Effects of Introducted Peacock Cichlids Cichla Ocellaris on Native Largemouth Bass Micropierus Salmoides in Southeast Florida

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Introducted Peacock Cichlids Cichla Ocellaris on Native Largemouth Bass Micropierus Salmoides in Southeast Florida EFFECTS OF INTRODUCED PEACOCK CICHLIDS CICHLA OCELLARIS ON NATIVE LARGEMOUTH BASS MICROPTERUS SALMOIDES IN SOUTHEAST FLORIDA By JEFFREY E. HILL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 ACKNOWLEDGMENTS Many people provided tremendous assistance in the completion of this project. All deserve my acknowledgment. I apologize beforehand to anyone inadvertently omitted. The primary acknowledgment goes to my wife, Susan, for her unfailing support throughout my entire graduate career. I thank her for sacrificing in order for me to fulfill our shared goal. 1 especially thank her for putting up with my obsession for fish. I am gratefial for the constant support of my family—^my father, mother, and sister (Baker, Jacqueline, and Kim). They shared the dream of my doctorate—I am thankfial to have fulfilled our collective aspiration. I greatly appreciate the guidance and support of my doctoral committee—Drs. Charles E. Cichra (Chair), Carter R. Gilbert, William J. Lindberg, Leo G. Nico, and Craig W. Osenberg. It was a great pleasure to work for Dr. Cichra—the experience I received in extension, research, and teaching, along with strong mentorship and his fiiendship, were instrumental in my professional development. Carter Gilbert has been a tremendous influence and is one of my real "fish heroes". I especially thank Carter for staying involved in my graduate education after his retirement—that meant a lot to me. Leo Nico's remarkable field experience with nonindigenous fishes and south Florida systems was invaluable. The many discussions (and some disagreements) over nonindigenous fishes with Leo helped shape my scientific philosophy. I appreciate the support and ii encouragement that Bill Lindberg always gave. Our discussions inside and outside of the classroom about ecology and the philosophy of science (e.g., tautology!) helped open my eyes to the wider world of science. I thank Craig Osenberg for agreeing to help out on the committee of someone studying a crazy system like the south Florida canals. I especially appreciate his assistance with preparing for my qualifying exam and his extraordinary input during the revision process. I have learned a great deal from each committee member and thank them for being a part of my graduate education. A special acknowledgment is due to Jeff Sowards for all of the hard work in the field. Thirty-six hour "days" can be rough, but he never complained. Jeff was instrumental in the field work, in the lab, and as an "ideas man" to keep the project doable. I could not have done it without his help. Also, Sharon Fitz-Coy was a tremendous help in, among other things, collecting prey for experiments and identifying insects in fish stomach contents. She was always willing to help. Special thanks are due to Paul Shafland (Florida Fish and Wildlife Conservation Commission; FWC) for a great deal of assistance, facilitation, literature, and advice during this project. Paul's largest contributions, however, came during many discussions of scientific philosophy regarding nonindigenous fish. Craig Watson and Roy Yanong (Tropical Aquaculture Laboratory) provided exceptional support throughout the process. They made the tribulations more bearable. Debbie Pouder facilitated all work done at the Sam Mitchell Aquaculture Demonstration Farm (SMADF) in Blountstown, Florida. I appreciate her help and that of the staff, especially Randall Kent. iii Ken Portier of the Department of Statistics at the University of Florida helped with the design and analysis of experiments in Chapter 5. I appreciate the hospitality of Don and Judy Bemecker who provided a great place to stay and many delicious meals during field work. Many others are due thanks for their contributions. At the University of Florida, Department of Fisheries and Aquatic Sciences, Mike Allen, Mary Cichra, Doug CoUe, Ruth Francis-Floyd, Tom Glancy, Scott Graves, Robert Leonard, Allen Riggs, Beth Sargent, Troy Thompson, Larry Tolbert, and Dan VanGenechten helped with various aspects of the project. Kelly Jacoby drew the maps. Susan Morgan greatly facilitated the graduation process. At the Florida Caribbean Science Center, U.S. Geological Survey, Gary Hill, Howard Jelks, and Bill Stranghoener assisted with facilities and equipment. Frank Morello, Jerry Krummrich, and Fred Cross (FWC) issued scientific collecting permits; Ted Hoehn (FWC) kindly provided access and instruction to the FWC fish database; Eric Nagid (FWC) helped answer questions about use and content of the