Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum Intermedium Munro Ex Morong (Poaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum Intermedium Munro Ex Morong (Poaceae) Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum intermedium Munro Ex Morong (Poaceae) Dissertation for the award of the degree “Doctor of Philosophy” Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) Submitted by Piyal Karunarathne Göttingen, 2018 THESIS COMMITTEE Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Prof. Dr. Holger Kreft Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Dr. Diego Hojsgaard Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany MEMBERS OF THE EXAMINATION BOARD Reviewer Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Second Prof. Dr. Holger Kreft reviewer Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Further members of the Examination Board Prof. Dr. Stefan Scheu J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Mark Maraun J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Thomas Friedl Dept. EPSAG University of Göttingen Dr. Sven Bradler J.F. Blumenbach-Institut für Zoologie und Anthropologie University of Göttingen ii Acknowledgments I would like to place on record my sincere gratitude to Dr. Diego Hojsgaard for choosing me to carry out this research project, his excellent supervision, tremendous help and advice, and for remaining unflappable despite my various crisis. My thanks to Prof. Elvira Hörandl and Prof. Holger Kreft for invaluable discussions throughout the project to improve its quality. Funding for this project came mainly from the German Research foundation (Deutsche Forschungsgemeinschaft) and National Scientific and Technical Research Council of Argentina (DFG–MINCyT-CONICET bilateral collaboration [HO5462-1/1 and RD- 20150202-0167 to D.H. and E.M.]). Field work and plant cultivation assessment would have been impossible without the invaluable support from Eric Martinez, Ana Honfi, Verena Reutemann and Adriana Glücksberg. I thank Silvia Friedrichs and Sabine Schmidt for maintenance of live plant stocks. Special thanks to Gabriel Rua for allowing me to use herbarium facilities at Faculty of Agronomy, University of Buenos Aires. My family and friends have always been there for me whenever I needed help, advice and moral support. Finally I would like to express my gratitude to everyone else who helped me in many ways to accomplish my goals. Piyal Karunarathne 2018, Göttingen iii Paspalum intermedium Photo by Diego Hojsgaard iv TABLE OF CONTENT ACKNOWLEDGMENTS ............................................................................................................... III TABLE OF CONTENT .............................................................................................................. V LIST OF TABLES .................................................................................................................... VII TABLE OF FIGURES.............................................................................................................. VIII ABSTRACT .............................................................................................................................. 1 CHAPTER 1 .............................................................................................................................. 3 1. INTRODUCTION ............................................................................................................... 3 1.1. Polyploidization and Plant Evolution ....................................................................... 3 1.2. Apomixis ................................................................................................................ 9 1.3. Paspalum intermedium Munro ex Morong ............................................................. 16 1.4. Aims of the Project ............................................................................................... 17 CHAPTER 2 ............................................................................................................................ 19 2. DISTRIBUTION PATTERNS AND ECOLOGICAL DIFFERENTIATION IN DIFFERENT CYTOTYPES OF PASPALUM INTERMEDIUM ..................................................................... 19 2.1. ABSTRACT ........................................................................................................... 19 2.2. INTRODUCTION ................................................................................................. 20 2.3. MATERIALS AND METHODS ............................................................................... 21 2.4. RESULTS .............................................................................................................. 27 2.5. DISCUSSION ....................................................................................................... 34 CHAPTER 3 ............................................................................................................................ 39 3. EVOLUTIONARY IMPLICATIONS OF A TUG OF WAR BETWEEN SEXUAL AND APOMICTIC REPRODUCTIVE MODES IN PASPALUM INTERMEDIUM (POACEAE) LEADING TO FITNESS VARIATION IN THE POLYPLOID COMPLEX ..................................................................................................... 39 3.1. ABSTRACT ........................................................................................................... 