coiuous-maig eoem Suskys eoem ( 19 o Seig (19 imies

as As a cosequece o age same sies

us a aoimae 95% coiece iea o a is

(3

2.2 rn dtn

om ( a (3 we ca use 19σ / o 19σ / as a measue o e eo

e esimao an o a us o a gie coiece ee o 95% ee ae wo ways

wic we ca euce e eo icease e ume o sames o y o ecease 7 Aoug a = /a[] is ie a cao e cage suose a ee is aoe

aom aiae wi e same mea a = E[Z] = E[X] as a wi a[] a[]

us ae a coecig sames o we cou isea same o esimae a a oai a aiace eucio Seciicay we aw ii sames 1 o a

om e same aeage an = (1/ Σn i=1 i e = a[] a assume a -c 13 so e C imies ( as - ece usig a aaogous eiaio o (11 yies aoe aoimae 95% coiece iea o a as (5

We ca eace wi e same aiace i = (1/( — 1 (i — e we ge a aoimae 95% coiece iea o a as

(

I a[] a[] e we see a e esimao c11 as smae eo a à o e same sie ece e goa o may (u o a aiace-eucio eciques is o ieiy aoe aom aiae wi e same mea as u wi smae aiace Aoe way o escie e eei o ayig s is i ems o e ume o sames eee o aciee a ceai ecisio Suose we wa a 95% coiece iea

wi a wi o e; ie α ε o - 1 e us o cue Moe Cao we equie e 1.96a same sie o saisy = E o = (19/E Simiay we ayig a we

ee a same sie = (19τ/ε² ece i -c c e e esimao equies ewe sames a cue Moe Cao o aciee e same ecisio o a s we cosie ca e aie wee a is esimae ia ii sames o a aom aiae Moe geeay we may sa wi a esimao an o a wee

E[αn ] = a u an is o ecessaiy us a same aeage I e esimao an saisies

e C ( o some cosa a i is a cosise esimao o e we oai e aoimae 95% coiece ieas i (5 a ( I e e secios we eamie seciic s Sice geeaig a esimao usig a oe equies moe comuaioa eo a o cue Moe Cao a sou oy e aie i e eucio i aiace ou- 14 weigs e aiioa comuaioa eo o ou oems e aiioa wok eee o ay a is oe egigie so is is o a issue o moe eais o e moe geea seig see Gy a Wi (199

2.2.1 Antithetic Variates

e asic iea o imemeig aieic aiaes (A (eg Secio 113 o aw ( o esimae a = E[X] is o geeae sames om C F i ais (X ,X'), wee X a X' ae egaiey coeae a e aeage e sames wii e ai as Z = (X +X')/2. Sice X a ae e same isiuio we ae E[Z] = a a a[] =

(1/ (a [X] a [Xi] Co [X Xi] = (1/ (a [X] + Co [X XI]) wee Co [A ,B] e- oes e coaiace o aom aiaes A a B eie y Co[A] E [(A — E [A]) (B — E[B])] = E[AB] — E[A]E[B]. I Co [X, XI e Z = (X +X')/2 as smae aiace a e aeage o wo ieee coies o X. ee ae aious ways i wic we ca geeae egaiey coeae X a X' wi e same magia isiuio F. o eame suose a e ouu X ca e eesse as X = h(U1, , Ud) o some ucio h, wee U1 U ae ii uiom aom aiaes o e ui iea e X' = (1 — U1 1 — Ud) as e same isi- uio as X sice 1— Ui is aso uiom o [1] I h is moooic i eac o is agumes e X a X' ae egaiey coeae; eg see Secio 1 o oss (1997 Suose some imemeaio o aieic samig ouces n ais o osea- ios (1 1 ( XD, (Xn, X'n a ae e oowig oeies

1 e ais ae ii;

i eac ai i, Xi a eac ae magia C F, a Xi a X: ae egaiey coeae 15

e A esimao an is e aeage o a aom aiaes

wee an is eie i (1 a O = (1/Σ i=1 us we see a an is e same aeage o ii sames o Z = (X + / e esimao an saisies Wen] = a sice E[Xi] = E[X'i] = a ecause a I eac ae magia C F. Aso we ae e C i ( os we 'r2 = a[] saisies oo eig Z1 = (Xi +1/ we e oai a esimao o as

wic we ca use i ( o oai a aoimae 95% coiece iea o a

Coo aiaes

e key iea o coo aiaes (C is o eeage kowege o kow quaiies o euce e eo i a esimae o a ukow quaiy; eg see Secio 11 o aw ( e (X, C e a ai o coeae aom aiaes wee we ae ieese i esimaig e mea a o X, a suose a we kow e mea o C We ca C a control variate. o eame i a queueig sysem we mig ake C as e aeage o e is 5 cusomes seice imes a we wou yicay kow e mea o e seice- ime isiuio eie = X — (C — v), a oe a E[Z] E[X] — (E[C] — v) = a so we ca coec sames o Z o esimae a e iuiio ei coo aiaes is as oows Suose a X a C ae os- iiey coeae e X > a a C e o occu ogee ece i C e Z = X — — v) < X, so coecs o e ac a X is ikey age a is mea a 6

Simiay a a C e o occu ogee we a C ae osiiey coeae

ece i C e = — (C — so coecs o e ac a is ikey smae a is mea a I e coeaio ewee a C is sog eoug e we ca oai a aiace eucio om samig ae a

Moe geeay we ca eie = — p (C — o ay cosa p, so E[Z] = a o imeme C we geeae ii sames (i Ci i = 1 o ( C a e

= i — (Ci— We e om a esimao o a as

(7

e aiace o is

(

a a[] a[] we Co( C β²a(C I oe wos C yies a aiace eucio we a C ae suiciey sog coeaio

e aiace o (a do) ees o e coice o e cosa p. Sice i ( is a quaaic ucio o 0, i akes e miimum aue (1 — a( a Cov(X,C) /Var(C), wee = Co(C / a(a(C is e coeaio o a C owee Co(C a a[C] ae yicay ukow a mus e esimae a we esimae ia (9 wee e = (1 / Σi=1 Ci We e susiue Ai o p i (7 o oai e C esimao o a as (1

Oe comicaio o e esimao a is a i is o oge e aeage o ii osea-

ios sice eac summa i (1 icues a wic iuces eeece amog e 17 summas owee i ca e sow (eg 195-19 o Gassema ( a an si saisies e C i ( wi "c eie i ( a

is a cosise esimao o us ( oies a aoimae 95% coiece ie- a o .

2.2. Strtfd Spln

Saiie samig (SS (eg see Secios 3 a 93 o Gassema ( cosais e ooio o sames o e ouu X io iee saa o e same sace Sames om eac saum ae ake o esimae e mea i a saum a e esuig esimaes om eac saum ae comie o oai a oea esimao e (X ,Y) e a ai o eee aom aiaes wee we ae ieese i esimaig e mea a o X . We wi use Y as a stratification variable, wic is someimes a auiiay quaiy a is geeae i e ocess o geeaig ouu X. aiio e suo o Y io k < 00 saa Si S2, Sk; ie Si Si =0 o i j a (Y E Uki=1Si = 1 o eame e Si may e isoi ieas a Secios 3 a 93 o Gassema ( escies oe ossie coices o e saa eie Ai = (Y E Si), wic we assume is kow e a = E [X] ca e wie as

(11

is moiaes esimaig y seaaey esimaig eac E [X |Y ES i] i (11 usig a acio o ou oa samig uge n a comiig e esuig esimaos wi

e weigs Xi. o o is we is seciy osiie cosas y i = 1,... , k, suc a

= 1 e e ni yin e e ume o sames use o esimae E [X IY E Si]. (We 1

iscuss ae ossie coices o yi o imeme saiie samig o e i saum we geeae ni sames Y1 j = 1 ni, om Si. e o eac j 1 i we geeae

Xi./ gie Y = Yi is e esus i ni ii ais (Xij, Yi i = 1 ni, om saum Si. e e SS esimao o a is (1

ecause Xi.] as e isiuio o X gie Y E Si, e esimao is uiase sice

y (11 e y e e aiace o Xij i e i saum a we assume eac σ²i

e e aiace o an is

(13

I ca sow (eg 15-1 o Gassema ( a e SS esimao an saisies e

C i ( wi = λ²iσ²i / γi /y We ca e cosisey esimae usig

wic we ca e u i ( o oai a aoimae 95% coiece iea o a

Wee o o e SS esimao a aciees a aiace eucio ees o e saiicaio weigs y Wi proportional allocation, we se yi = i so a e sam- ig aiaiiy acoss saa is eimiae wiou aecig samig aiaiiy wii saa a is is guaaee o esu i e SS esimao an i (1 aig o geae 19

aiace a e cue Moe Cao esimao i (1; eg see 17 o Gasse- ma ( Oe aocaio ues ca aso e aoe a ae a eas as eecie as ooioa aocaio e coice o yi a miimies e aiace i (13 is gie

y yi = λiσi / Σ σ ie ooioa o e ouc o e saum oaiiy a e saum saa eiaio

2.2.4 Importance Sampling

Imoace samig (IS (Gy a Igea 199 is a a is oe use i ae-ee simuaios suc as esimaig e mea ime o aiue o a igy eiae sysem o esimaig e ue-oeow oaiiy i a queueig sysem wi a age u iie ue (eieege 1995 e asic iea o IS is o cage e oaiiy isiuios goeig e socasic sysem ue suy o cause e ae ee o iees (eg sysem aiues o ue oeows o occu moe equey Uiase esimaes ae ecoee y muiyig e sames y a coecio aco kow as e ikeioo aio

Suose X as C wi oaiiy esiy ucio a e E e e e- ecaio oeao ue We wa o esimae a = E[] = ( e e a- oe C wi esiy ucio aig e oey a o eey ( imies

(x) > e E eoe e eecaio oeao ue a eie e ikeioo aio

( = ( ( A cage o measue ca e caie ou y wiig e eecaio

aue a o as

(1 wi L L(X).

is e suggess esimaig a y aeagig ouus XL geeae usig ae

a samig ouu om e oigia C Seciicay e i e ii sam- 20

ies geeae usig F., a e Li f (Xi) / (X1) e e ikeioo aio o e i same e e IS esimao o a is

wic is uiase y (1 ie E.[66, ] = a us e aiace o XL ue is

(15

wee a is e aiace ue IS isiuio F. Assumig a i e IS esimao 5c, saisies e C i ( We ca esimae e aiace ia

wic we ca e use i ( o oai a aoimae 95% coiece iea o a

e key o ayig imoace samig is coosig F. aoiaey so a i (15 is smae a a[] Sice E.[(34] = a IS aciees a aiace eucio we

E*[X² L] < E [X]. Suose f (x) = o a x < so X is a oegaie aom aiae a a

eie suc a (1

o a x a f (x) = o e f (x) > o a sice a a f (x) > ecause f is a esiy ucio Aso

us f, is a esiy ucio I we use is f o imeme IS eac same ouu is 2 so eey same ouu is eacy a eeoe e IS esimao o a as eo aiace a we equie oy oe same o esimae a wiou ay eo Uouaey e esiy

i (1 is o imemeae ecause i ees o a wic we o o kow sice we ae yig o esimae i owee i (1 oies us wi some isig io ow

o coose a goo cage o measue Seciicay oe a e oima IS esiy ( i (1 is age we ( is age so we sou y o coose a cage o measue a gies moe weig o aues o o wic ( is age

Oe way o oaiig a IS isiuio is o ay eoeia iig o wisig (Gy a Igea 199 o eeo is aoac we is eie e mome geeaig

ucio (MG m( o e aom aiae ue e oigia isiuio F wi

esiy as

e o ay o wic m( we eie e eoeiay ie esiy

(17

e key is coosig 0 o oai a aiace eucio is coice o e cage o measue is eseciay eecie o esimaig ue-oeow oaiiies i a queue wi a age u iie ue; eg see eieege (1995

2. Appltn

We ow oie eames iusaig ow e esimaio eciques us escie ca e aie Ou eames wic ae a om iace eamie ow o oai a ai ice o a iacia ouc kow as a eiaie A eiaie is a coac a ees o e ice o oe o moe ueyig asses suc as socks Oe eame o a eiaie is a oio wic gas e oe e ig ae a e oigaio o uy (ca oio o se (u oio a ueyig asse a a ie ice K y a ie ime i e uue

Oios ae iee yes o eame oe o e simes oms is cae a Euoea ca oio we e ueyig asse is a sock ayig o iies a is oio ca oy e eecise a (a o eoe ime T. Suose e sock ice is ST a ime T = mA (e eiy ime is m ays wi A as oe ay a e eeemie ice i e coac is K (aso kow as strike price). A ime T, i e ice o e ueyig asse is ST a ST > K, e e oe o e coac wi eecise e oio o ucase oe sae o e ueyig asse a ice K a e immeiaey se i a e cue make ice ST o gai a oi ST - K; i ST K, e oio wi o e eecise a ee is eo ayo e e ayo o e Euoea ca oio oe a ime T is

We ee o make some assumios aou some make aicias suc as age iesme aks o eauae e aue o oios

I ee ae o asacio coss

A aig ois ae suec o e same a ae

3 oowig a eig ae ossie a e isk-ee iees ae r.