database. I gratefully acknowledge the financial and facilities assistance of the Department of Fisheries and Aquatic Sciences, the Sam Mitchell Aquaculture Demonstration Farm, and the Tropical Aquaculture Laboratory of the University of Florida. Financial assistance was further provided by a Dean's Fellowship for Graduate Research from the Institute of Food and Agricultural Sciences, University of Florida, the Florida Department of Agriculture and Consumer Services, by Ryan Kelley Memorial Scholarships from the International Women's Fishing Association, and the Roger Rottmann Memorial Scholarship from the Florida Chapter, American Fisheries Society. iv TABLE OF CONTENTS gage ACKNOWLEDGMENTS ii ABSTRACT vii CHAPTER 1 INTRODUCTION 1 2 STUDY SYSTEM 11 Study Species 11 Canal System 14 Study Sites 18 3 A QUALITATIVE RISK ASSESSMENT OF PEACOCK CICHLIDS CICHLA OCELLARIS AND SOME IMPLICATIONS FOR THE METHODOLOGY 24 Introduction 24 Background Information 27 Qualitative Risk Assessment 36 Discussion 43 4 ONTOGENETIC DIETARY SHIFTS AND DIETARY OVERLAP OF A NONINDIGENOUS FISH AND AN ECOMORPHOLOGICALLY SIMILAR NATIVE FISH 49 Introduction 49 Methods 51 Results 56 Discussion 68 5 EXPERIMENTAL PREY HANDLING AND SELECTIVITY OF TWO MORPHOLOGICALLY SIMILAR PREDATORY FISHES- NATIVE LARGEMOUTH BASS AND INTRODUCED PEACOCK CICHLIDS 79 V Introduction 79 Methods 82 Results 90 Discussion 99 6 THE INTRODUCTION OF PEACOCK CICHLIDS INTO SOUTHEAST FLORIDA: POPULATION-LEVEL CONSEQUENCES FOR LARGEMOUTH BASS 109 Introduction 1 09 Methods 112 Results 114 Discussion 119 7 SUMMARY 127 REFERENCES 133 BIOGRAPHICAL SKETCH 154 vi Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy EFFECTS OF INTRODUCED PEACOCK CICHLIDS CICHLA OCELLARIS ON NATIVE LARGEMOUTH BASS MICROPTERUS SALMOIDES IN SOUTHEAST FLORIDA By Jeffrey E. Hill December 2003 Chair: Charles E. Cichra Major Department: Fisheries and Aquatic Sciences The predatory peacock cichlid Cichla ocellaris , native to South America, was introduced into southeast Florida to enhance recreational fishing and to provide biological control over nonindigenous fishes. This action was controversial and there is concern over the effects of the introduction on native species, especially the ecomorphologically similar largemouth bass Micropterus salmoides . I conducted a formal qualitative risk assessment to evaluate the risks associated with the peacock cichlid introducfion and to test predictions of the algorithms. The esfimate of risk for peacock cichlids was Low. The evaluation elucidated shortcomings in the methodology (e.g., emphasis on a single output) and I made recommendations for its improvement. Part of the concern over the peacock cichlid introduction is their similarity to largemouth bass. I tested and found support for the hypothesis that morphological similarity equals similarity in prey handling ability and prey selection. I documented substantial overlap in vii trophic morphology and dietary ontogeny between juveniles and found similar prey handling ability and prey selection by adults in tank experiments. These results suggest that largemouth bass and peacock cichlids have similar effects on the prey base. However, largemouth bass had exclusive use of highly defensive prey (i.e., crayfish). Largemouth bass populations might be expected to have declined, given evidence of direct negative effects of peacock cichlids. I investigated this question by comparing largemouth bass populations in southeast Florida canals with populations in lakes and streams (statewide and in south Florida). Additionally, I compared canals with peacock cichlids to canals without peacock cichlids. The data did not support a hypothesis of declines in largemouth bass abundance due to peacock cichlids. These results question common assumptions concerning the effects of nonindigenous species— 1) that direct effects of predation and competition are the predominant effects and 2) the narrow view that invaded communities are organismic (i.e., Clementsian)—and challenge the uncritical acceptance of the premise that nonindigenous fishes will invariably cause ecological harm. My results suggest that other factors (e.g., indirect effects) may be important and that invasion biology should develop a pluralistic theory that incorporates Gleasonian concepts (i.e., individualistic communities). viii CHAPTER 1 INTRODUCTION Introduced species are considered threats to natural ecosystems and biodiversity worldwide (Lodge 1993). For example, Miller et al. (1989) reported that nonindigenous species were a factor in the extinction of 27 North American fishes (68% of extinctions). Similarly, Lassuy (1995) stated that nonindigenous species were factors in listing 48 imperiled freshwater fishes under the Endangered Species Act in the USA (70% of listed fishes). Although ecological