39 3.2. INTRODUCTION ................................................................................................. 40 3.3. MATERIALS AND METHODS ............................................................................... 42 3.4. RESULTS .............................................................................................................. 47 3.5. DISCUSSION ....................................................................................................... 55 CHAPTER 4 ............................................................................................................................ 61 4. POPULATION GENETIC STRUCTURE ANALYSIS ECHOES THE DISTRIBUTION, COEXISTENCE AND NICHE DIVERGENCE OF CYTOTYPES IN THE POLYPLOID GRASS SPECIES PASPALUM INTERMEDIUM (POACEAE)61 4.1. ABSTRACT ........................................................................................................... 61 v 4.2. INTRODUCTION ................................................................................................. 62 4.3. MATERIALS AND METHODS ............................................................................... 65 4.4. RESULTS .............................................................................................................. 68 4.5. DISCUSSION ....................................................................................................... 72 4.6. CONCLUSIONS ................................................................................................... 78 CHAPTER 5 ............................................................................................................................ 79 5. GENERAL DISCUSSION .................................................................................................... 79 5.1. Cytotype Composition in Paspalum intermedium .................................................. 79 5.2. Spatial and Geographical Distribution of Cytotypes and Their Ecological Importance80 5.3. Reproductive Modes, Competition and Reproductive Fitness ................................. 81 5.4. Population Structure and Genetic Composition ..................................................... 82 6. LITERATURE CITED ........................................................................................................... 84 SUPPLEMENTARY DATA ...................................................................................................... 99 LIST OF PUBLICATIONS ........................................................................................................... 123 CURRICULUM VITAE .............................................................................................................. 123 vi LIST OF TABLES Table 2.1. Summary of ecoregions, collection sites, number of individuals and ploidy levels of the P. intermedium plants analysed. ........................................................................................ 22 Table 2.2. Bioclimatic and environmental variables retained (after multivariate analysis and binomial logistic regression) for cytotype distribution and niche analysis in P. intermedium, its significance values, and PCA contributions. ....................................................................... 26 Table 2.3. Reproductive mode variation between cytotypes of P. intermedium in the study area .. 31 Table 3.1. Proportions of meiotic/sexual and apomictic at embryo sac and seed stages in studied populations of P.intermedium. Proportions were calculated as a fraction of all the observed ES/seeds. Chi-squared values
Recommended publications
  • Autoreferát (233.5Kb)
    Introduction The tribe Cichoriae Lam. & DC. (syn. Lactuceae Cass.) represents one the most studied groups of Asteraceae family especially thanks to several genera such as Crepis L., Hieracium L., Pilosella Hill. or Taraxacum Wigg. and economically important genera as Lactuca. Cichoriaea is well morphologically and antomically defined (occurrence of milky latex and homogamous capitula with 5-dentate, lingulate flowers have been constantly respected characters since the time of its description; Tournefort 1964). Taxonomic situation inside of the tribe is more complicated, i.e. that the majority of above mentioned genera are generally well known because of polyploidy, hybridisation and apomixis frequently resulting in highly intricated taxonomic classifications. The aim of a taxonomic treatment is to mirror real situation in nature usually expressed by numerous "microspecies" representing particular apomictic lineages 1. Nevertheless, system of these complex taxonomic treatments can hardly be natural as hybridisation (even an ancient one) results in reticulate evolution. Hieracium s. l. Formal genus Hieracium sensu lato has recently been more frequently treated as two separete genera (Hieracium and Pilosella ; Sell & West 1975, Bräutigam & Greuter 2007), which is why genus ranks Hieracium and Pilosella are used separately in further text. Genera Hieracium and Pilosella comprise perennial herbs with 1 to numerous stems (foliaged or leafless) terminated by 1 to numerous capitula. Leaves are shaped from entire to deeply dentate or lobed. Involucres are formed by several irregularly imbricate rows of linear to lanceolate bracts. Individual ligules are usually yellow (sometimes with a red stripe on the outer face or rarely orange, reddish, green or white). Achenes are covered in 10 to 13 ribs of narrowly obconical shape (never beaked) carrying 1 or 2-rowed pappus (e.g.