I a risk-neutral wo iesos equie o comesaio o isk Ue e risk-neutral measure e eece eu o a secuiies is e isk-ee iees ae wic meas e ese aue o e oio is is eece ayo i a isk-eua wo iscoue a e isk-ee ae is is a imoa icie i oio icig kow as risk-neutral valuation, wic saes e ice we oai is coec o oy i a isk-eua wo u aso i e ea wo as we; see u (3 o a moe geea isciio o isk-eua auaio us e eece ese aue o e ayo o is Euoea ca oio is a = E [e-rT (ST — K)+] , wee E is e eecaio ue e isk-eua measue a e- is a iscou aco wi r a coiuousy comoue isk-ee ae us a is e 3

ai ice o e oio We assume e ice o e ueyig sock oows a geomeic owia mo- io amey a coiuous-ime socasic ocess i wic e ogaim o e sock ice oows a owia moio; see Secio 13 o oss (7 o a asic esciio o ge- omeic owia moio a a ioucio o coiuous-ime socasic ocesses a socasic ieeia equaios (SE e we-kow ack-Scoes moe oose y ack a Scoes (1973 escies e eouio o e sock ice oug e SE

(1 wee c is e oaiiy o e sock ice a W is a saa owia moio e owia moio W as e oey a e cage ΔW uig a eio o eg A saisies AW = ε Δ wee e is a aom aiae aig saa oma isiuio ( 1 is iicaes AW ise as a oma isiuio wi E [A141 = a a(ΔW =

A Suose S is e sock ice a i = iΔ o i = 1 o is Euoea ca oio i a mui-eio ime iea T mA soig (1 eas o

S = Si-1 + ψi = So i+ ψ (19 =1 wee 1 m ae ii saa omas ( 1 p. = (r — σ²/Δ is e isk- ee ae o eu ue e isk-eua measue So is e ese ice o e sock a

= om (19 a cose-om souio o a, e eece iscoue ayo o e Euoea ca oio ca e comue (ack a Scoes 1973 wic iicaes Moe Cao meos ae o eee o is case auig moe come oios owee may equie aious Moe Cao meos o e aie e we wi use iee yes o Moe Cao eciques o eauae come oios 24

2.. Un Crd Mnt Crl t r n An Optn

A Asia oio is a aeage aue oio iee om e usua Euoea oio a Ameica oio e ayo o a Asia oio ees o e aeage ice ee o e ueyig asse oe e ie o e coac o a Asia ca oio e ayo a ime is (g — K wi (

is meas e oio is eecise a i a oy i g K a e ayo is e amou y wic S ecees K o eauae e eece iscoue ayo

(1 we is ee o geeae sames o

(

y simuaig e as S1 St , S„, ase o (19 e o e i simuae a e

iscoue ayo o e Asia ca oio is Xi = e - - K+, wee Si is e aeage ice ee eie i ( o e i a Ae simuaig n suc as cacuae e same aeage o e as α = 1/Σi=1 1 i wic is a cosise esimao o e ai ice o is ca oio Comuig e same aiace o e Xi e eas o a coiece iea o e ai ice a Secio 11 o Gassema ( oies moe eais o icig a Asia ca oio wi cue Moe Cao

2..2 Un C t r n An Optn

Kema a os (199 sugges a eecie aoac o ice Asia oios wi C o eauae eie i (1 we ca eie a C C o e e iscoue ayo o a 2 geomeic aeage oio

wee SG mi=1 Si¹/m We ca aayicay comue = E [C] i cose-om y usig e ac a

see a eaaio o icig a geomeic aeage oio i Secio 3 i Gassema ( e we ca esais a C esimao o a as

wee in is comue accoig o (9 a Ci is e iscoue ayo o e geomeic aeage oio o e i eicaio Gassema ( makes comaisos o iicae ayig a C C ca esu i a aoimae iy-o see-u i simuaio ue o a amaic aiace eucio

2.. Un A t r Kn t Optn

A kock-ou oio is a oio wi a seciie aie a is ayo ceases o eis i e ueyig asse ice cosses e aie eoe e eiy Suose a eseciie owe aie ice is A co a e oio is "kocke ou i e ice o e ueyig asse goes eow e aie A a ay ime i i = 1 m (We cou aso seciy a ue

aie u we o o o simiy e iscussio us e ayo a is eie as

Using (2.19), the discounted payoff of a knock-out option is

(2.23)

Now we want to compute the fair price a = E[h(Zi,Z2, ,Zm] of this knock-out option.

Since Zj has a standard N(0,1), we know —Z1 also has a standard nor- mal distribution N(0,1) with negative correlation to Zj due to its symmetry with respect to the origin. Then, it is natural to build an AV pair (h(Z1 , Z2, ,Zm), h(—Z1, —Z2, , —Zm ) with

where D= denotes equal in distribution. By (2.23), we see that h is mononotonic in each Z] because

1. ψ is osiie so o eac k > j, Sk defined in (2.19) increases as Z] increases;

2. indicator functions are monotonically increasing.

and h(Zk,1,Zk,2, ,Zkm ) is defined by (2.23) with k being the jth independent sample of a standard normal in the kth replication. 2

2..4 Un IS t r Knn Optn

A kock-i oio is simia o a kock-ou oio as a oio wi aies u a kock-i oio equies a e ueyig asse ice is a aie eoe e eiaio

; see oye e a (1997 o a geea esciio o kock-i oios e e a owe

aie a e K e e sike ice e kock-i oio ays S - K a ime i S K a S; o some i m I some coacs e owe aie is seciie o e muc smae a e iiia ice a e seciie sike ice is muc age a I is case i is a ae ee o e ueyig asse ice o o eow e owe aie a

e moe u o ecee e sike ice o geeae a osiie ayo a ime eeoe mos as o a cue Moe Cao simuaio wi esu i a eo ayo a cue Moe Cao is o eicie owee IS ca oeiay make kock-i ess ae

Se = Se— as e owe aie wee a cosa is gie Suose

e sike ice is K = SeC wee cosa c We ca wie (19 as

wee 1/ = wi ii oma aig mea a aiace I? e = i(i

S wic is e is ime o o eow o equiaey U — o e is ime

e = mi(τ m e e oaiiy o a osiie ayo is e m Um c wic is cose o eo i a c ae o age

e κ( e e cumua geeaig ucio o wee κ( = m(θ a m( = E [eθ] is e mome geeaig ucio o i o e eoeiay ie

isiuio eie i (17 wi iig aamee i us ou is mea is κ( e

eiaie o κ(; eg see 1 o Gassema ( We e iig aamee

(es 0 > e e mea o e eoeiay ie isiuio is smae (es

age a e oigia mea o We wi esig a IS o ay a cage o measue i e oowig mae use some 1 o eoeiay wis e isiuio o i 28 ui e aie H is i a e wis e sequece {τ+1 ...} by some o susequey us e ice owas K. is meas Ui is gie a i o

( ui i = a e e i is (5 wee i a o icease e caces a e oio ayo is osiie y a cage o measue we ae

wee i ca e sow a e ikeioo aio

wi f (X) as a esiy ucio o N(µ, y! ) a κ( = + ψ²/ is cage o measue ocess is oe y cagig e mea o e oigia measue o i a p2 i e ew measue as escie aoe ow we eai ow o coose i a p2. Mos o e aiaiiy i L comes om e aie-cossig ime us we wi y o coose 1 a so a 'r caces ou i L, eey oweig e aiaiiy o L. o age b a c, e yica way a osiie ayo occus is e ueyig asse ice os ow om e iiia ice o aey i e owe aie a e moe u o aey i e sike ice a e m se is imies

Per m; c (Uτ —Um c). I we coose i a so a κ(1 = κ(

e e ikeioo aio L euces o L e(—(θ1 — 02)U, — Um + mκ(θ wic 9

ees o oy oug UT —b a us eimiaes e aiaiiy esuig om Sice κ(1 = κ(9 i ca e sow a = —p„ ue o ( a (5 o seec 1 a we cosie e aecoy o Ui wi i µ1 om e iiia oi ui —b is i o e is ime a e e i is u eeae e i ca e sow a we ee o seec o saisy

wic esus i µ = ( + c)/m. oye e a (1997 ese emiica esus om simuaios o a kock-i oio wi aious aamees a ey oai aiace eucios o u o a aco o 11 Gassema ( oais a simia esu a aso oes a e aiace aio ees imaiy o e aiy o e ayo a o oewise o e mauiy CHAPTER 3

QUANTILE ESTIMATION FOR CRUDE MONTE CARLO

We ow u ou iscussio o esimaig a quaie e X e a ea-aue aom aiae wi C F. o a ea-aue ucio G, eie G-¹ (a) = i{ G(x) > a}. o a ie

p < 1 we wa o comue e quaie /9 = F -¹ (p). Suose F is ieeiae a aa ( wee f (x) = dF (x) I dx.

We wi esimae ξ usig simuaio Cue Moe Cao esimaio o eais

is geeaig ii sames X1 , om isiuio F. e we comue e empirical distribution function F as

(31 as a esimao o F (x), wee /(A is e iicao ucio o a se A a assumes aue 1 o A a o AC We e comue e -quaie esimao = F-¹ (p). A aeaie way o comuig is i ems o oe saisics So e sames i ,Xn io asceig oe as ( 1 ( • • • X( , wee X(i) is e i smaes o e sames

e „ =([] wee is e ou-u ucio

ougy seakig we ae a F (x)F(x) o a o age same sies n, so

1 4p us sice p = F(4), a ayo aoimaio gies

i n (ξp sice (ξ ece ξ ((ξ— P) I f (4) • aau (19 makes igoous e aoe euisic agume Seciicay assum- ig a ( a a e seco eiaie o F is oue i a eigooo o 1

30 31

e oes e oowig wic as ecome kow as a Bahadur representation:

(3 wee amos suey (as

(33

e oaio "Yn = O(g(n)) as" meas a ee eiss a se suc a (5 = 1 a o eac co E ee eiss a cosa (ω suc a Y ( o (ωg( o n suiciey age Kiee (197 sows e eac oe o Rn is O(-³/(og og 3/

I is we kow (eg Secio 33 o Seig (19 a j/( 4 n 4) coeges i isiuio as n o a oma aom aiae wi mea a aiace p(1 - p)1 f (4), a so oes n(p - Fn (/( sice Fn(ξ is e aeage o ii iicao ucios u aaus eeseaio goes ue y sowig e ieece ewee ese wo quaiies aoaces as a oies e ae a wic e ieece aises

o pn p 0(n-11 ), eie 4„,n 1 (pn ). Assumig oy a f > Gos (1971 sows a (3 wi R'n i (3 saisyig (35 wee eoes coegece i oaiiy ( 33 o iigsey (1995 is weake om o e aau eeseaio i (3 a (35 wic we ca a Bahadur-Ghosh representation, suices o mos aicaios icuig ous Oe cosequece o e aau-Gos eeseaio o cue Moe Cao is

a i imies a C o e quaie esimao ξn Fn-¹ (p), as sow i eoem 13 3 o ai a agaaa (3 akig p = p i (3 we ca wie

(3

e eoe coegece i isiuio (iigsey (1995 Secio 5 a eie

N(a,b² ) as a oma isiuio wi mea a a aiace ² a (ξ is e same aeage o /(Xi ξ1 = 1 n, wic ae ii wi mea p a aiace (1 — p), imies a e is em i e ig-a sie (S o (3 coeges i isiuio

o ( (1 —p)1 f² (ξ as n co Moeoe e seco em o e S o (3 a- ises i oaiiy as n y (35 ece (ξ — N (0,p(1 — /f²(ξ as n y Suskys eoem (Seig (19 19 CAE

AAU-GOS EESEAIO WE AYIG S

ecause cue Moe Cao is someimes ieicie o esimaig quaies we may y o oai imoe quaie esimaos y ayig a aiace-eucio ecique ( s oe cage e way sames ae geeae o coec aiioa aa a is eas o iee esimaos o e C We e ie e esuig esimae C o oai a quaie esimao We ow esais a geea maemaica amewok a wi aow us o sow a a aau-Gos eeseaio os we ayig iee s We wi e ay is amewok i suseque caes o eamie imoace samig (IS saiie samig (SS aieic aiaes (A coo aiaes (C a ceai comiaios o em

e n eoe a geeic esimao o e C oaie we usig a wee n is e "comuaioa uge" wic we eie ieey o aious simuaio me- os o eame we ayig IS n is e ume o sames geeae om a ew

isiuio * oaie om a cage o measue (see Cae 5 o eais We em- oyig A n eoes e ume o aieic ais (Cae o C n is e ume o ais o ouu a coo coece (Cae 7

ow se = i 1 ( as e esimao o e n -quaie o p = p

0(n - 11² ). Aaogous o e aau-Gos eeseaio i (3 o cue Moe Cao we wie (1

o oai a esu simia o (35 we equie a n saisies e oowig assumios

Assumio A (Mn -- 1 as n co, where M is the event that Fn(x) is monotonically increasing in x.

is assumio aows o e esimae C o o ecessaiy e moooicay

33 3 iceasig i u e oaiiy o is occuig mus ais as iceases o may

(u o a s ( wi aways e moooicay iceasig i o eac so As- sumio A wi iiay o

Assumio A o eey an = (-11²

as --

is assumio equies a e scae ieece i e acua C a e C esimao o eauae oe a iea o eg o oe -11² wi a eoi ξ a- ises i oaiiy as We oie a se o suicie coiios o Assumio A i Secio 1 We aso equie a a C os o e C esimao a ξ

We wi sow i e ae caes a A-A3 o o e s we cosie I

e case o cue Moe Cao wee n i (31 eaces Assumio A os sice

n ( is moooicay iceasig i o eac Moeoe Gos (1971 (aso see ai a agaaa (3 7 sows a Assumios A a A3 o y eoiig e

ac a n ( as a iomia isiuio wi aamees a ( Aso o cue

Moe Cao ψ² = a[I( ξ] = (1 - i Assumio A3 e oowig eoem sows a o a C esimao oaie we ayig s a saisyig ou assumios a aau-Gos eeseaio os o e e- suig quaie esimao

eoem 1 Suose saisies Assumios A1-A3 I (ξ a n - = (-11²

e (1 os wi (

A sime cosequece o eoem 1 is a 4,n -¹ ( is a cosise esimao o ξ wic we ca see as oows Assumio A3 imies 11(ξ (ξ y eoem 3 o ema (1999 ece (1 esues

(3 as y eoem 1 a Suskys eoem Moeoe eoem 1 aso imies e oowig C o e esimao o e quaie

hr 2 Suose n saisies Assumios AI A3 I (ξ e

(

p p as wee κ = ψ is eie i Assumio A3 a O = (ξ •

o cue Moe Cao o ay e aamee κ i ( aways as e same

asic om o ψφ e aue o ψ om Assumio A3 ees o e aicua

use (a equas 9(1 - o cue Moe Cao u Op oes o cage us eicie quaie esimaio yicay ocuses o ayig a o euce ψ e C i eoem oies a way o cosuc coiece ieas o a qua- ie esimae usig s oie we ae cosise esimaos o ψ a Op. o ae

Op, we is oe a ±( -¹ ( = 1/ ξ = Op y e cai ue o ieeiaio a we oose eow some iie-ieece esimaos (eg Secio 71 o Gassema ( o (1 e c e ay cosa a eie n = + c-¹/² a = - c-¹/² e eie e esimaos

(5

( 6

Note that φ1 (c) is a forward (resp., backward) finite-difference estimator of Op when

c > 0 (resp., c < 0) since pn1 (c) = [F„-¹ (p + cn -¹/²²) —Fri ¹(p)]/(cn-¹/²). Similarly,

(C is a central finite difference. To define additional estimators of Op, let C1,... , cr

• = 1 and WI , , w r be any nonzero constants (some possibly negative) with Σj=1 W Then define estimators