Recommended publications
  • Dissertação Final.Pdf
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE ÁGUA DOCE E PESCA INTERIOR - BADPI CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS JANICE MACHADO DE QUADROS MANAUS-AM 2019 JANICE MACHADO DE QUADROS CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS ORIENTADORA: Eliana Feldberg, Dra. COORIENTADOR: Efrem Jorge Gondim Ferreira, Dr. Dissertação apresentada ao Programa de Pós- Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em CIÊNCIAS BIOLÓGICAS, área de concentração Biologia de Água Doce e Pesca Interior. MANAUS-AM 2019 Ficha Catalográfica Q1c Quadros, Janice Machado de CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS / Janice Machado de Quadros; orientadora Eliana Feldberg; coorientadora Efrem Ferreira. -- Manaus:[s.l], 2019. 56 f. Dissertação (Mestrado - Programa de Pós Graduação em Biologia de Água Doce e Pesca Interior) -- Coordenação do Programa de Pós- Graduação, INPA, 2019. 1. Hibridação. 2. Tucunaré. 3. Heterocromatina. 4. FISH. 5. DNAr. I. Feldberg, Eliana, orient. II. Ferreira, Efrem, coorient. III. Título. CDD: 639.2 Sinopse: A fim de investigar a existência de híbridos entre espécies de Cichla, nós analisamos, por meio de técnicas de citogenética clássica e molecular indivíduos de C. monoculus, C. temensis, C. pinima, C. kelberi, C. piquiti, C. vazzoleri de diferentes locais da bacia amazônica e entre eles, três indivíduos foram considerados, morfologicamente, híbridos. Todos os indivíduos apresentaram 2n=48 cromossomos acrocêntricos. A heterocromatina foi encontrada preferencialmente em regiões centroméricas e terminais, com variações entre indivíduos de C.
    [Show full text]
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • Royal Peacock Bass (Cichla Intermedia) Ecological Risk Screening Summary
    Royal Peacock Bass (Cichla intermedia) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, May 2018 Web Version, 9/7/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela. Probably occurs in Colombia.” Status in the United States This species has not been reported as introduced or established in the United States. This species is present in the aquarium trade in the United States, for example: From Bluegrass Aquatics (2018): “Intermedia Peacock Bass Cichlid REGULAR $232.48” “Intermedia Peacock Bass Cichlid REGULAR Cichla Intermedia Known as the "Royal" peacock by American anglers.” 1 Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Cichla Species Cichla intermedia Machado-Allison, 1971” “Taxonomic Status: Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2018): “[…] range 28 - ? cm Max length: 55.0 cm TL male/unsexed; [IGFA 2001]; max. published weight: 3,000 g [IGFA 2001].” Environment From Froese and Pauly (2018): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela.
    [Show full text]
  • Release Recreational Angling to Effectively Conserve Diverse Fishery
    Biodiversity and Conservation 14: 1195–1209, 2005. Ó Springer 2005 DOI 10.1007/s10531-004-7845-0 Do we need species-specific guidelines for catch-and- release recreational angling to effectively conserve diverse fishery resources? STEVEN J. COOKE1,* and CORY D. SUSKI2 1Department of Forest Sciences, Centre for Applied Conservation Research, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4; 2Department of Biology, Queen’s University, Kingston, ON, Canada K7L 3N6; *Author for correspondence (e-mail: [email protected]) Received 2 April 2003; accepted in revised form 12 January 2004 Key words: Catch-and-release, Fisheries conservation, Hooking mortality, Recreational angling, Sustainable fisheries Abstract. Catch-and-release recreational angling has become very popular as a conservation strategy and as a fisheries management tool for a diverse array of fishes. Implicit in catch-and-release angling strategies is the assumption that fish experience low mortality and minimal sub-lethal effects. Despite the importance of this premise, research on this topic has focused on several popular North American sportfish, with negligible efforts directed towards understanding catch-and-release angling effects on alternative fish species. Here, we summarise the existing literature to develop five general trends that could be adopted for species for which no data are currently available: (1) minimise angling duration, (2) minimise air ex- posure, (3) avoid angling during extremes in water temperature, (4) use barbless hooks and artificial lures=flies, and (5) refrain from angling fish during the reproductive period. These generalities provide some level of protection to all species, but do have limitations. Therefore, we argue that a goal of conservation science and fisheries management should be the creation of species-specific guidelines for catch-and-release.