    [Show full text]
  • Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014
    Natural Resources Conservation Service Improved Conservation Plant Materials Released by Plant Materials Program NRCS and Cooperators through December 2014 Page intentionally left blank. Natural Resources Conservation Service Plant Materials Program Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014 Norman A. Berg Plant Materials Center 8791 Beaver Dam Road Building 509, BARC-East Beltsville, Maryland 20705 U.S.A. Phone: (301) 504-8175 prepared by: Julie A. DePue Data Manager/Secretary [email protected] John M. Englert Plant Materials Program Leader [email protected] January 2015 Visit our Website: http://Plant-Materials.nrcs.usda.gov TABLE OF CONTENTS Topics Page Introduction ...........................................................................................................................................................1 Types of Plant Materials Releases ........................................................................................................................2 Sources of Plant Materials ....................................................................................................................................3 NRCS Conservation Plants Released in 2013 and 2014 .......................................................................................4 Complete Listing of Conservation Plants Released through December 2014 ......................................................6 Grasses ......................................................................................................................................................8
    [Show full text]
  • Para Especies Exóticas En México Eragrostis Curvula (Schrad.) Nees, 1841., CONABIO, 2016 1
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Eragrostis curvula (Schrad.) Nees, 1841., CONABIO, 2016 Eragrostis curvula (Schrad.) Nees, 1841 Fuente: Tropical Forages E. curvula , es un pasto de origen africano, que se cultiva como ornamental y para detener la erosión; se establece en las orillas de carreteras y ambientes naturales como las dunas. Se ha utilizado contra la erosión, para la producción de forraje en suelos de baja fertilidad y para resiembra en pastizales semiáriados. Presenta abundante producción de semillas, gran capacidad para producir grandes cantidades de materia orgánica tanto en las raíces como en el follaje (Vibrans, 2009). Es capaz de desplazar a la vegetación natural. Favorece la presencia de incendios (Queensland Government, 2016). Información taxonómica Reino: Plantae Phylum: Magnoliophyta Clase: Liliopsida Orden: Poales Familia: Poaceae Género: Eragrostis Nombre científico: Eragrostis curvula (Schrad.) Nees, 1841 Nombre común: Zacate amor seco llorón, zacate llorón, zacate garrapata, amor seco curvado Resultado: 0.5109375 Categoría de invasividad: Muy alto 1 Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Eragrostis curvula (Schrad.) Nees, 1841., CONABIO, 2016 Descripción de la especie Hierba perenne, amacollada, de hasta 1.5 m de alto. Tallo a veces ramificado y con raíces en los nudos inferiores, frecuentemente con anillos glandulares. Hojas alternas, dispuestas en 2 hileras sobre el tallo, con las venas paralelas, divididas en 2 porciones, la inferior envuelve al tallo, más corta que el, y la parte superior muy larga, angosta, enrollada (las de las hojas inferiores arqueadas y dirigidas hacia el suelo); entre la vaina y la lámina.
    [Show full text]
  • Crab Spiders Impact Floral-Signal Evolution Indirectly Through Removal
    ARTICLE DOI: 10.1038/s41467-018-03792-x OPEN Crab spiders impact floral-signal evolution indirectly through removal of florivores Anina C. Knauer1, Moe Bakhtiari1,2 & Florian P. Schiestl1 The puzzling diversity of flowers is primarily shaped by selection and evolutionary change caused by the plant’s interaction with animals. The contribution of individual animal species to net selection, however, may vary depending on the network of interacting organisms. Here 1234567890():,; we document that in the buckler mustard, Biscutella laevigata, the crab spider Thomisus onustus reduces bee visits to flowers but also benefits plants by feeding on florivores. Uninfested plants experience a trade-off between pollinator and spider attraction as both bees and crab spiders are attracted by the floral volatile β-ocimene. This trade-off is reduced by the induced emission of β-ocimene after florivore infestation, which is stronger in plant populations where crab spiders are present than where they are absent, suggesting that plants are locally adapted to the presence of crab spiders. Our study demonstrates the context-dependence of selection and shows how crab spiders impact on floral evolution. 1 Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland. 2Present address: Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000 Neuchatel, Switzerland. Correspondence and requests for materials should be addressedto F.P.S. (email: fl[email protected]) NATURE COMMUNICATIONS | (2018) 9:1367 | DOI: 10.1038/s41467-018-03792-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03792-x lant–animal interactions are a major driver of plant Crab spiders camouflage themselves on flowers to hunt flower- evolution, including both local adaptation and species visiting insects such as pollinators (Fig.