(4.7) which are weighted combinations of the previous finite-difference estimators. The follow- ing theorem shows that all of our estimators of Op are consistent. In addition, if we also

ae a cosise esimao ψ o ψ i Assumio A3 e we ca cosisey esimae

= 16,0p in (4.4) by taking the product of the consistent estimators of 16, and Op , and the

C i ( si os we κ is eace y is cosise esimao

hr Assume the conditions of Theorem 2 hold. Then for any nonzero constants c and ch... ,cr,

(4.8)

(4.9)

(4.10)

Hong (2009), Liu and Hong (2009) and Fu et al. (2009) develop consistent estima- tors for derivatives of quantiles with respect to certain model parameters, but their methods do not apply for estimating O = -¹ (p) and/or when using VRTs. When applying crude 37

Moe Cao (ie ii samig oc a Gaswi (19 a oige (1975 sow

a esimaos aaogous o φn,i(c), i = 1 i (5 a ( cosisey esimae O Moeoe au (19 cosies esimaos a ae weige comiaios as i (7 o ii samig A o ei cosisecy oos ey o eeseig eac ii same Xi as

= F-¹(Ui), wee Ui is uiomy isiue o e ui iea owee ese agu- mes o o geeaie we ayig s suc as imoace samig so we equie a iee aoac o esais ( a (9 I aicua Cooay 5 o Seig (19 oies a meo a eois e as aau eeseaio om (3 a (33

o ii samig o cosisey esimae O a we moiy is iea o wok isea wi a aau-Gos eeseaio a s We ow oie a agoim a sows ow o use (1 o cosuc a asym- oicay ai coiece iea o e quaie ξ we ayig a geeic

Algorithm

Goa Cosuc a oi esimae a 1(1 — a% coiece iea o ξ

Gie C esimao ase o a comuaioa uge o ; r > 1 oeo cosas

c1c C a w1 w w wi Σ=1 w = 1; a a cosise esimao n o yi Ses

1 Comue e oi esimao ξ = 1 ( o ξ

Comue κ = φi(c1c o eie i = 1 o i = wee φi(c1 • • • c is eie i (7

3 A asymoicay ai 1(1 — a% coiece iea o ξ is e (

1_ a/ κ/ wee β = φ-¹ ((3 a (I is e C o a N ( 1 aom aiae

I e oowig caes we ese eici omuae o e esimaos a

ψn i e aoe agoim o iee s a ese esimaos ca e e use o 8

compute 4,n and φi (C1 cr). To simplify notation, we will continue to use the same variables n ψ and , , c in each case rather than develop new notation for each different VRT.

4. rf

4.. rf f hr

To prove Theorem 1, we will first use the following lemma established by Ghosh

(1971); also see pp. 286-287 of David and Nagaraja (2003) for more details. We then transform Rn in (4.1) in terms of the two sets of variates described in the lemma to complete the proof as required.

(4.11)

(4.12) and note that (4.1) implies

(4.13)

We ow sow a („ WO saisies coiios I a o emma 1 o esais ou eo- em is Assumio A3 imies coiio 1 o emma 1 y eoem 3 o ema

(1999 We e oe coiio (a o emma 1 os eca Mn is e ee a F (x) is moooicay iceasig i a e Mcn e is comeme e

wee

i E a sice

(1 esaisig coiio (a o emma 1 is equiae o oig e is em o e S o (1 aoaces as ecause o Assumio A Sice F is assume o e

ieeiae a /3 Yougs om o ayos eoem (ay (195 7 imies 40

sice (ξp I is us cea a y n y as sice - = ( - ¹/²² eeoe

ee eiss suc a y - yn e/ o a so akig e ieece o e wo iequaiies i e is em o e S o (1 gies

ece o sow e e-a sie o (1 aises as i suices o oe

(15

oe a

a we ae n - = ( - ¹/²² y assumio so in +y-¹/² = ( -¹/²² Cosequey

(15 os y Assumio A us e (n Wn ai saisies coiio (a i emma 1; coiio ( o e emma may e simiay esaise so (11 os ecaig (13 e comees e oo

4..2 Sffnt Cndtn fr Aptn A2

As a aeaie o iecy sowig Assumio A os we ow oie a se o suicie coiios o e assumio

is coiio equies e eecaio o e ieece i e C esimao a ξ a a

euaio om ξ19 o oe -11² o equa e ieece o e C a e wo aues 4

us a ias em a goes o suiciey as oe a Coiio C1 os we n ( is a uiase esimao o ( o a

Cndtn C2 o eey an = ( -¹/²² E [n(ξp + an — (ξ )] ² = [(ξ + an — (ξ ]² +

S (an / wee sn (an -- as

is coiio cosies e seco mome o e ieece i e C esimao a ξ a a euaio om ξ o oe -¹/²² e coiio equies a e seco mome ca e eesse as e squae o e ieece i oaiiies ue o is euaio wi a emaie aoacig suiciey as

rptn Coiios C1 a C ogee imy Assumio A

o esais Assumio A i suices o oe E[( — W²] as o; eg see

eoem 11 o ema (1999 e o = ( + an — (ξ a (ξ + a -- (ξ e (1

Coiios C1 a C imy E[ n] = o + (an I a E [13n] = s(a/ uig ese io (1 yies

(17

Accoig o Yougs om o ayos eoem ( + a — (ξ = ( (ξ + ( 1 a •

Sice an = ( -¹/²² we ae o = (ξ + a — (ξ = ( -¹/²² ow we use e

oeies o n a sn i Coiios C1 a C wic esue (17 coeges o as

so Assumio A os 42

4.. rf f hr 2

y (1 we ae

(1

e is em o e S o (1 coeges i isiuio o a saa oma y Assumio A3 a e seco em coeges i oaiiy o y ( us e esu oows om Suskys eoem

4..4 rf f hr

y eoem 1 a (1 we ae

as n wic comees e oo o ( o i = 1 We ca simiay oe ( o i = Aso (9 e oows om Suskys eoem sice Σk=1 = 1.

o oe (1 we oy cosie we k sice κ ψpnφpn(1 • • • r

ψpnφpn( is us a secia case wi r = 1 eca ψ ψp y assumio a aso (9 os wee i o cases e imis ae eemiisic ece Suskys eoem imies κpn κ as wee κ is eemiisic e comiig is wi ( usig Suskys eoem esaises (1 CAE 5

QUAIE ESIMAIO USIG IS+SS

IS a SS ae wo s use o imoe e eiciecy o simuaios a comiig em may ue eace e eec eoe esciig a comie IS+SS quaie esimao eeoe y Gassema e a ( we sa y ayig us IS aoe wiou SS as i Gy (199 We is eai ow o ay IS i e sime case we e ouu X as C F a esiy ucio f . e e aoe C a e f e e esiy ucio o F* wi e oey a o eac t, f (t) > imies a f (t) o eame i F is

oma wi mea a a aiace σ e we ca coose F* o aso e oma u wi

iee mea a a aiace σ eie E* o e eecaio ue C F. Aso

eie L(t) = f (t) I f*(t) o e e ikeioo aio a t. e we ca wie

e aoe suggess a o esimae F (x) usig IS we geeae ii sames X_ ,Xn o X om C F* a aeage /(Xi x)L(Xi), i = 1 n. As eaie i Gy a Igea (199 IS aies moe geeay a e siu- aio we us escie e P e e oigia oaiiy measue goeig e socasic sysem o ocess eig suie a e e aoe oaiiy measue suc a o eac (measuae ee A P(A) imies P, (A) > ; ie P is asouey coiuous ( o iigsey (1999 wi esec o eie E* as e eecaio oeao ue e IS oaiiy measue a eie e ikeioo aio L = dP/dP*, wic is aso cae e ao-ikoym eiaie o P wi esec o ( 3 o iigsey

3 44

(1999 e we ae

(51 wic is kow as ayig a cage o measue is moiaes esimaig ( as o-

ows Geeae ii sames (i i (n n o ( usig a e IS esimao o is e (5

Ieig os esus i e IS quaie esimao

eca e cue Moe Cao esimao o is gie i (31 wee e i i

(31 ae geeae usig e oigia measue iuce y C y eoem e key o ayig IS o esimaig ξ is coosig so a a. [/( ξ ] a[I(

ξ/3 )] = (1 — o aciee a aiace eucio (eaie o cue Moe Cao wee a

eoes aiace ue measue Gy (199 a Gassema e a ( ese aicua coices o o aious seigs

o aiioay icooae saiie samig we ieiy a saiicaio aiae

Y suc a a Y ae eee We aiio e suo o Y io k saa Si Sk suc a eac {Y E Si} is kow a Σki=1 o eame e saa may e isoi ieas a Secios 3 a 93 o Gassema ( iscuss seea oe coices o seecig e saa eeoe y (51 we ca wie

oe a we eie (53 y is ayig IS a e usig saiicaio so Y is is-

iue ue e IS measue (Isea ayig SS is a e IS eas o a iee

eeseaio o a us a iee esimao; see Gassema e a (a o e- 4

ais

IS+SS esimaio o eais eacig eac coiioa eecaio i (53 wi a aeage o sames om e coesoig saum We ow oie eais o is aoac as eeoe i Gassema e a (a eie e same sie i eac saum i as i = yi wee e yi ae use-seciie cosas saisyig = 1 (We ae

iscuss ossie coices o yi o simiciy we assume a i is aways a iege so

e oa ume o sames acoss a saa is Ei i i = o eac saum i = 1 k we use e IS measue /3 o aw i sames Yi =1 i o Y coiioe

o ie i Si e o eac = 1 i geeae i as a same o aig e coiioa

IS isiuio o gie Y = Yi a e i e e coesoig ikeioo aio We us

ae i ii sames ( i = 1 i o ( Y om saum i (Gassema e a ( emoy a "i ossig" meo o geeae sames o e ie (i Yii

e ( 1 Yii same ies acoss saa ae geeae ieeey e e IS+SS esimao o e C is

(5

We aow o s = i wic case e ikeioo aio EE 1 a we o o ay IS Aso

e ume o saa may e k = 1 i wic case ee is o saiie samig ece e oowig esus o IS+SS ecomass cue Moe Cao IS-oy a SS-oy as secia cases

hr 4 Suose (ξ a o eac saum i suose ee eiss E a

3 suc a E[I(i + δ²i+ε] e n e e IS+SS esimao o eie i (5 e n saisies Assumios AI A3 wee yi λ²iζ²i / γi is e aiace cosa i Assumio A3 wi

(55 46

. - Thus, Theorem 1 imples ξn = Fri (p ) with p — p = 0(n -¹/²2) satisfies the Bahadur-

Ghosh representation in (4.1) and (4.2).

We ecey ou ou a ieeey o ou wok Su a og (1 es-

ais a e IS-oy quaie esimao oaie y ieig is i (5 saisies a as aau eeseaio aaogous o (3 a (33 usig a iee oo ecique a ue a soge se o assumios a we use Seciicay ey ue assume a e esiy f is osiie a coiuousy ieeiae i a eigooo o 4p a a e ikeioo aio L(x) is oue i a eigooo o ξ Aso ey o o cosie IS+SS (o A a C as we o Moeoe ey eamie oy e case o ie p a

o eue p , e ae o wic is esseia o ou aoac o eeoig coiece ieas o ξ e e esu sows a e IS+SS quaie esimao saisies a C

hr Suose (ξ and for each stratum i, suppose there exists ε and

3 > such that E*[I(Xij < ξ ²i+ε] CC e „ = (p) with Fn defined in (5.4) satisfies

(5

(57

as wee κ = ψφ O = (ξ 1 is eie i eoem e esimao

κ = c c is from (4.7) with nonzero constants , c

and w saisyig Σ=1wj = 1 for i =1 or ψ², = Σki=1 λ²iζ²i,n yi and

(5

We ow iscuss ossie coices o e saum aocaio weigs y Seig

= Ai o eac saum i guaaees a e C esimao ( i (5 as o geae 4 variance than Fos (x) in (5.2), which implies the IS+SS quantile estimator has no greater variance than the IS quantile estimator does; e.g., see p. 217 of Glasserman (2004). We A can do even better by choosing y to minimize λ²ζ²i / /yi. yi subject to E,_ 1 y = 1 and yi > 0. The stratum allocation weights solving this optimization problem are given by

k1=i;egEj=ζλζ λi/ see 17 o Gassema ( Sice e ζi ae yicay u- kow we mig is esimae em om io us a e use ese aues o esimae e yi* .

The right tail of Fn,IS in (5.2) may not behave as a proper CDF since it is possible

(and indeed likely) for limx—> Fn,IS (x) = a with a <1 or a > 1. To avoid such a situation,

Glynn (1996) also proposes another IS estimator of the CDF, F' IS (x) 1 — 1/nEni=1 I (Xi > x)L(X1), which can be more effective when estimating a quantile for p ti 1. (However, we may instead have lim--/IS (x) = b with b < 0 or b > 0, so may not be appropriate when estimating a quantile for p ti 0.) Glasserman et al. (2000b) develop the corresponding

IS+SS estimator of F:

(5.9)

The following two theorems, in which primed variables replace non-primed variables from before, show that quantile estimators based on inverting F'n satisfy a Bahadur-Ghosh repre- sentation and CLTs. They can be shown by straightforward modifications of the proofs of

Theorems 4 and 5.

hr 6 Suose (ξ 0, and for each stratum i, suppose there exists c 0 and

3 > 0 such that E*[I(Xij > ξp - +E ] < 0° Let Fn be the IS+SS estimator of F defined in (5.9). Then Fn satisfies Assumptions Al—A3, where 16 = Σki=1 1 A,7 yi is the variance constant in Assumption A3 with 1 = >)L²ij ] - ( ξp | Y E Se). Thus,

Theorem 1 implies 1 = -¹( with p — p = 0(n -¹/²2) satisfies the Bahadur-Ghosh representation in (4.1) and (4.2).