    [Show full text]
  • Lower Suwannee
    U.S. Fish & Wildlife Service Lower Suwannee National Wildlife Refuge Introduction Located along the Lower Suwannee Refuge was established on April 10, 1979, for the southern edge of the purpose of protecting, maintaining, This blue goose, and enhancing a beautiful and rare designed by "Ding" natural ecosystem. Purchase of the Darling, has become lands was made possible through the a symbol of the cooperative efforts of the U.S. Fish Rtfuge System. and Wildlife Service, The Nature Conservancy, and Florida's Suwannee River Water Management District. Along the river and its tributary creeks, the habitat consists of majestic cypress trees and floodplain hardwood forests; scrub oak communities and pine plantations are found on the upland sites. From the mouth of the Suwannee River, the refuge fronts 26 miles of the Gulf of Mexico where the habitat changes to scenic tidal famous by Stephen marshes dotted with coastal islands. Each of Foster, bisects the refuge. these diverse vegetative 3 communities contributes to making Lower Suwannee Refuge one of the largest undeveloped river delta-estuarine systems in the United States. The overall goal of Lower Suwannee National Wildlife Refuge is to provide conditions desirable to wildlife through scientific management. Specific objectives developed for the area include providing habitat and protection for endangered and threatened species as well as migrating birds cover photo: and resident wildlife. The refuge l.\Y liiclmitistm also provides opportunities for environmental education and wildlife photo (it lift: oriented recreation. Jerry Gamble Wildlife - types present on A constant influx of nutrients from Lower Suwannee £ the river system coupled with Refuge.
    [Show full text]
  • BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences
    BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences VOLUME 29 1983 NUMBER 1 A SYSTEMATIC STUDY OF TWO SPECIES COMPLEXES OF THE GENUS FUNDULUS (PISCES: CYPRINODONTIDAE) KENNETH RELYEA e UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and are not necessarily completed in any one calendar year. OLIVER L. AUSTIN, JR., Editor RHODA J. BRYANT, Managing Editor Consultants for this issue: GEORGE H. BURGESS ~TEVEN P. (HRISTMAN CARTER R. GILBERT ROBERT R. MILLER DONN E. ROSEN Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville, FL 32611, U.S.A. Copyright © by the Florida State Museum of the University of Florida This public document was promulgated at an annual cost of $3,300.53, or $3.30 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum-Caribbean region. Publication dates: 22 April 1983 Price: $330 A SYSTEMATIC STUDY OF TWO SPECIES COMPLEXES OF THE GENUS FUNDULUS (PISCES: CYPRINODONTIDAE) KENNETH RELYEAl ABSTRACT: Two Fundulus species complexes, the Fundulus heteroctitus-F. grandis and F. maialis species complexes, have nearly identical Overall geographic ranges (Canada to north- eastern Mexico and New England to northeastern Mexico, respectively; both disjunctly in Yucatan). Fundulus heteroclitus (Canada to northeastern Florida) and F. grandis (northeast- ern Florida to Mexico) are valid species distinguished most readily from one another by the total number of mandibular pores (8'and 10, respectively) and the long anal sheath of female F.
    [Show full text]
  • Hemichromis Bimaculatus (African Jewelfish)
    African Jewelfish (Hemichromis bimaculatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: Zhyla. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/wiki/File:Hemichromis_bimaculatus1.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: widely distributed in West Africa, where it is known from most hydrographic basins [Teugels and Thys van den Audenaerde 2003], associated with forested biotopes [Daget and Teugels 1991, Lamboj 2004]. Also reported from coastal basins of Cameroon, Democratic Republic of the Congo and Nile basin [Teugels and Thys van den Audenaerde 1992], but at least its presence in Cameroon is unconfirmed in [Stiassny et al. 2008]. [Lamboj 2004] limits this species to Guinea, Sierra Leone and Liberia.” 1 From Azeroual and Lalèyè (2010): “This species is widely distributed throughout western Africa, but has also been recorded from Algeria to Egypt.” “Northern Africa: Within this region this species is very rare. It used to be caught from the coastal lagoons, especially Lake Mariut (Egypt) and Algeria. Its [sic] found in Tunisia in the wadis of Kebili in the south of Tunisia and in wadis near Chott Melrhir in eastern Algeria (Kraiem, pers. comm.), and Egypt (Wadi El Rayan Lakes).” “Western Africa: It is known from most hydrographic basins in western Africa.” Status in the United States It is not certain if this species is present in the United States, or if records pertain to H. letourneuxi. From NatureServe (2018): “Introduced and established in Dade County, Florida, […] (Nelson 1983).” From Nico et al.