    [Show full text]
  • Molecular Phylogeny and Evolutionary Trends in Hieracium (Asteraceae, Lactuceae)
    Charles University in Prague, Faculty of Science Department of Botany Molecular phylogeny and evolutionary trends in Hieracium (Asteraceae, Lactuceae) Molekulární fylogeneze a evoluční trendy v rodě Hieracium (Asteraceae, Lactuceae) Karol Krak Ph.D. thesis Prague, May 2012 Supervised by: Dr. Judith Fehrer Content Declaration.........................................................................................................1 Acknowledgements............................................................................................2 Sumary...............................................................................................................3 Introduction.........................................................................................................4 Aims of the thesis.............................................................................................14 References.......................................................................................................15 Papers included in the thesis 1. Intra-individual polymorphism in diploid and apomictic polyploid.................22 hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. Fehrer J., Krak K., Chrtek J. BMC Evolutionary Biology (2009) 9: 239 2. Genome size in Hieracium subgenus Hieracium (Asteraceae) is...............45 strongly correlated with major phylogenetic groups. Chrtek J., Zahradníček J., Krak K., Fehrer J. Annals of Botany (2009) 104: 161–178 3. Development of novel low-copy nuclear markers
    [Show full text]
  • May Maritime Alps
    Maritime Alps Spring in Mercantour A Greentours Tour Report 16th to 23rd May 2014 Led by Paul Cardy Daily Accounts and Systematic Lists written by Paul Cardy Our fifth spring tour to the Maritime Alps was superbly productive, especially botanically, and very enjoyable, with almost unbroken perfect weather. Last year had been a late spring in the region, with snow laying much lower than is usual, and some sites inaccessible, but this year the flora was even a little advanced, with several species being recorded for the first time. For the first four nights we were based at a small pleasant family-run hotel in the Valdeblore hamlet of La Bolline, a fine location, well situated for all excursions, and with a small grocery and a bakery just along the street where I could do the daily picnic shopping whilst the group enjoyed breakfast in the hotel. Dinners at the restaurants in the village, in nearby Rimplas, and in St.Dalmas were very good. For the last three nights we moved to the other side of Mercantour National Park, and the hamlet of Casterino, which allowed easy access into the Italian Alpi Marittime, a superbly productive area. On the arrival day, having arrived the previous evening from my home in Italy, a few valleys to the north, at Nice airport I soon met most of the group, and before long we were en route north through ever more impressive scenery. Bob and Marlene were arriving on an afternoon flight, and we met up with them that evening in the hotel.