48

hr Suose (ξ and for each stratum i, suppose there exists E and

> such that E*[I(Xij > ξ - σ²i+ε] °C Suppose = F'n-¹(p) with F', defined in (5.9) satisfies

(51

(511

as n co wee κ = ψφ O = 1/ (ξ ψ is eie i eoem e esima-

tor κ = φi i(c1 • • • c Op • • C uses I" n in (4.7) with nonzero constants

,c and w saisyig Σ=1 wj = 1 for i = 1 or ψ²p,n = A7 ζ²i/yi and 2 i= = E • n!7 1 I(Xij • > ξ' — ( Σi=1 I(Xij • > i •

Gassema e a ( aso oe a e quaie esimao 13 n oaie usig IS+SS saisies e C i (51 (u ey o o cosie e C i (511 wi esimae aiace Aso Gy (199 esaises Cs aaogous o (5 a (51 (u o (57

a (511 wi esimae aiace o e IS-oy quaie esimao 4, equa o n-¹,IS (

o F" (p). o Gassema e a ( a Gy (199 ay e ey-Essée eoem (eg 33 o Seig (19 i ei oos a cosequey ey equie

e ikeioo aio i o ae a iie i mome (ue e IS measue Ou oo o (5 uses a iee aoac emoyig e aau-Gos eeseaio wic aows us o ea e mome coiio o e ikeioo aio o isea equie E*[I(Xij <

ξ + 5a7 £ ] CO o some E a S > Moeoe ue e soge assumios

iscusse eaie Su a og (1 esais a e IS-oy quaie esimao (p)¯¹ IS oeys e C i (5 u ey o o cosie (57 wi esimae aiace o IS+SS

We ow eai ow o ie e esimae C i (5 We ae gie Ai, ni, a Li j, a eca e oa ume o sames acoss a saa is n. o eac i = 1 , k,

a j = 1 ni, eie Am = Xij a Bm = Liλi/i wee m = j. e so

Ai A ,A i asceig oe as A( 1 A( • • • A ( a e (i coeso o A(i 4

o ie q 1 eie e q quaie esimao 4,n o e i 1 (q = A wee i q is

e smaes iege o wic Σ iqm=1 (m q Simiay o e esimae C ii (59 we comue e q quaie esimao 4 n o e -¹ (q = AK wee is e smaes iege o wic Σm=u +1 ( 1— q

. rf

.. rf f hr 4

eca e IS+SS esimao ( o F (x) gie i (5 Sice Lid, I(Xij i a

Al ae a oegaie ( is moooicay iceasig i o eac so Assumio A1 is saisie ow we wi sow a Assumio A os y eiyig Coiios C1 a C a ayig oosiio 1 o a E 91 we ae

(51

y (53 so ( is uiase o a ece Coiio C1 is saisie wi r (• = i is case

We ow sow Coiio C os e a = ( -¹/² a eie D = 11(ξ + a ) — E ( ). Se ρ = mi( ξ ξ13 + a ) a ρ = max( , ξ + a ), SO

(513 wee 5 a y e ieeece o (iYii a (iYiy'i o i i

We ca e eess A = A1 +A wee

(51

a y e ieeece o (iYii a (iYi,i o

We e wie A = A1 -A wee

(515

e (51 a (53 imy

= E, [I(ρ ρ] = (ρ ρ (51 51

ece susiuig (51—(51 io (513 yies

(517

ow we ee o ceck i sn (an ) nA1 — A as n as equie y

Coiio C We assume i E*[I(Xij + ²i+ε-] o eac saum i, a

e -c = mai=1k i¹/(¹+ε wic isi iie sice k < co. eca ni = yin, a oe a

I²(• I( • e ayig a cage o measue a oes iequaiy o (51 yie

o n suiciey age sice e I(ρ 1 < < < ξ + σ ecause ρ =ma(ξξ+ an ) a an (-¹/² Simiay we ewie (515 as

wic eas o 2 sn (an as -- ecause yi 1 a co a e Coiio C oows om (517 Cosequey Assumio A os y oosiio 1

asy we ee o sow Assumio A3 os eca a i = yi so

(51

wee G1,n = I < ξ i (i1 ξ] Aso I (is ξi j = 1 i ae ii wi iie aiace ue sice i ece Gin ( V) i as °(3

o eac i wee = a[I(i ξ i] , wic equas (55 om a cage o measue

e sames acoss saa ae ieee so e ieeece o Gin i = 1 k imies e ieeece o i i = 1 k I oows a (Gi, ,i = 1, • • • , k) (Ni = 1 , . , k as co y eoem 11 o Wi ( e ay e coiuous maig

eoem o (51 a oai ( ( (ξ - " ( Σki=1 A7 I yi wic com- ees e oo

..2 rf f hr

y ayig eoem we see a (5 oows om eoem o esais (57 we wi sow (519 as co so a we ca ay (1 om eoem 3 eca a ψ = / yi wi eie i (55 Aso we eie ζ ²i i (5 as a esimao o ow eie

Zi, (x) = a i( = E[I(i ] so i,n (p,n) 1 e is em i (

i11 a i (ξ is e is em i o oe (519 we is sow a o eac i =1 k

(5 53 as ue e IS measue i a aiay a a esaisig (5 equies

oig a /3 (4,0 i( a} as ecause we assume a i

< ξ + + £ ] (i ξ + 51] °° o some osiie ε a a aso

a F is ieeiae a ξ ee eiss suc a

(51

wee we eca A = [Y E Si] e

(5 so we wa o sow qi a q2,n 0 as co o esais (5 Sice 4,n -4 ξ y (3 (53

We ow ae q1 i (5 ecause Zi, (x) is moooicay iceasig i we

ae a ξ — ξ imies ma(i(ξ + — i(ξi(ξ — 3 — i(ξI

i(ξ i(ξ ece

(5 5

Osee a

(55

y e iage iequaiy Aso a cage o measue a e ac / ( • = I(.) yie

(5 wee e i se oows om öes iequaiy e ou se os ecause I(4

i ξ + 5 I(Xij p + 5) as 5 5 a (51 imies e as se us usig (5 i (55 gies

(57

I e eiiio o 17(ξ + 59, e summas I(Xij ξ δ²i = 1 ,ni, ae ii a eac summa as mea

y oes iequaiy us e weak aw o age umes imies e S o (57 55 coeges o as co so 1n 0 as We ca simiay oe a „ i (5 saisies 0, so q1 0 by (5.24). Using this together with (5.22) and (5.23) then esaises (5 o e seco em i (5 simia agumes sow a 1/i I(Xij

< i] 13 { Y E Si} as so (519 os y e coiuous-maig eoem a Suskys eoem comeig e oo CAE

QUAIE ESIMAIO USIG A

I e case o esimaig e mea o a aom ouu X aig C F, e asic iea o A is o geeae wo coies X a X' o e ouu aig C F i suc a way a X a X' ae egaiey coeae a we aeage e wo ouus Sice a(( + / = [a( Co( X')] / a(/ we Co( X') A euces aiace com- ae o we X a X' ae ieee ee ae aious ways i wic we ca ge- eae egaiey coeae X a X' wi e same magia isiuio F. o eam- e suose a e ouu X ca e eesse as X = h(111,. , Ud) o some uc- io h, wee U1 Ud ae ii uiom aom aiaes o e ui iea e X' = (1 — U1 1 — Ud) as e same isiuio as X sice 1 — Ui is aso uiom o [1] I h is moooic i eac o is agumes e X a X' ae egaiey coeae; eg see Secio 1 o oss (1997 I geea we imeme A o esimae a quaie o ouu X y geeaig (Xi,X'1), i = 1 n, as ii aieic ais wee i a X! eac ae magia is- iuio F a Xi a ae egaiey coeae e e A esimao o e C F is (1 wee F is eie i (31 a F = (1/ I(X1 Ieig E yies e C quaie esimao wic e oowig sows saisies a aau-Gos eeseaio

eoem Suppose f (ξ and let be the AV estimator of F defined in (6.I). Then

E satisfies Assumptions AI A3, where

( is the variance constant in Assumption A3 and (X ,X') is an antithetic pair. Thus, Theorem 1

5 implies 4n,n Fn (pn) with p — p = 0(n -¹/²2) satisfies the Bahadur-Ghosh representa- tion in (4.I) and (4.2).

e e esu sows a e A quaie esimao saisies a C

hr I (ξ then 4, F-¹ (p) with F defined in (6.I) satisfies

(3

(

as co wee κ=ψφ O =1/ f (ξ ψ is defined in (6.2), k-* = ψi(c • • • C ),

φi(c ,c ) is from (4.7) with nonzero constants ,cr and ,wr satisfying

Σ=1 w j = 1 for i = 1 or and

(5

We ow escie ow o ie e A C esimao i (1 o eac i =

1, . ,n, eie Ai-1 = i a Ai = XI. e so A1 A A i asceig oe as

A(1 A ( • • • oo ie q < 1, eie e q quaie esimao ξq o e

Fn 1 (q) = A( [2nq wee [·] eoes e ou-u ucio

6. rf

6.. rf f hr 8

eca e A esimao F (x) o F(x) gie i (1 Sice o I(Xi a

I(XI x) ae oegaie F (x) is moooicay iceasig i x o eac n, so Assum- io A1 os e we wi sow Assumio A is saisie y eiyig Coiios C1 a C a ayig oosiio 1 Osee a F (x) is a secia case o e IS+SS esimao 58

wi a sige saum (ie o SS a IS measue /3 (so e ikeioo aio 1 wic meas o IS Aso ' ( = Fn (x) sice eac I g_ i wee E eoes equaiy i isiuio so

y (51 eeoe e A C esimao is uiase wic imies Coiio C1

We ow sow Coiio C os Se an = (-¹²/ a (1 imies

( wee

As a secia case o e IS+SS C esimao n ( aso saisies Coiio C as sow i e oo o eoem eeoe sice 21 ( n ( o a we ae

(7

wi sn (an as wee o = (ξ + a — (ξ o ae A3 e ρ = mi(ξ ξ + an a ρ' = ma (ξ ξ/9 + an e

( 59 wee

(9 wi ( a aieic ai a

(1

sice Xi a ae ieee o i e (—(1 imy

Sice (ρ ρ ρ ρ 5 (ρ e iage iequaiy yies

ecause e ieeiaiiy o F a ξ imies F is coiuous a ξ i oows a o as sice ρn ξ/9 a ξ as us -- as -- sice s s(an wic sows Coiio C is saisie ece Assumio A oows y oosiio 1 asy we ee o sow Assumio A3 os We ca ewie (1 as (ξ =

(1/ A wee A = (i ξ + I (i ξ] / i = 1 ae ii sice i = 1 ae ii Sice E[Mi] = (ξ e C i Assumio A3 os 60 a e aiace ψ² i e C is gie y

wic comees e oo

6..2 rf f hr

y ayig eoem we see a (3 oows om eoem o esais

( we wi sow a ψ i (5 saisies

(11

as —- so a we ca emoy (1 om eoem 3 ow we eie n( = Σ1=1I(i

i a ( = E (i 'i ] so n(ξ, is e oy aom em i ψ o oe (11 we us ee o sow a (ξ ( as u we ca esais is y ayig agumes simia o ose use o sow (5 so e oo is comee CAE 7

QUAIE ESIMAIO USIG C

I may simuaios oe oe kows e mea o a auiiay aom aiae a is geeae i e ocess o geeaig e ouu aom aiae o eame i a sim- uaio o a queueig sysem oe kows e isiuios (a yicay aso e meas o e ieaia imes a seice imes e meo o coo aiaes (C euces aiace y eoiig is kowege

Suose a (C is a coeae ai o aom aiaes wee we ae ie- ese i esimaig e quaie o We assume a C as kow mea a iie

aiace a we wi use C as a coo aiae o aoi iiaiies we assume a a[C] Sice I( — /3 (C — as mea ( o ay cosa we ca aeage ii sames o o oai a uiase esimao o ( Seciicay we ge- eae ii sames (i CI i = 1 o e ai ( C eig /3 e ay cosa we ca eie a uiase esimao o e C o as

(71

(7

wee i is e emiica C eie i (31 a O = (1/ Ceay e aiace o ' ( ees o e aue o I ca e sow (eg 1 o Gassema ( a e coice o 13 a miimies e aiace is

wic ees o owee oe yicay oes o kow e aue o Co[I( C]

1 62 so i mus e esimae We us esimae ( ia

(73

eacig i (7 wi 13 (x) gies us e C esimao o e C F as

(7

wic is yicay o oge uiase ecause o e coeaio o ( a On We oai e C quaie esimao y ieig n i (7 a e oowig esu sows e quaie esimao saisies a aau-Gos eeseaio

hr 0 Suose (ξ and let C be a control variate with Var[C] < 00. Let

Fn be the CV estimator of F defined in (7.4). Then Fn satisfies Assumptions A1—A3, where

(75

is e aiace cosa i Assumio A3 us eoem 1 imies ξ = (pn) with pn — p = 0(n -11 ) satisfies the Bahadur-Ghosh representation in (4.1) and (4.2).

e C quaie esimao saisies a C as sow e We omi e oo sice i ca e esaise y ayig agumes simia o ose emoye i e oo o eoem 5

hr Under the assumptions of Theorem 10, ξ = 11-1 (p) satisfies

as n wee κ =ψφ O = 1 1 (ξ ψ is eie i (75 κ= ψφi(c1 ,cr), 3

φi (c1c is om (7 wi oeo cosas c1c a w1w saisyig

Σ=1 w =1 o i =1 o a

Ieig „ i (7 iiiay aeas comicae y e ac a 3 ( ees o owee eseeg a eso (199 sow a ( ca e ewie as

(7 wee (77 wic oes o ee o I i o eac i e i is cea om (7 a ( is moooicay iceasig i (I is ossie o i o e egaie u eseeg a eso (199 oe a is uikey i a sese ey make ecise e aaage o e

eeseaio o n i (7 is a i aows eauaig n ( a iee aues o wiou

eeig o ecomue n(x) i (73 eac ime Aso we ca ie n as oows We is so i i asceig oe as ( 1 ( • • • („ a e (i) coeso o

(1 e o q 1 we ca comue e q quaie esimao ξ- n as -¹(q= (qi wee i q = mi { Σ 1 (i q} We ow iscuss a aicua coice o a coo aiae C Suose a Y is a

aom aiae coeae wi e ouu a e G e e magia C o Y We ca e eie C = I(Y y o some cosa y we G(y is kow wi G(y 1

us we coec ii ais (i Yi i = 1 a eie Ci I(11i y I is saig- owa o sow i is case a i aways os esuig a I ( is moooicay iceasig i o eac Moeoe eseeg a eso (199 oe a i i (77

ecomes i= (Y y/Σi=1 1 1(11i y i Yi y a i=(Y I(Yi y i Yi y 64

We esimaig e quaie ξ = -¹ ( o a aua coice o y is y = G - ¹ ( (assumig a is is kow u is is o equie

We ca aso ay C wi muie coos C( 11 C(1 C(m wee eac CU as kow mea; see eseeg a eso (199 o eais Oe ossie coice is o seciy cosas y1 ym o wic eac G(y is kow a se CU = I(Y y