    [Show full text]
  • Croaking Gourami, Trichopsis Vittata (Cuvier, 1831), in Florida, USA
    BioInvasions Records (2013) Volume 2, Issue 3: 247–251 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.3.12 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Croaking gourami, Trichopsis vittata (Cuvier, 1831), in Florida, USA Pamela J. Schofield 1* and Darren J. Pecora2 1 US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2 US Fish and Wildlife Service, Arthur R. Marshall Loxahatchee National Wildlife Refuge, 10216 Lee Road, Boynton Beach, FL 33473, USA E-mail: [email protected] (PJS), [email protected] (DJP) *Corresponding author Received: 8 February 2013 / Accepted: 30 May 2013 / Published online: 1 July 2013 Handling editor: Kit Magellan Abstract The croaking gourami, Trichopsis vittata, is documented from wetland habitats in southern Florida. This species was previously recorded from the same area over 15 years ago, but was considered extirpated. The rediscovery of a reproducing population of this species highlights the dearth of information available regarding the dozens of non-native fishes in Florida, as well as the need for additional research and monitoring. Key words: canal; croaking gourami; cypress swamp; Florida; Loxahatchee; Osphronemidae; Trichopsis vittata was previously considered extirpated (Shafland Introduction et al. 2008a, b), but is now known to be reproducing in a localised area. Dozens of non-native fishes have been introduced into Florida’s inland waterways, via accidental escape, pet releases, or intentional introduction
    [Show full text]
  • Risk Assessment of the Ornamental Fish Trade in Mexico
    Biol Invasions DOI 10.1007/s10530-015-0973-5 ORIGINAL PAPER Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit) Roberto Mendoza . Sergio Luna . Carlos Aguilera Received: 30 July 2014 / Accepted: 7 September 2015 Ó Springer International Publishing Switzerland 2015 Abstract Aquarium trade has been recognized as calculated and a threshold of 24 was obtained, one of the major pathways of introduction of non- representing the cut-off value for defining high-risk native fishes into new regions. Nearly 43 million species. A total of 17 species out of 30 were classified freshwater ornamental fish of different species and under a high-risk category, among them several varieties are annually commercialized in Mexico and species of the genus Xiphophorus, Pterygoplichthys there is a high probability for the establishment of and Poecilia. Most of the species were native to Asia, some of these species because of their invasive Central and South America. Some of these species are attributes and the diverse climatic zones existing in already invasive in Mexico. the country. Within this context, the identification of high-risk species is of paramount importance consid- Keywords Freshwater fish Á Ornamental trade Á ering the potential threat to Mexico’s great biological FISK Á Mexico diversity. In the present study 700 freshwater aquar- ium fish species commonly imported and produced in the country were filtered for synonyms/varieties, Introduction resulting in 368 species, which where submitted to revision for invasive reports using specialized invasive Worldwide, aquarium trade is a multi-million dollar species databases.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • The AQUATIC DESIGN CENTRE
    The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi
    [Show full text]
  • The Black~-Banded Sunfish ~ Enneacanthu~ Chaetodon
    THE BLACK~-BANDED SUNFISH ~ ENNEACANTHU~ CHAETODON The Blac~-banded Sunfish was one of the first native fishes to be kept by American aquartsts, Shimmering silver and black, gliding majestically through the aquascape, they present an exciting cha­ llenge to the keeper of indigenous fishes. To encourage fellow aquar.~3tS to acquire and breed this miniature beauty We will att­ empt to review past literature and relate it to our own·observa­ tions. The Black-banded Sunfish belongs to the order of "perch-shaped :f5_sh~':s" or Perciformes, sub-order Percoidei, and the family Cen­ tx·archidae,Named Pomotis chaetodon by Baird in .L854, it was later renamed Mesogonist~us chaetodor and is currently known as Ennea­ canthus chaetodon. We affectionately call them "chaets" ("keets") to s~mpl~fy th~ngs. · Stoye (1971) notes that E. chaetodon (chaets) were first collect- .ed in the.swamps of Southern New Jersey and introduced into Ger­ many in 1897, although they were not kept by American aquarists until 1910. In addition to New Jersey the range includes Maryland, Delaware, Virginia, North Carolina, and Florida. Informative reports by Quinn {1967a,b) and Coombs(l97J) recorded water acidity at 6,4 pH and below in some areas. Quinn observes that "waving fronds of sphagnum moss" and decaying plant material are abundant in the lowlands of the pine barrensa these factors account, for the most part, for the acidic water quality. Although we have ·acclimated chaets to 8,2 pH water, we found that they stayed in better health and bred when maintained at 7,0 pH or be­ low.
    [Show full text]