    [Show full text]
  • Butterflies of Mt Gravatt Conservation Reserve
    Butterflies of Mt Gravatt Conservation Reserve Compiled by Michael Fox www.megoutlook.wordpress.com/flora-fauna/butterflies/ © 2015 Creative Commons – free use with attribution to Mt Gravatt Environment Group Hesperiidae Hesperilla ornata Spotted Sedge-skipper Wingspan: Male 30mm Female 35mm Caterpillar food plants: Saw Sedge Gahnia aspera Males hilltop 2 February 2015 Butterflies - ver 2.6 Page 1 of 28 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Hesperiidae Ocybadistes walkeri Greenish Grass-dart Wingspan: Male 20mm Female 20mm Caterpillar food plants: Grasses Blady Grass Imperata cylindrica Guinea Grass Panicum maximum (Weed) Male sex brands Hesperiidae Trapezites iacchus Brown Ochre Wingspan: Male 33mm Female 34mm Caterpillar food plants: Wattle Mat-rush Lomandra filiformis Creek Mat-rush Lomandra hystrix Spiny Headed Mat-rush Lomandra longifolia Males hilltop 2 February 2015 Butterflies - ver 2.6 Page 2 of 28 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Hesperiidae Trapezites symmomus Splendid Ochre Wingspan: Male 42mm Female 46mm Caterpillar food plants: Wattle Mat-rush Lomandra filiformis Creek Mat-rush Lomandra hystrix Spiny Headed Mat-rush Lomandra longifolia Lycaenidae Candalides erinus Small Dusky-blue Wingspan: Male 22mm Female 22mm Caterpillar food plants: Dodder Laurel Cassytha pubescens 2 February 2015 Butterflies - ver 2.6 Page 3 of 28 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Lycaenidae Catopyrops florinda Speckled Line-blue Wingspan: Male 22mm Female 22mm Caterpillar food plants: Poison Peach Trema tomentose Native Mulberry Pipturus argenteus Speckled Line-blue from top side. Note the tails resting on leaf.
    [Show full text]
  • Brassicaceae), a Systematically Challenging Taxon from the Balkan Peninsula
    Phytotaxa 502 (2): 111–132 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.502.2.1 Taxonomic position and circumscription of Cardamine barbaraeoides (Brassicaceae), a systematically challenging taxon from the Balkan Peninsula MAREK ŠLENKER1,2,4, MARIÁN PERNÝ3,5, JUDITA ZOZOMOVÁ-LIHOVÁ1,6 & KAROL MARHOLD1,2,7* 1 Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic. 2 Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic. 3 Žibritov 29, 963 01, Slovak Republic. 4 [email protected]; https://orcid.org/0000-0002-5919-890X 5 [email protected]; https://orcid.org/0000-0003-1385-6628 6 [email protected]; https://orcid.org/0000-0002-8950-6643 7 [email protected]; https://orcid.org/0000-0002-7658-0844 *Author for correspondence: [email protected] Abstract The Balkan Peninsula, and the territory of Greece in particular, is a significant biodiversity hotspot in the Mediterranean that is rich in endemic plants. The focal species of this study, Cardamine barbaraeoides, is a narrow Greek endemic that has been confused taxonomically since its original description. Based on a detailed multivariate morphometric study, we provide here a set of morphological characters that enables the reliable identification of this species. In addition, we present an identification key to C. barbaraeoides and related taxa. We have revised herbarium specimens and literature data on the occurrence of this species in Greece and ascertained that it occurs only in the Pindos mountains (the Southern Pindos and partly the Northern Pindos floristic regions).
    [Show full text]
  • Tmcm1de1.Pdf
    Departament de Biologia Facultat de Ciències Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers — Ph. D. Thesis — Miquel Àngel Conesa Muñoz Supervisors: Dr. Maurici Mus Amézquita (Universitat de les Illes Balears) Dr. Josep Antoni Rosselló Picornell (Universitat de València) May 2010 Palma de Mallorca El doctor Maurici Mus Amézquita, professor titular de la Universitat de les Illes Balears, i el doctor Josep Antoni Rosselló Picornell, professor titular de la Universitat de València, CERTIFIQUEN: Que D. Miquel Àngel Conesa Muñoz ha realitzat, baix la seva direcció en el Laboratori de Botànica de la Universitat de les Illes Balears i en el Departament de Botànica del Jardí Botànic de la Universitat de València, el treball per optar al grau de Doctor en Biologia de les Plantes en Condicions Mediterrànies, amb el títol: “HYBRIDIZATION PATTERNS IN BALEARIC ENDEMIC PLANTS ASSESSED BY MOLECULAR AND MORPHOLOGICAL MARKERS” Considerant finalitzada la present memòria, autoritzem la seva presentació amb la finalitat de ser jutjada pel tribunal corresponent. I per tal que així consti, signem el present certificat a Palma de Mallorca, a 27 de maig de 2010. Dr. Maurici Mus Dr. Josep A. Rosselló 1 2 A la meva família, als meus pares. 