. rf

.. rf f hr 0

e aeaie eeseaio o i (7 sows a ( is moooicay i- ceasig i we e weigs i (77 ae oegaie As oe y eseeg a e-

so (199 e oaiiy o ay i eig egaie is o(-¹ sice we assume a[C] so Assumio A1 os

o esais Assumio A e a = ( - ¹/² a eie

so we ee o eiy - W as co ecaig (31 a (7 we ca wie

(7

Sice n is a secia case o e IS+SS C esimao i (5 wi /3 = (so e ikeioo aio 1 wic meas o IS a oy k = 1 saum (ie o SS eoem sows a

n saisies Assumio A wic is eacy a An as o y Suskys eoem i e suices o sow a n as o eiy a Assumio A os o C e c = a[C] Sice we assume C co e C e imies

(79

as co us i we oe a Qn E- 13( + a — (g as e n y Suskys eoem sice ( y assumio oe a (73 imies

a n 6j > as ; eg see 9 o Seig (19 us o esais a

Q i is suicie o oe a n as co y Suskys eoem We accomis

is y e eiyig a E(In I as co a ayig eoem 13 o Seig (19

e n = Ii( + a a = ma( p + an so e iage iequaiy yies

y e Caucy-Scwa iequaiy Usig e acs a e C1 i = 1 ae ii a

a E[C] = 61,-+ v , we ca sow a E[(C1 — en ] = ( — 11 1 so E(I I

I/ ( i ac Sice p a pn 1 as cc we ae a P(p, < X < p,C) as co ecause is ieeiae a ece E(In I - as co sice ac Cosequey n 1 as sowig a Assumio A is saisie y (7

o oe Assumio A3 os o C oe a n (gp / ( as cc y e 66 weak aw o age umes a Suskys eoem us

as y (79 a Suskys eoem so [(ξ (ξ(C — ] a n[Fn (ξ — (ξ(C— ] ae e same weak imi as —- y e coegig-ogee emma (eg

eoem 5 o iigsey (1995 Sice e summas i (71 wi 3 eace wi

3 (ξ ae ii wi iie aiace (ecause we assume a[C] e C gies e

weak imi as (1 wi 1 = a[I( — (ξ(C - ] wic woks ou o e (75 CHAPTER 8

EMPIRICAL STUDY

The previous chapters developed confidence intervals for a quantile of a

X having CDF F, and we established the asymptotic validity of the intervals as the com­ putational budget n --+ 00. However, in practice, only finite sample sizes can be used, so we now carry out an empirical study to see how well the confidence intervals perform with· finite n. In particular, we ran simulations building confidence intervals having nominal confidence level I - ex and observe how close the estimated coverages of the intervals are to 1 - ex for different values of n. (The coverage of a confidence interval in for a parameter y based on a computational budget of n is defined to be P( y E in). In an ideal situation, the coverage equals the nominal level 1 - ex for any n, but when in is asymptotically valid, this is only achieved as n --+ 00. In practice, for finite n, the coverage often differs from 1 - ex, sometimes significantly.)

Our experiments entail applying crude Monte Carlo (CMC), IS, IS+SS, AV, and CV on two stochastic models: a normal distribution (described in Section 8.1), and a stochastic activity network (Section 8.2). The goal is to study how the computational budget nand the "smoothing parameter" c used in the finite-difference estimators in (4.5) and (4.6) affect the coverage of the intervals.

8.1 Normal Distribution

The first set of experiments involves estimating the pth quantile ~p of a standard normal random variable X, so F is the standard normal CDF

IS distribution F* by exponentially tilting F with tilting parameter e, defined by F*(dx) = e8x-t;(8) F(dx), where S"( e) = In(E[e 8X]) = e2/2 is the generating function of X. It is straightforward to show that F* is also normal with unit variance and mean S"'(e) = e, the derivative of S" (e). To choose a value for e, consider the following approximation

67 68 applied by Glynn (1996): P(X > x) e(—θ ζ( for x >> 0, where Ox is the root of

e equaio ζ( = x, so θ = Since we are interested in x satisfying P(X > x) =1— p

(i.e., the p quantile), we arrive at the equation - + /= ln(1 — p). Solving for 0 gives ζ( 0) = -21n(1 — p) as the mean of F. For IS+SS, consider a bivariate normal pair (X, Y), where the goal is to estimate the p-quantile of X and Y is used as a stratification variable. Under the original distribution, both X and Y have standard normal marginals, and the correlation is ρ Under the IS measure, (X, Y) is again bivariate normal with marginal means C(0), unit , and the same correlation ρ

For AV, the distribution of X is F = 413, and the antithetic pair is (X, X') = (X, —X).

For CV, define (X, Y) as a bivariate normal pair with standard normal marginals and corre- lation ρ and define the control C = I(Y < G -¹ (p)) when estimating the pth quantile of X, where G = (13 is the marginal distribution of Y.

8.2 Stht Atvt tr

The other model we considered is a stochastic activity network (SAN). SANs are often employed to model the time to complete a project and are useful in project planning.

We consider a simple SAN with 5 activities, which was previously considered in Hsu and

Nelson (1990). Figure 8.1 illustrates the model.

r 8. Stochastic activity network. 9

e A1A A5 e e uaios o e ie aciiies wic ae ii eoeias

wi mea 1 e i eoe e esiy ucio o Ai so i( = e — o o eac i = 15 ee ae 3 as i e ewok e 1 = {1} B2 =11,3,51 a B3 = wee is e se o aciiies o a j. e mj = e ume o aciiies o a j. e = Σie Ai e e eg o a j, wic as mea m e X ma(1 T2, T3) e e eg o e oges a Ou goa is o esimae a cosuc coiece ieas

o e quaie ξ o As oe y su a eso (199 e C o is gie y o

a e esiy ucio o is

wic is osiie o a us we ae (ξ > o ay 1 I e oowig secios we oie eais o ow IS IS+SS a A ae aie o e SA o C we cose e coo aiae C as oows oe a a as e

oges eecaio a we e Y T2 e e (aom eg o is a e G eoe e C o Y wic is Eag- We e ake C = I(Y G-¹(p)) we esimaig e

quaie o

1 IS o SA

We ay IS as i uea e a (7 y usig a miue o eoeiay ie isiuios eie oo e e eoeiay ie esio o i ue iig aamee

so fie (t) = eθ—i(θ i( wee i(θ E[eθAi] = —1(1 — is e cumua ge- eaig ucio o Ai wic eiss o 0 < 1. oe a ie ( = (1 — (1-θ e—( ¹—θ o 70

and 0 otherwise; i.e., fie is the density of an exponential with rate 1 — 0. We will define the IS distribution to be a mixture of 3 distributions, each defined by exponentially tilting one path length Tj and not changing the distribution of activities not on that path. To do this, define positive constants a a² a3 such that a + a² + a3 =

1; these will be the mixture weights, and we will later discuss how we choose specific values for a Let 01, ² 93 be positive constants, and O will be the tilting parameter under the jth distribution in the mixture; we will define 0j later. For each j = 1,2, 3, define measure Pj such that Ai has density ie' when i E Bj and density fi when i Bj, and A1, ,A5 are mutually independent. Now define the IS measure P to be the mixture of the Pj using weights α ; i.e., 13(A α (A for any event A. The likelihood ratio is then

(8.1)

where cj (0) = Σiє i (9 = -m ln(1 — 0) is the cumulant generating function of T. We now discuss how to choose each tilting parameter 0j using an approach de- scribed in Glynn (1996). Large-deviations theory suggests that under certain conditions

(8.2) for x E[7] m wee θ is e oo o e equaio ζ;( = x and prime denotes derivative, so (0) = mj/ (1— 0). Setting the RHS of (8.2) equal to 1—p yields —0 (0) + ζ( (1 — p), or

(8.3)

We e ake o e e oo o (3 us we oai ζ (0) = mj/(1 — 0j) as a (crude) approximation for the pth quantile of Tj (under the original measure) when p 1.

Since we will be estimating the pth quantile of X for p 1, we will use the IS

CDF estimator F'IS (x) = 1 (i The resulting quantile estimator 71

We ow escie ow o coose e IS miue weigs α y moiyig a euisic i uea e a (7 e Ej eoe eecaio ue measue P , a e E, e e-

ecaio ue measue Sice ζ(θ is ougy equa o e quaie o Tj a

X = ma Tj, we ow aoimae ξ ia ξ; EE ma ζ( wic eas o aoimaig

e is em (e seco mome i 1² y E*[I²I(X > 4)]. ow we eeo a ue ou o is quaiy O e ee {i we ae a K I α o y (1 wee Kj = e(— ξ + ç ( ece sice { } = U³j=1 > ξ1 we ge

Coosig α o miimie e aoe ou suec o Σ1. =1 as = 1 gies a = Kj/ Σ I K1. We ow u is a ogee i e agoim eow i wic a sames ae ge- eae ieeey a wee E(η eoes a eoeia isiuio wi ae .

IS algorithm for SAN example:

1 o eac j 1 3 eie θ o e e oo o (3 a eie aj = =1Kl,K/Σ³

wee K1 = (1 — θ—m e(-θ ξ a ξ mam/(1 — θ Aso eie η = 1 - O. Se N = wic is e oa ume o sames coece us a

e N = N 1 a geeae UN ~ ui[ 1]

3 I UN < a e geeae A1 E(η1 A² E(η1 A3 E(1 A E(1

A5 E(1

I a UN < a + a² e geeae A1 E(η² A E(1 A3 E(η A Ex(1 A5 E(粕 7

5 I a + a UN a + a + a3 e geeae A1 i E(1 A E(1 A3

E(1 A E(η3 A5 E(η3•

Comue 1 =A1 +A = A1 +A3 +A5 3 = A +A5 XN ma(1 3 a

e ikeioo aio LN as i (1

7 I N < n, e goo se Oewise comue e IS esimao a coiece iea a so

IS+SS for SAN

We wi use Y = as a saiicaio aiae so we ow wa o comue e C G* o Y ue IS measue is e Gj e e C o Y ue measue Pj, a eie

=UeaηjO.A3 measue1 — 1 we ae a A1 is eoeia wi ae η1 wie

A5 ae o eoeia wi ae 1 wi A1A3A5 muuay ieee us o t > we ae

Simiay we ca sow a

iay ue measue we ae a A1A3A5 ae ii eoeia wi ae T1 , so

as a Eag-3 isiuio wi scae aamee 77 ; ie G2(t) = 1 — e -711 — ηe-η — 73

(11 e -117 us e C o Y ue IS measue is gie y Gs (t) = αG( eie k saa 51 52, , Sk o e saiicaio aiae Y a e Ai = P {Y E Si} .

Aso eie yi wi Σki = 1 a e i = yi I ou eeimes we geeae saiie sames usig e "i ossig" meo o Gassema e a ( e E(η eoe a eoeia isiuio wi ae We e ae e o- owig agoim i wic a geeae sames ae ieee

IS+SS agoim wi i ossig for SAN:

1 o eac j = 13 eie θ o e e oo o (3 a eie a = K/Σ³=1

wee K1 = (1 - 1 -"1/ e(--θ1 ξ a ξ = maxr mr/ (1 — Or). Aso eie 1 - θ Se Ni = o i = 1 k wee Ni is e ume o sames i saum i coece us a e N = wic is e ume o saa a ae eoug sames coece

e N = N + 1 a geeae UN ~ ui[ 1]

3 I UN < a e geeae A1 E(η1 A E(η A3 E(1 A E(1

A5 E(1

I al UN < α1 + a e geeae A1 E(η A E(1 A3 E(η

A E(1 A5 E(η•

5 I a1 + a UN < a1 + a + a3 e geeae A1 E(1 A E(1 A3

E(1 A •-■ E(η3 A5 E(η3•

Comue 1 -A1 +A T2 = A 1 +A3 +A5, T3 = A -+ A5 X = ma (1 T2, 3 Y = T2, a L as i (1

7 i i suc a Y E Si, a e Ni + 1. I Ni < ni, e se Xi,Ni, = ii = Y

a Li ,Ni = L; oewise isca (X, Y,L). 4

I e goo se Oewise comue e IS+SS esimao a coiece iea a so

8.2. A fr SA

o ay A we geeae eac same as oows e U1 U5 e ii ui[ 1]

aom umes a o eac i = 1 5 se Ai = —1(1 — Ui a = — (Ui e

o = 1 3 se 7 = Σiє Ai a I = Σie iay se = ma (1 3 a

= ma(1 as e aieic ai o ouus Sice is moooic i eac Ui we

ae a a ae egaiey coeae; see 11 o oss (1997

8. Chn th Sthn rtr c

eca φ C( 1 om ( e ceee iie-ieece esimao o O wee

is e comuaioa uge e esimao φ (c scaes e ieece o quaie esimaos a +c / a o some smooig aamee c a we ca use

φ(C i e as se o e agoim o 37 i Cae o cosuc a 1(1 — % coiece iea o ξ We ow iscuss some ecommeaios o coosig c

Oe ossie goa guiig e seecio o c is o miimie e mea-squae eo

(MSE o (C as a esimao o O Aeaiey we ca coose c o miimie e coeage eo o e esuig coiece iea o ξ I e case o cue Moe Cao ee as ee some eious wok cayig ou asymoic easios o suy ese wo oems oige (1975 sows a ue ceai eguaiy coiios e MSE o

φ(c as co akes e om

wee Q( = -¹ ( a Q" is is i eiaie Sice e seco em i ( siks moe sowy a e is seecig c as age as ossie wi maimie e ae (o is 75 oe a wic MSE (c) eceases as n gows As o e coeage eo eie e

1(1 - a) % coiece iea o ξ as J (c) ((ξ±1-α/ 9(1 - n (c wi 1_a/ = -¹ (1 - a/ Ue ceai eguaiy coiios a a Seae

(19 sow a e coeage o J (c) o age n saisies

wee u( = -3 / u3(x) = ax wi a = [3 (ξ - f (ξ " (ξ] [ (ξ4]-¹ , a 9 is e saa oma esiy ucio e ackee em i (5 eeses e is-oe eo em i e coeage e is summa i is eceases moe sowy a e oe so we sou coose c as age as ossie o maimie e ae a wic e is-oe eo siks as n co We comiig iee aues o c as i (7 we ca use e oowig iea

om Gassema ( Agai e Q(x) = -¹ (x), so O = (p), wee ime eoes

eiaie e h = cn - ¹/²2, a a ayo easio o Q(p) yies

wee o owes o h cace ou Simiay

so we ca cace ou e oe em y comiig e wo aoe esus as

is suggess a we comiig r = aues o c i (7 seecig c1 a c wi c = c1 w1 = /3 a w = -1/3 may ea o e esimao φ,n,2(c1 c aig ow 76 bias.

8.4 Discussion of Empirical Results

In our experiments, we constructed confidence intervals for the pth quantile ~p using CMC, IS, IS+SS, AV and CV, where the intervals have a nominal confidence level of 1 - a = 0.9. In each case, we constructed a confidence interval using the algorithm on p. 37 in Chapter 4, which consistently estimates the variance constant 1(2. This requires specifying a value for the smoothing parameter c of the finite-difference estimators of cjJp in

(4.5) and (4.6), or values for CI, ... ,Cr and weights WI, ... , wr for the combined estimator in (4.7). We experimented with different values for these parameters and the computational budget n to study their effect on the coverage.

j The experiments used n = 50 and n = 100 x 4 for 0 :s; j :s; 4. Also, we took C = 2t for -4 :s; t :s; 2. In all cases we estimated coverage levels using m = 103 independent replications. Also, we applied common random numbers (CRN) when possible, which can lead to sharper comparisons. For example, in tables containing results for both CV and crude Monte Carlo, the simulated output (X, C) for CV shares the same value of X used in crude Monte Carlo. In our IS+SS experiments, we used k = 5 equiprobable strata defined by the intervals Si = (G- 1 ((i -1 )lk),G-1 (ilk)] for i = 1, ... ,5, where G is the CnF of the stratification variable Y, so each Ai = 11k. Also, we let '}1 = Ai.

We first discuss how coverage converges as n increases for different values of c.

Figures 8.2 and 8.3 are for IS-only on a normal for p = 0.8 and p = 0.95, respectively.

Figures 8.4-8.7 are for IS+SS on the bivariate normal for p = 0.5 and 0.9 and for p = 0.8 and p = 0.95. Figures 8.8 and 8.9 are for AVon the normal for p = 0.8 and p = 0.95.

Figures 8.1 0-8.13 are for CV on the bivariate normal with p = 0.5 and p = 0.9 for p = 0.8 and p = 0.95. Figures 8.14 and 8.15 are for CMC on the normal for p = 0.8 and p = 0.95. 77

Figure 8.2 Coverage for IS-only for the normal for p = 0.8.

Figure 8.3 Coverage for IS-only for the normal for p = 0.95.

Figure 8.4 Coverage for IS+SS for p = 0.8 for the bivariate normal with ρ = 0.5. 78

Figure 8.5 Coverage for IS+SS for p = 0.95 for the bivariate normal with ρ = 0.5.

Figure 8.6 Coverage for IS+SS for p = 0.8 for the bivariate normal with ρ = 0.9.

Figure 8.7 Coverage for IS+SS for p = 0.95 for the bivariate normal with ρ = 0.9.

r 8.8 Coverage for AV for p = 0.8 for the normal.

r 8. Coverage for AV for p = 0.95 for the normal.

r 8.0 Coverage for CV for p = 0.8 for the bivariate normal with ρ = 0.5. 80

igue 11 Coverage for CV for p = 0.95 for the bivariate normal with ρ = 0.5.

Figure 8.12 Coverage for CV for p = 0.8 for the bivariate normal with ρ = 0.9.

igue 13 Coverage for CV for p = 0.95 for the bivariate normal with ρ = 0.9. 8

r 8.4 Coverage for CMC for p = 0.8 for the normal.

r 8. Coverage for CMC for p = 0.95 for the normal.

In general we see that as n increases for a fixed c and method, the coverage levels converge to the nominal level of 0.9 in each case. Also, for fixed n, larger values of c seem to lead to coverages that are closer to 0.9 than the smaller c for CMC and all of the

VRTs. Moreover, as n increases, the convergence appears to be faster for large c. Thus, the observations in Section 8.3 for CMC that choosing large c is better appear to also be valid for VRTs.

Figures 8.16-8.20 are for IS-only, IS+SS, AV, CV and CMC on the SAN for p =

0.95. The same patterns appear in the results for the SAN that were previously exhibited for the normal case. 82

r 8.6 Coeage o IS-oy o p = 95 o e SA

r 8. Coeage o IS+SS o p = 95 o e SA

r 8.8 Coeage o A o p = 95 o e SA 83

Figure 8.19 Coverage for CV for p = 0.95 for the SAN.

Figure 8.20 Coverage for CMC for p 0.95 for the SAN.

Tables 8.1-8.40 provide more detailed results about coverage and average half- widths, where Tables 8.1-8.20 are for the normal or bivariate normal model, and Ta- bles 8.21-8.40 contain results for the SAN. In each table the first column gives the com- putational budget n. The next three columns give the results for the centered, forward and backward finite-difference (FD) estimators of O from (4.6) and (4.5).

Two boundary conditions of pn in (4.6) and (4.5) need to be satisfied while esti- mating O : 1) p c/ < 1, when c > 0; 2) |n x c/ > 1, which, equivalently, means the perturbation position needs to be at least one. If one of them is not satisfied, then cor- responding coverages and half-widths will display "NaN". For instance, when p= 0.95, c = 1 and n < 400, the coverages and half-widths display "NaN". 84

bl 8.: Coverages for IS with c = 0.1 for the Normal when p = 0.95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 91 5 193 1 7 7 1 53 7 55 19 9 9 393 1 1 7 5 9 91 55 9 7 7 9 9 1 5 97 9 93 99 9 75

bl 8.2: Average Half-Widths for IS with c = 0.1 for the Normal when p = 0.95 Ceee owa ackwa Esimaig n acig Eac O Mean 5 a a a 71 11 757 1 119 1 19 15 119 1 1 7 1 3 1 31 31 3 3 31 77 1 1 1 17 1 337 5 7 7 9

I ems o coeage e ackwa esimao aeas o o wose a e oe wo a e ceee esimao mig eom sigy ee a e owa esimao is comemes e MSE aaysis i Secio 71 o Gassema ( sowig a ceee iie-ieece esimaos o e eiaie o a mea ae asymoicay smae MSE a owa esimaos

bl 8.: Coverage for IS with c = 0.5 for the Normal when p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 1 1 3 1 1 1 77 73 1 91 959 9 9 31 1 91 9 9 9 99 93 917 5 9 97 5 9 9 9 9 75 8

bl 8.4: Aeage a-Wis o IS wi c = 5 o e oma we p = 95 Ceee owa ackwa Esimaig n thn Eac O Mea 5 a a a 71 11 15 1 5 1 9 13 119 51 73 1 1 31 35 3 31 1 1 1 17 1 3 5 7 3

bl 8.: Coeages o IS+SS wi c = 5 o e iaiae oma isiuio wi p = 9 we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 7 7 1 1 1 1 75 73 5 915 953 1 9 7 1 99 93 7 99 9 531 9 71 9 5 11 5 9 99 9 9 9

bl 8.6: Aeage a-Wis o IS+SS wi c = 5 o e iaiae oma wi p = 9 We p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 71 1 971 1 11 71 1 1 17 79 59 7 7 55 19 1 31 31 55 1 15 13 15 1 9 5 7 7 7 7 33 86

bl 8.: Coeages o IS+SS wi c = 5 o e iaiae oma isiuio wi p = 9 we p = 95 Ceee owa ackwa Esimaig Comiig n acig Eac O Mean C1 = 5 a c = 5 5 915 95 731 7 7 1 a 1 9 97 779 73 5 3 91 9 7 7 1 9 91 99 9 531 9 9 95 77 9 5 11 7 5 95 99 97 9 9 93

bl 8.8: Aeage a-Wis o IS+SS wi c 5 o e iaiae oma wi p = 9 We p = 95 Ceee owa ackwa Esimaig Comiig n acig Eac O Mea c1 = 5 a c = 5 5 17 35 113 71 1 971 a 1 115 139 9 1 17 79 1 5 5 55 19 55 1 3 5 31 55 1 1 13 15 1 9 1 5 7 7 7 7 33 7

bl 8.: Coeages o A wi c = 1 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 5 791 1 1 a a a 59 53 1 99 1 751 7 1 1 93 97 7 59 91 1 911 9 75 9 99 1 5 95 93 97 9 97 1 87

Table 8.10: Aeage a-Wis o A wi c = 1 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 315 5 1 a a a 31 11 7 37 13 11 1 3 77 5 59 3 3 7 3 3 5 15 1 1 1 15

Table 8.11: Coeages o A wi c = 5 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 5 791 1 1 93 979 9 59 53 1 9 95 7 1 1 99 93 59 59 91 1 99 99 5 9 99 1 5 97 913 95 9 97 1

Table 8.12: Aeage a-Wis o A wi c =- 5 o e e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 315 5 1 31 93 19 31 11 13 15 9 13 11 1 5 59 3 3 3 3 5 15 15 15 1 15

Table 8.13: Coeages o C wi c = 1 o e iaiae oma wi p = 9 we p = 95 Ceee owa ackwa Esimaig n FD acig Eac O Mean 5 a a a 113 7 913 1 a a a 19 7 95 9 999 75 777 9 9 1 91 99 7 9 9 9 95 97 5 93 95 9 5 9 91 93 95 9 88

bl 8.4: Aeage a-Wis o C wi c = 1 o e oma wi p = 9 we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 799 3 1 1 a a a 71 3 7 3 373 13 17 137 3 1 73 5 7 1 35 3 31 37 3 9 5 17 19 1 19 17 5

bl 8.: Coeages o C wi c 5 o e iaiae oma wi p = 9 we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 113 7 913 1 5 5 75 19 7 95 9 91 777 9 9 1 97 917 51 9 9 9 91 91 75 93 95 9 5 93 9 91 93 95 9

bl 8.6: Aeage a-Wis o C wi c = 5 o e iaiae oma wi p = 9 we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 799 3 1 1 39 19 71 3 7 15 17 11 17 137 3 1 9 7 7 1 3 3 3 37 3 9 5 17 1 1 19 17 5 8

bl 8.: Coeages o CMC wi c = 1 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 333 91 7 1 a a a 3 91 91 97 99 7 3 97 9 1 91 95 1 11 91 911 9 933 75 9 95 9 5 99 9 91 91 9

bl 8.8: Aeage a-Wis o CMC wi c = 1 o e oma we p 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 37 9 3 1 a a a 33 37 1 3 19 171 17 1 9 111 73 91 7 1 9 39 3 1 5 3 3 1

bl 8.: Coeages o CMC wi c = 5 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 333 91 97 1 939 9 711 3 91 91 93 9 3 97 9 1 9 1 11 91 911 91 97 5 9 95 9 5 9 91 97 91 91 9

bl 8.20: Aeage a-Wis o CMC wi c = 5 o e oma we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 37 9 3 1 55 33 37 1 11 15 17 171 17 1 97 79 91 7 1 3 1 3 1 5 1 3 1 9

ae 1 Coeages o IS wi c = 1 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mean 5 a a a 5 1 a a a 3 91 93 1 1 9 97 97 1 95 997 79 93 95 95 913 95 93 91 9 5 9 931 71 91 91 7

ae Aeage a-Wis o IS wi c = 1 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 3 53 13 1 a a a 53 7 175 19 157 35 7 35 1 13 15 9 11 1 17 55 5 57 5 9 5 9 5 9 5

ae 3 Coeages o IS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 5 1 1 1 77 3 91 93 91 91 7 97 97 1 9 937 93 95 95 9 919 79 93 91 9 5 91 99 9 91 91 7

ae Aeage a-Wis o IS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig 11 acig Eac O Mea 5 a a a 3 53 13 1 3 9 7 53 79 17 35 7 35 1 1 1 93 11 1 17 53 5 5 57 5 9 5 9 5 9 5

bl 8.2: Coeages o IS+SS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 9 5 5 1 1 1 7 7 1 93 95 17 9 99 9 1 9 35 9 91 9 911 7 9 9 9 5 9 99 3 93 95 91

bl 8.26: Aeage a-Wis o IS+SS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 1 9 53 1 99 557 1 5 33 391 19 3 13 191 175 1 1 9 1 79 97 11 51 5 3 5

bl 8.2: Coeages o IS+SS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig Comiig n acig Eac O Mea c1 = 5 a c = 5 5 9 93 7 9 5 5 a 1 97 937 5 7 1 79 913 91 9 99 9 95 1 95 5 9 91 1 91 9 7 9 9 9 9 5 93 9 5 93 95 91 9

bl 8.28: Aeage a-Wis o IS+SS wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig Comiig n acig Eac Op Mean c1 = 5 a c = 5 5 53 73 33 1 9 53 a 1 3 5 7 5 33 391 7 177 19 157 19 175 173 1 93 3 97 11 3 51 5 5 2

bl 8.2: Coeages o A wi c = 1 o e SA we p = 95 Ceee owa rd Esimaig n acig Eac φ Mea 5 a a a 5 7 79 1 a a a 9 55 9 99 1 75 7 9 97 1 917 971 9 915 93 1 9 9 5 9 99 79 93 95 91

bl 8.0: Aeage a-Wis o A wi c = 1 o e SA we p 95 Ceee owa ackwa Esimaig n E acig Eac O Mea 5 a a a 7 71 1 1 a a a 55 5 15 751 17 33 31 75 1 17 13 17 1 3 9 7 9 19 5 1 39 1 9

bl 8.: Coeages o A wi c 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 5 7 79 1 91 99 7 9 55 9 915 9 11 7 9 97 1 97 31 9 95 9 75 9 9 5 9 93 93 95 91

bl 8.2: Aeage a-Wis o A wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac O Mean 5 a a a 7 71 1 1 11 13 55 5 15 3 1 33 31 75 1 17 1 1 17 1 3 7 7 9 19 5 1 3 1 9

bl 8.: Coeages o C wi c = I o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 11 531 1 1 a a a 19 533 7 9 995 7 7 91 1 9 95 77 9 9 93 95 91 5 9 99 79 9 95 91

bl 8.4: Aeage a-Wis o C wi c = I o e SA we p = 95 Ceee owa ackwa Esimaig acig Eac Op Mea 5 a a a 79 9 1 1 a a a 13 133 59 9 13 1 9 1 15 15 17 15 3 77 7 3 7 17 5 3 1 3 1 3

bl 8.: Coeages o C wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig acig Eac φ Mea 5 a a a 11 531 1 1 1 593 19 533 7 9 91 3 7 91 1 77 95 3 77 9 7 91 5 95 91 5 9 9 9 95 91

bl 8.6: Aeage a-Wis o C wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 79 9 1 1 9 95 375 13 133 33 393 53 1 9 1 153 171 135 17 15 3 7 1 7 3 7 17 5 3 39 3 1 3 4

bl 8.: Coverages for CMC with c = 1 for the SAN when p = 95 Ceee owa ackwa Esimaig n acig Eac O Mea 5 a a a 91 97 1 a a a 95 99 1 75 7 9 9 1 9 97 5 39 99 9 9 97 55 93 93 91 5 91 93 97 913 915

bl 8.8: Average Half-Widths for CMC with c = 1 for the SAN when p = 0.95 Ceee owa ackwa Esimaig n acig Eac φ Mea 5 a a a 933 13 39 1 a a a 9 95 79 9 1595 33 5 7 1 1 5 31 19 53 3 7 11 13 1 19 119 35 5 3 5 1

bl 8.: Coeages o CMC wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 91 97 1 935 97 71 95 915 9 79 7 9 9 1 93 9 39 99 9 9 95 93 93 91 5 95 915 9 97 913 915

bl 8.40: Aeage a-Wis o CMC wi c = 5 o e SA we p = 95 Ceee owa ackwa Esimaig n acig Eac Op Mea 5 a a a 933 13 39 1 1373 15 3 9 95 79 53 3 3 5 7 1 1 5 11 53 3 7 1 1 11 19 119 35 5 5 1