3 4 Agraïments - Acknowledgements En la vida tot arriba. A moments semblava que no seria així, però aquesta tesi també s’ha acabat. Per arribar avui a escriure aquestes línies, moltes persones han patit amb mi, per mi, o m’han aportat el seu coneixement i part del seu temps. Així doncs, merescut és que els recordi aquí. Segurament deixaré algú, que recordaré quan ja sigui massa tard per incloure’l.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • EDELWEISS and ASTER the Edelweiss and Aster Both Come from the Family of the Sunflower Asteraceae
    DN FLOWERS AND PETS Compiled by Damayanthi Hewamanna EDELWEISS and ASTER The Edelweiss and Aster both come from the family of the Sunflower asteraceae delweiss is one of species are used as food Leontopodium-alpinum the well known plants by the young insect of E European mountain a number of Lepidoptera flowers, belonging to the species. Asters can grow in sunflower family. The name all hardiness zones. comes from German edel The genus Aster is now which means noble and generally restricted to the weiss meaning white. Old World species, with Aster in bloom The scientific name, Aster amellus as well as of Leontopodium means the family Asteraceae. The “lion’s paw”, being derived New World species have from the Greek words leon now been reclassified in the meaning lion and podion a genera Almutaster, miniature of pous, meaning Canadanthus, Doellingeria, the foot. plant in many countries, Kingdom : Plantae Eucephalus, Eurybia, Ion- Flowering stalks of Edel- including Mongolia, Bul- actis, Oligoneuron, Ore- weiss can grow to a size of garia, Croatia, Switzerland, (unranked): Angiosperms ostemma, Sericocarpus and 3–20 cm and in cultivation, France, Italy, Germany, (unranked): Eudicots Symphyotrichum, though up to 40 cm). The leaves Spain (Ordesa National (unranked): Asterids all are treated within the appear woolly because of Park), Slovakia (Tatra Order: Asterales tribe Astereae. Regardless the covering of white hairs. National Park), Slovenia (in Family: Asteraceae of the taxonomic change, The flowers are felted and Gorizia and Gradisca since all are still widely referred also woolly with white 1896, in Carniola since Tribe: Gnaphalieae[1] to as Asters in the horticul- hairs, with characteristic 1898), Austria (since 1886) Genus: Leontopodium tural trades.
    [Show full text]
  • Astereae, Asteraceae) Using Molecular Phylogeny of ITS
    Turkish Journal of Botany Turk J Bot (2015) 39: 808-824 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1410-12 Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS 1, 2,3 4 Elena KOROLYUK *, Alexey MAKUNIN , Tatiana MATVEEVA 1 Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 2 Institute of Molecular and Cell Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 3 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia 4 Department of Genetics & Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia Received: 12.10.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: The subtribe Asterinae (Astereae, Asteraceae) includes highly variable, often polyploid species. Recent findings based on molecular methods led to revision of its volume. However, most of these studies lacked species from Eurasia, where a lot of previous taxonomic treatments of the subtribe exist. In this study we used molecular phylogenetics methods with internal transcribed spacer (ITS) as a marker to resolve evolutionary relations between representatives of the subtribe Asterinae from Siberia, Kazakhstan, and the European part of Russia. Our reconstruction revealed that a clade including all Asterinae species is paraphyletic. Inside this clade, there are species with unresolved basal positions, for example Erigeron flaccidus and its relatives. Moreover, several well-supported groups exist: group of the genera Galatella, Crinitaria, Linosyris, and Tripolium; group of species of North American origin; and three related groups of Eurasian species: typical Eurasian asters, Heteropappus group (genera Heteropappus, Kalimeris), and Asterothamnus group (genera Asterothamnus, Rhinactinidia).
    [Show full text]