We aso wae o see e "eay" o esimaig O o cosuc coiece ie- as o o is we aso cosuce ieas usig e eac aue o O e coums i

e aes aee "Eac O " coai ese esus I geea we see a coeage ees ae cose o e omia ee o 9 we e eac aue o O is use isea o eig esimae o comaiso we aso use acig (wi b = 1 aces as a aeaie a- oac o cosuc coiece ieas; see e coums aee "acig" i e aes (I acig we aocae a comuaioa uge o n/b o eac ac wi aces simu- ae ieeey We om a esimao o e quaie om eac ac a e ake e same mea a same aiace o e esuig b quaie esimaos o cosuc a coiece iea o ee emiica esus sow a acig geeay eas o somewa ee coeage ees a e meos ase o e iie-ieece esimaos o O owee e coiece ieas o acig ae age aeage a-wis 96

We aso cosuce coiece ieas o e mea as aoe ecmak o comaiso o A as sow i aes 9— 1 e coeage aes ae a 1s o iee same sies wie e a-wis ae a Os emosaig ayig A o e saa oma is a secia case wee e mea esimao is ieica o e eoeica mea a aiace esimao equas o ae e aieic ais cace ou i cosucig e mea esimao a e aiace esimao o C e coeage aes o e coiece ieas o e mea ae cose o e omia ee o a aues o emosaig a o e same meas e C asymoics aea o ake eec aiy quicky a i geea moe aiy a o e quaie esimaos o IS-oy a IS+SS o e SA coeages we esimaig e mea ae agai cose o e omia ee owee o IS-oy a IS+SS o e oma a iaiae oma coeage o e mea ieas ae oo is may e ecause e imoace-samig isiuio was cose o esimae e quaie u is isiuio is ossiy ey iaoiae o esimaig e mea eaig o coeage oems iay some o e aes ese esus om ayig e comie esimao o

O om (7 We comie r = aues o c, usig e saegy escie a e e o Secio 3 om aes 7 7 a i is o cea i e comiig esimao oueoms e sige esimao o O i ems o isayig a ase coegece a/o a smae a-wi "a" eeses aa o aaiae ue o wo easos eow e sum o e oaiiy a e osiie eue em ecees 1; e eue osio is ess a 1

8.5 Program Description and Testing

8.5.1 Program Description

e emiica suy is a se o simuaio eeimes a equie eesie ume- ica comuaio Maa wiey use y egiees a scieiss o scieiic comuig a ooyig as sae y Kucicky ( is a aua eeome oo As a ie- 97

ee ogammig aguage owee Maa as ieiay sow ow eiciecy ece o mai-eay comuaios eeoe a e eeimes wee caie ou o ig- eomace comuig cuses Oy e io suy a some es cases wee couce o esoa comues o imeme C eeciey e eie ogam ackage cosiss o ee uc- ioa comoes CMC/A/C IS a IS+SS ayig CMC A C IS a IS+SS o o e oma/iaiae oma a e SA eeimes I e oowig eac ie a suogam/suouie wic is a Maa m-ie wi ow e escie i moe eais

A/C/CMC

• ACCMCm a mai ogam a iegaes coeages a a-wis om e SA eeimes ayig A C a CMC i a 1 x eco

• ACCMCm a mai ogam a iegaes coeages a a-wis om e oma/iaiae oma eeimes ayig A C a CMC i a 1 x eco

• acm iies a coum eco io a ie ume o ieas a eaage em i a mai o acig eeimes

• CIIm a m-ie a comues coeages a a-wis o e eeimes usig

iie ieece o esimae 1 (ξ accoig o (5 a (

• Cm comues coeages a a-wis o e acig eeimes

• CMCacm comues e same mea a same aiace o e quaie esi- maos om acig wie ayig CMC

• Comueeam comues β( o e eeimes wie ayig C accoig o (73

• Comuem comues i o e eeimes wie ayig C accoig o (77 8

• Cm comues esimaos o ξ Op a ψ o e eeimes ayig C a iegaes em i a 5 1 eco

• Cacm eoms acig wie ayig C a comues e same mea a e same aiace o e quaie esimaos om acig

• Emiicam eoms as a iicao ucio

• m comues e owa a e ackwa iie ieece i geea

• GeAm comues esimaos o ξ O a ψ o e eeimes ayig A a iegaes em i a 5 1 eco

• GeCMCm comues esimaos o ξ Op a ψ o e eeimes ayig CMC a iegaes em i a 5 1 eco

• Gesim comues e esimao o I o e eeimes ayig A accoig o (

• GeQm comues e esimao o oo e eeimes usig iie ieece o esimae 1/ (ξ accoig o (5 a (

• samigm geeaes C sames o e SA eeimes ayig CMC A a C Moe seciicay e ouu is a 1 3 eco wi e 1s ey as e oges a om e oigia isiuio ey as e oges a om e isiuio ayig A a 3 ey as a seco a om e oigia isiuio

• Siem cas samigm o geeae C sames o e SA eeimes a- yig A C a CMC eseciey a iegaes em i a 1 3 eco

• Siem iegaes sames om e oma/iaiae oma eeimes ay- ig A C a CMC eseciey i a 1 3 eco

• Sm comues a iemeiae esu o a[C] i (75 99

• iMam eus e geaes ume i ius ae ee umes; eus a eco wi e geaes ume i eac ey i ius ae ee ecos; eus a mai wi e geaes ume i eac ey i ius ae ee maices

• WEIGm a m-ie a assigs weigs o Op esimaos o comiig eei- mes accoig o (7

e ogams o o e SA a e oma/iaiae oma eeimes ae e oowig sucue

ucio ACCMC(amam icues e iu ama as e ae a- amee o e eoeia isiuio as e oaiiy o iees as e ume o aces as e same sie a m as e eicaio imes o e simuaio eeime

1 eocessig eie e eoeica quaie q o e eoeica quaie q o e coo aiae C a e eoeica mea o ; eaocae memoy o muie ecos a maices o soe iemeiae a e esus

Use samigm a Siem o geeae sames o A C a CMC a iegae em i a ow eco

3 Use m o ouce owa a ackwa iie ieece o

Use GeCMCm GeAm a Cm o comue esimaes o Op wi ceee

owa a ackwa iie ieece a ψ

5 Use CII m o cosuc e coiece ieas o eeimes ayig A C

a CMC i ems o O esimaos wi iee c aues

Use WEIGm a esus om Se ( o cosuc e coiece ieas i ems o comiig O esimaos

7 Use CMCacm Aacm a Cacm o cosuc coiece ieas o e acig eeime 1

Use e sames om Se (3 o cosuc coiece ieas o e mea esima- io

9 eea Se (—( m imes o comee e coeage eeime

IS: Below are brief reviews of the Matlab m-files used for IS

• acm a imam same as acm i e A/C/CMC comoe

• Comaem ses e ag o samig o saiicaio

• GeAam comues a o e SA eeimes as seciie i Secio 1

• GeKm comues K o e SA eeimes as seciie i Secio 1

• Gem comues e ikeioo aio o e SA eeimes i (1 as seciie i Secio 1

• Gem comues e ikeioo aio o e oma/iaiae oma eeimes

• Gesim comues ψ esimao o e oma/iaiae oma eeimes

• Gesim comues ψ esimao o e SA eeimes accoig o eo- em

• GeQm comues esimao o e eeimes wie ayig IS

• GeSm eoms saiicaio o oma/iaiae oma eeimes

• Geeam comues as seciie i Secio 1

• Geim comues ζ o e eeimes wie ayig IS as seciie i Sec- io 1

• ISm comues coeages a a-wis o e SA wie ayig IS 11

• ISm comues coeages a a-wis o e oma/iaiae oma eei- mes wie ayig IS

e ogam o e SA eeimes as e oowig sucue e ogam o e oma/iaiae oma eeimes as a simia sucue ece o e samig a

ucio IS( icues e iu as e oaiiy o iees as e ume o as o e SA as e ume o aces as e same sie a as e eicaio imes o e simuaio eeimes

I eocessig eie e eoeica quaie q o a e eoeica mea o ; eaocae memoy o muie ecos a maices o soe iemeiae a

e esus; ecacuae a α y usig Geeam Geim Geim imam GeKm a GeAam o ayig IS

Use Maa ui-i ucio a( o geeae uiom aom sames ewee a 1 a e comae i wi a(1 1 a(11+ a ( 1 a 1 o ecie o wic a IS sou e aie

3 Use imam a Gem o comue e oges a o e SA a e coe- soig ikeioo aio

Use geQm o comue e ξ esimao

5 Use Gesim o comue e ψ esimao

Cosuc coiece ieas wee O ae esimae y ceee/owa/ackwa iie ieece wi iee c aues

7 Cosuc coiece ieas o comiig Op esimaos

Use acm a GeQm o cosuc ieas o e acig eeime 02

9 Cosuc ieas o mea esimaio

1 eea (—(9 imes o comee e coeage eeime

IS+SS eow ae ie eiews o e Maa m-ies use o IS+SS

• acm a imam same as a i A/C/CMC a IS comoes Com- aem GeAam GeKm GeQm Geim same as ose i IS comoe

• ac1m eoms acig o e eeimes wie ayig IS+SS

• Gem comues e ikeioo aio o e eeimes wie ayig IS+SS as seciie i Secio

• Gesim comues ψ esimao accoig o eoem o e eeimes wie ayig IS+SS

• Geam comues e same aiace o o mea esimaio wie ayig IS+SS

• saam eoms saiicaio i a equioae way as seciie i Secio

• Sm comues coeages a a-wis o e SA eeimes wie ay- ig IS+SS

• Sm comues coeages a a-wis o e oma/iaiae oma e- eimes wie ayig IS+SS

e ogam o e SA eeimes as e oowig sucue e ogam o e oma/iaiae oma eeimes as a simia sucue ece o e samig a

ucio S ( w icues e iu as e oaiiy o iees as e ume o as o e SA w as e ume o saa as e same sie i eac 103 saum as e eicaio imes o e simuaio eeimes a as e ume o aces

1 eocessig eie e eoeica quaie q o a e eoeica mea o ; eaocae memoy o muie ecos a maices o soe iemeiae a e esus

Use saam o se u e saiicaio i a equioae way as seciie i Sec- io

3 Use Geeam Geim imam GeKm a GeAam o comue 19 κ a a o ayig IS

Same as Se ( i e IS comoe

5 Use comaem o ecie i moe sames ae eee o i u eac saum Moe seciicay a saus aiae ag = 1 is se iiiay eoe e oo o geeaig sames sas e oy coiio o e oo o so is ag 1 I a e saa ae sames comaem wi uae ag = a e e oo sos; oewise e oo coiues o geeae moe sames

Use imam a Gem o comue e oges a o e SA a e coe- soig ikeioo aio

7 Use GeQm a Gesim o cosuc coiece ieas i ems o iee c aues

Cosuc coiece ieas o e comiig eeime

9 Use ac1m a GeQm o cosuc coiece ieas o acig

1 Cosuc coiece ieas o e mea esimaio

11 eea Se ( —(1 o comee e coeage eeime 04

8..2 rr tn

Sysem eiicaio a aiaio ( aciiies ake ace a eac sage o e sowae ocess om equiemes eiews oug coe isecio Cayig ou is o oy o ceck i e sowae cooms o is seciicaio o om ucioa a o-ucioa equiemes u aso o esue a e sysem mees e "cusomes" eecaios e uimae goa cocue y Sommeie ( is o esais e coiece a e sysem is a goo i o is iee use Sice ese ogams ae esige aicuay o e simuaio eeimes e oma ocesses ca e simiie o ogam esig wic is iee o iscoe a i sysem eecs a e ogam sage wo uamea esig aciiies com- oe esig (esig as o e ogam a sysem esig (esig e sysem as a woe ae ee aie o es e aiiy o e ogam Seciicay iegaio es- ig is e mos wiey use aoac i iig e souce o oems a ieiyig e comoes i e sysem a ee o e ue eugge a aaye ake e A/C/CMC ucioa comoe as a eame Is suogams ca e ace ack o ee ieee ogams esige o comue coeages a a- wis o e eeimes wie ayig A C a CMC eseciey eeoe i is aoiae o es eac ui ogam is a e aiae e iegaio ie a miue o o - ow (eeo e oea skeeo o e sysem is a e a comoes o i a oom - u (iegae e comoes a oie commo seices is a e a e ucioa comoes icemeay i is case o a seciic ucio i is case wo esig meos ae ee eaiy use comaiso esig a sceaio-ase esig Comaiso esig is o comae e e- sus geeae y ogams a eie om cacuaios we e esus ca e com- ue aayicay As may iemeiae esus o ou eeimes a i is caegoy comaiso esig as ee wiey use Sceaio-ase esig is o eea eecs y eecuig ogams ue eeemie es cases We esus ca o e comue 0 aayicay es cases ae esige o icease e caces o eosig eecs e oowig ee secios ae eoe o eaiig i moe eais ow ese wo meos wee use o eug e ogam

AV/CV/CMC

Sice i is a igy iegae ogam oe o is ucios ca e ese o- ougy y comaiso esig aoe wo ucios ae cose o emosae ow sceaio-ase esig is ui o a- iae ei coecess

• acm ac(A wee b, n a A eoes e ume o aces e eie same sie o A a e coum eco eseciey e ouu sou e a (n/ b) x b mai

1 Iu b = 5 n = 10, A = [1; ; 3; ; 5; ; 7; ; 9; 1](a coum eco o sie 1 Ouu [1 3 5 7 9; 1] (a 5 mai isaye ae e eecuio o e ogam Cocusio ue as e coum eco is iie io ie aces wi wo sames eac

Iu b 5 n = 3 A = [1;; 3] (a coum eco o sie 3 Ouu Waig Sie eco sou e a ow eco wi iege eemes Cocusio ue as acig cao e oeae o e coum eco

3 Iu b = n = A = [1]

OuuAeme o access A( 1; ie ou o ous ecause sie(A=[1]

Cocusio ue as e ow eco oes o saisy e equiemes o e iu 106

• GeQm GeQ( wee n, p a F eoes e ow sie o F, e oaiiy o iees a a n mai geeae om samig

1 Sceaio(iu o e SA eeime wie ayig C se same sie n is 1 a e oaiiy o iees p is 95 a e mai F geeae om e is a i Cm =

[597 13; 733 13; 791 13; 175 13; 1119 13; 117 13; 13395 13; 1359 13; 13 13; 133 13; 177 13; 19 13; 1737 13; 17975 13; 19 13; 197 13; 19 13; 195 13; 17 13; 39 13; 5 13; 5 13; 59 13; 7 13; 115 13; 1371 13; 15 13; 1 13; 37 13; 7 13; 3 13; 311 13; 31 13; 319 13; 33 13; 33 13; 3 13; 133 13; 3 13; 35 13; 9 13; 51 13; 55 13; 1 13; 53 13; 59 13; 51 13; 3 13; 73 13; 5 13; 79 13; 9375 13; 91 13; 995 13; 37 13; 37 13; 31139 13; 313 13; 3113 13; 3195 13; 317 13; 3199 13; 39 13; 3779 13; 3933 13; 3955 13; 39 13; 393 13; 35 13; 37155 13; 357 13; 3911 13; 391 13; 11 13; 31 13; 33 13; 35 13; 1 13; 55 13; 5 13; 77 13; 799 13; 975 13; 53 13; 5317 13; 535 13; 53775 13; 597 13; 55 13; 555 13; 997 3; 3 3; 313 3; 39 3; 57 3; 7179 13; 7 3; 77 3; 7937 13; 1971 3;] Ouu 5

Cocusio ue as e sum o F(:,2) (aues i e seco coum ui e 17

oe coesoig 57 o e is ime ecees 95

IS

uig comaiso esig ca aiae e coecess o seea ucios i IS ucioa comoe GeAam GeKm Geeam a Geim ecause ese coesoig quaiies ca e cacuae aayicay as seciie i e IS agoim i Secio 1 Seciicay 0 is e oo o (3 wic ca e comue usig soe( a Maa ui-i ucio o cacuae e oos o equaios e esu aeas o e [7399; 19; 7399] wic ca e coime y uggig ack i e ucio e ase o

e IS agoim as seciie i Secio 1 IC a a ca e e comue a coime wic ae [13; 5; 13] a [177; 9; 177] U o is oi e ecacuaio a eoe e samig a quaie/mea esimaio as ee coime o e coec Oe ucio is cose o emosae ow sceaio-ase esig is eome o aiae coecess

• imam ima(ac wee a, b a c eoes ee maices o ecos e same sie o umes

1 Iu a = [1;3] b = [1 1 ; ] c = [1;] (ee mai

Ouu [1 ; 3 ]

Cocusio ue as eac ey i e ew mai is occuie y e geaes ume o ee iu maices

Iu a = [1; 3; ; ] b = [;1; ; 5] c = [; ; ; ] (ee coum ecos o sie

Ouu [;3;;5] 08

Cocusio ue as eac ey o e esua eco is occuie y e gea- es ume o eac osiio om e oigia ecos coime y oseaio

3 Iu a = [1] b = [;3] (oe ow eco o sie a oe coum eco o sie

Ouu Mai imesios mus agee

Cocusio ue as e iu ecos o o saisy e equiemes o e ucio

IS+SS

uig comaiso esig ca aiae coecess o seea ucios GeA- am GeKm Geeam a Geim i IS+SS ucioa comoe ecause ese quaiies ca e cacuae aayicay e esus om eecuig e ogam ca e coime y a i e as secio 7399; 19; 7399] κ13; 5; 13] a-177; 9; 177] wo ucios ae cose o emosae ow sceaio-ase esig ae eome o eug e ogam

• saam saa(ea aa w wee =[7399; 19; 7399] a a177; 9; 177] wic ae o eie om eay ses o e SA a ae ee coime o e coec w is e ume o saa

1 Iu w = 5

Ouu[393;5;33;155]

Cocusio ue as eies o e esua eco ae eacy e same as e

ieas S = (G - ¹ (( - 1 G - ¹ ( I ] o i = 1 5 wee G is e C o e saiicaio aiae Y as seciie i e is a o Secio

Iu w = 1 0

Ouu

Cocusio ue as ee is oy oe saa e oigia eco

3 Iu w = 1

Ouu [557; 393; 757; 5; 7115; 33; 9917; 155; 1531]

Cocusio ue as eies o e esua eco ae eacy e same as e

ieas Si = (G-¹ ((i — 1/k G - ¹ (ilk)] o i = 1 1 wee G is e C o e saiicaio aiae Y as seciie i e is a o Secio

• Comaem comae(Cw wee C, w a n eoes e cue saus o sam- es i eac suum e ume o saa a e same sie i a "u" saum as seciie eaie

1 Iu C = [1;;1] w = 3 n = 5 Ouu 1

Cocusio ue as e seco a e i ey o e eco ae o "u" ye

Iu C = [1;1] w = n = 1 Ouu

Cocusio ue as o eies ae cosiee "u" comaig wi e e- eemie ecmak 1

8.6 Mtlb Cd 8.6. ACCMC AVBatch.m

0 2 4 115 6 118 119 20 11 1 2 124 2 26 2 28 129 0 13

fntn rltIS(pjbnr %n fntn fr IS fr SA % St p nd prprn t6664%thrtl vl 13 6 13 139 40 4 142 4 144 4 146 4 48 4 0 151 152 15 CAE 9

COCUIG EMAKS

e mai coiuio is a we ae eeoe a geea amewok o oucig a

asymoicay ai coiece iea o a quaie ξ esimae usig a eious eseac o cue Moe Cao aso ouce meos o coucig coiece ieas u ei esuig coiece ieas may e age eseciay o eeme quaies a ei meos cao e geeaie o s Ou meo o e oe a aesses is issue y oiig a eoeica amewok o muie s Mos eious wok o esimaig ξ usig iee s i o ouce asymoicay ai coiece ieas o ξ Ou eoeica amewok ca e use iecy o accomoae iee s o cosuc coiece ieas Seciicay ou amewok wic equies e C esimao oaie y ayig a o saisy Assumios A1—A3 i Cae ecomasses IS+SS A a C Moeoe we ae aso esee eici agoims o cosuc coiece ieas o quaies oaie usig IS IS+SS A a C Aoe mai coiuio is a we ae oe e cosisecy o e esima- os o 1/(ξ (ie e owa iie-ieece e ackwa iie-ieece a e cea iie-ieece esimaos o s Accoig o Gy (199 e "mao caege" o cosucig coiece ieas o quaies we usig s is esima- ig O = 1/ (ξ wic Gassema e a ( cae a "iicu" oem We e- ie a cosise esimao o φ y is esaisig a e quaie esimao saisies a aau-Gos eeseaio a e eoiig is o esimae O e quaiy O ca

e eesse as / - ¹ ( a we esimae i ia a iie ieece o e iese o e esimae C a ois a ae 1 -¹²2/ aa wee c is a use-seciie smooig aamee a is e comuaioa uge I e case o cue Moe Cao eious aaysis suggese a oe sou coose c as age as ossie o miimie MSE a e coeage eo a ou eeimea esus we ayig s seem o coim ese

155 156 suggesios u ow o coose c is si a ogoig oic o ue eseac Oe coiuios ae eiewe as oows I ou eoeica amewok we ae esaise a weake om o e aau-Gos eeseaio o s wic imies

Cs a meos o eeoig cosise esimaos o O I IS+SS we ae esaise a weake mome coiio a a i Gassema e a ( e coiuios o e mai esus i is eseac ae sue aei sigiica o e iacia iusy So a e mos commoy use measue is si e oi esimao o e a wic ca e eace y aoe measue —e coiece iea o e a— wi moe accuacy Ou amewok oies eici agoims o cosucig coiece ieas o e as we usig s is ca e ey useu i esimaig eeme quaies a/o i e ig-imesioa seig wic is a ieesig iace eseac oic e imiaio o is eseac is a we ae oy cosiee e oma isiu- io a e SA o suy e iie-same eaio o e coiece ieas cosuce usig e eoeica amewok We may wa o eoe a ew moe socasic moes; eg ose o iees o e iacia iusy I may e ieesig o oose ew IS+SS meos o esimaig e a o a ooio Gassema e a ( eeo IS+SS eciques we e ice cages i e ooios "isk acos" (eg iees aes cuecy ecage aes sock ices ec oow a muiaiae oma isiuio owee a oma/muiaiae oma isiu- io oes o agee wi e make aa wi ige eaks a eaie ais eeoe iee socasic moes o e isk acos o oow aea o e iacia iusy Some ossie eesios o iesigae icue miues o muiaiae omas a Mako egime-swicig ocess (Goe a Qua (1973 o a um-iusio ocess (Me- o (197 EEECES

Aamiis A a Wiso (199 "Coeaio-iucio eciques o esima- ig quaies i simuaio" Operations Research, 57-591 au G (19 "Eicie esimaio o e ecioca o e esiy quaie ucio a a oi" and Probability Letters, 133-139 aau (19 "A oe o quaies i age sames" Annals of Mathematical Statistics, 37577-5 iigsey (1995 Probability and Measure, ew Yok o Wiey & Sos 3 e — (1999 Convergence of Probability Measures, ew Yok o Wiey Sos e ack a Scoes M (1973 "e icig o oios a cooae iaiiies" Journal of Political Economy, 137-5 oc A a Gaswi (19 "O a sime esimae o e ecioca o e esiy ucio" Annals of Mathematical Statistics, 3913-15 oige E (1975 "Esimaio o a esiy ucio usig oe saisics" Australian Journal of Statistics, 171-7 oye oaie M a Gassema (1997 "Moe Cao meos o secuiy ic- ig" Journal of Economic Dynamics and COntrol, 117-131 ai A a agaaa (3 Order Statistics, ooke Wiey 3 e ue a a (1997 "A oeiew o aue a isk" Journal of Derivatives, 7-9 u M C og a u -Q (9 "Coiioa Moe Cao Esimaio o Quaie Sesiiiies" Management Science, 5519-7 Gos K (1971 "A ew oo o e aau eeseaio o quaies a a ai- caio" Annals of Mathematical Statistics, 1957-191 Gassema ( Monte Carlo Methods in Financial Engineering, ew Yok Sige Gassema eieege a Saaui (a "Imoace Samig a Saiicaio o aue-a-isk" i Computational Finance 1999, Proceedings of the Sixth International Conference on Computational Finance, es Au-Mosaa Y S ao o A W a Weige A S 7- — ( "aiace eucio eciques o esimaig aue-a-isk" Management Sci- ence, 139-13

157 15

Gy W (199 "Imoace samig o Moe Cao esimaio o quaies" i Mathematical Methods in Stochastic Simulation and Experimental Design: Pro- ceedings of the 2nd St. Petersburg Workshop on Simulation, uisig ouse o S eesug Uiesiy S eesug ussia 1-15 Gy W a Igea (199 "Imoace samig o socasic sysems" Management Science, 35137-1393 Gy W a Wi W (199 "e asymoic eiciecy o simuaio esimaos" Operations Research, 55-5 Goeeg K Qiu ie Yag Y a ag Y ( "Oimiig cos a eomace o muiomig" i SIGCOMM '04 Proceedings, 79-9 Goe S M a Qua E (1973 "A Mako Moe o Swicig egessios" Journal of Econometrics, 13-1

a a Seae S (19 "O e isiuio o a Sueie Quaie" Journal of the Royal Statistical Society B, 531-391 ay G (195 A Course in Pure Mathematics, ew Yok Camige Uiesiy ess 1 e eieege (1995 "as simuaio o ae ees i queueig a eiaiiy moes" ACM Transactions on Modeling and Computer Simulation, 53-5 eseeg C a eso (199 "Coo aiaes o oaiiy a quaie esimaio" Management Science, 195-131

ogg McKea W a Caig A ( Introduction to Mathematical Statistics, Egewoo Cis ew esey eice a e

og (9 "Esimaig quaie sesiiiies" Operations Research, 5711-13

su C a eso (199 "Coo aiaes o quaie esimaio" Management Science, 335-51

u C (3 Options, Futures and Other Derivatives, ew esey easo-a Ic 5 e i u M C a iog (3 "oaiisic Eo ous o Simuaio Qua- ie Esimaio" Management Science, 93- uea S Kaaika a Saaui (7 "Asymoics a as Simua- io o ai oaiiies o Maimum o Sums o ew aom aiaes" ACM Transactions on Modeling and Computer Simulation, 17 aice 35 ages Kema A G a os A C (199 "A icig meo o oios ase o aeage asse aues" Journal of Banking and Finance, 1113-19

Kiee (197 "O aaus eeseaio o same quaies" Annals of Mathemet- ical Statistics, 3 135-1353 Kucicky C ( Matlab Programming, Ue Sae ie easo Eucaio aw A M ( Simulation Modeling and Analysis, ew Yok McGaw-i e ema E (1999 Elements of Large-Sample Theory, ew Yok Sige

iu G a og (9 "Kee esimaio o quaie sesiiiies" Naval Re- search Logistics, 5 511-55 Meo C (197 "Oio icig we ueyig sock eus ae iscoiuous" Journal of Financial Economics, 3 15-1 ae E (1979 "esiy Quaie Esimaio Aoac o Saisica aa Moeig" i Smoothing Techniques for Curve Estimation, ei Sige oss S (1997 Simulation, Sa iego CA Acaemic ess e — (7 Introduction to Probability Models, Sa iego CA Acaemic ess ie e Seig (19 Approximation Theorems of Mathematical Statistics, ew Yok o Wiey Sos

Sommeie I ( Software Engineering, Seventh Edition, eaig Massacuses Aiso-Wesey Su a og (1 "Asymoic eeseaios o Imoace-Samig Esimaos o aue-a-isk a Coiioa aue-a-isk" Operations Research Letters, o aea

ukey W (195 "Wic a o e Same Coais e Iomaio?" Proc Natl Acad Sci USA, 53 17-13

Wi W ( Stochastic-Process Limits: An Introduction to. Stochastic-Process Limits and Their Application to Queues, ew Yok Sige-eag