Fundamental Chlorophosphazene Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Chlorophosphazene Chemistry FUNDAMENTAL CHLOROPHOSPHAZENE CHEMISTRY A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Zin-Min Tun December, 2011 FUNDAMENTAL CHLOROPHOSPHAZENE CHEMISTRY Zin-Min Tun Dissertation Approved: Accepted: Advisor Department Chair Dr. Claire A. Tessier Dr. Kim C. Calvo Co-Advisor Dean of the College Dr. Wiley J. Youngs Dr. Chand Midha Committee Member Dean of the Graduate School Dr. Peter L. Rinaldi Dr. George R. Newkome Committee Member Date Dr. Chrys Wesdemiotis Committee Member Dr. Edward Evans ii ABSTRACT Even though chlorophosphazene chemistry has been around since the 1800s, it was not until the 1950s when Allcock successfully synthesized the soluble chlorophosphazene polymer that the door to functionalized polyphosphazenes was opened. At present, polyphosphazenes constitute the largest group of inorganic backbone polymers, with their potential applications ranging from elastomers to biomaterials. Most functionalized polyphosphazenes are derived from polychlorophosphazenes. The problems surrounding the synthesis and storage of polychlorophosphazenes hinder the commercial development of functionalized polyphosphazenes. In the quest for a cost- effective synthetic route and for storage solutions, our group focuses on the fundamental chlorophosphazene chemistry. This dissertation discusses our endeavors to understand fundamental chlorophosphazene chemistry, the majority of the work being on the chemistry of [PCl2N]3. The dissertation is divided into six chapters; Introduction, Mechanistic Studies of the Fluxional Behavior of Group 13 Lewis Acid Adducts of [PCl2N]3, Group 13 Super Acid Adducts of [PCl2N]3, Crown ether complexes of HPCl6, Reactions of Group 15 Superacids with Chlorophosphazenes and Conclusion. Chapter I, the introduction, provides the overview of the previous studies of the iii acid-base chemistry of chlorophosphazenes. Chapter II describes a mechanistic study of the fluxional behavior of the Group 13 Lewis acid adducts of [PCl2N]3 and evaluates the likelihood that these adducts are directly involved as intermediates in the ROP process. The synthesis and characterization of Group 13 superacid adducts of [PCl2N]3 are discussed in Chapter III. The fragile acid HPCl6, which can potentially play an important role in chlorophosphazene chemistry, was isolated as complexes of crown ethers. Chapter IV describes the synthesis and characterization of these complexes. The reactivity of Group 15 acids, HPCl6 and HSbCl6 towards cyclic [PCl2N]n (n = 3, 4, 5, and 6) and polymeric [PCl2N]n follows in Chapter V. This chapter also qualitatively compares the acid strengths of the relatively unknown HPCl6 and HSbCl6 acids to the strengths of more commonly known superacids, such as HAlCl4, HAlBr4, HGaCl4 and superacids with carborane anions. iv DEDICATION To my wonderful husband And to all the kind souls who have contributed big or small along the way v ACKNOWLEDGEMENTS First and foremost, I would like to thank my research advisor, Dr. Claire A. Tessier. I can not thank you enough for all that you have done for me and for your guidance both inside and outside of the research lab. You are an advisor, a mentor, a friend, and an inspiration, and I am very fortunate to have you as my chemistry mom. I have grown a lot under your mentorship not just as a chemist but also as a person. I do not think I will ever meet another boss who is more supportive of their employees. I will miss our passionate discussions about anything and everything under the sun. I would also like to thank my co-advisor, Dr. Wiley J. Youngs for his many brilliant ideas and suggestions for my research. I really appreciate the fun and relaxed, yet challenging learning atmosphere that you and Dr. Tessier have created in our group. Thank you very much for letting me and Brian be a part of the fun ‘bible study’ sessions. This is not a goodbye yet though because I will make sure that you two are a part of my life after grad school. A lot of collaborators have contributed greatly to the success of my research project. Dr. Matthew J. Panzner has my deepest gratitude. If it were not for your patience, perseverance and your keen crystallographic skills, I would not have been able to characterize half of my air-sensitive products vi crystallographically. With your thirst for knowledge and your willingness to help others, you are one of the best people to work with. I also would like to thank Dr. Doug Medvetz and Brian Wright for their help with x-ray crystallography. I would like to thank Dr. Peter L. Rinaldi for patiently teaching me about dynamic NMR. I would also like to thank Dr. Venkat Dudipala and Linlin Li for all their gracious help with the NMR over the years. I would like to thank Dr. Chrys Wesdemiotis and Vincenco Scionti for their help with the Mass Spec. Thank you very much, V for willing to go the extra mile and even learn to prepare the air-sensitive samples in the glove-box yourself. I also would like to thank Dr. Amy J. Heston who started this research project in our group. I would like to thank Dr. Chris Allen (The University of Vermont), Dr. Supat Moolsin, Dr. Sujeewani Ekanayake and David J. Bowers for providing me with some of my starting materials. I also would like to thank many chemistry professors that I have met through my graduate and undergraduate years who have been exceptionally inspiring and who cares deeply for the students; thank you very much, Dr. Kim Calvo, Dr. Henry Stevens, Dr. Virginia Pat and Dr. Mark Snider. I also would like to thank the professors on my defense committee who had been kind enough to thoroughly read my dissertation and gave me many useful suggestions and insight. I would like to thank the Tessier-Youngs group members, past and present for all their support and friendship over the years; thank you Dr. Matthew J. Panzner, Dr. Doug Medvetz, Dr. Khadijah Hindi, Dr. Tammy Siciliano, Dr. Amanda Knapp, Dr. Joanna Beres, Nikki Robishaw, Brian Wright, Mike Deblock, vii Pat Wagers, David J. Bowers and Nick Johnson. Thank you, Nick for always being a patient and understanding friend-in-need. I will miss all the fun trips to the Lockview, as well as the ones to the ACS meetings. I also would like to thank Natalie for her friendship that made the Chem seminars almost as fun as the many trips to the lizard. I would like to thank my parents and my two sisters for all their love and support. Even though you have not been by my side physically this past decade because we inhabit four different continents, I have always been able to draw strength from the fact that, where ever we are, we are all resiliently following our own dreams in our own ways. I am grateful to have met my host-parents, Jim and Janelle Collier. I can not thank you enough for all that you have done for me and for all that you have been to me. Last but not least, I would like to thank my wonderful husband, Brian Darby. Thank you, baby for all your love, support and patience that saw me through this long process. Thank you especially for loving the very frustrated, and most probably very frustrating at times :-), me while I was writing this dissertation. I am very grateful to have you as my life partner and I can just hope that I am to you what you are to me. viii TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................ xv LIST OF FIGURES ............................................................................................. xvi LIST OF CHARTS ............................................................................................. xxii LIST OF SCHEMES ......................................................................................... xxiii LIST OF EQUATIONS ...................................................................................... xxiv CHAPTER I. INTRODUCTION ............................................................................................. 1 1.1. Functionalized polyphosphazenes ............................................................. 1 1.2. [PCl2N]n ..................................................................................................... 3 1.2.1. Synthesis of [PCl2N]n ............................................................................ 3 1.2.2. Mechanism of the ROP of [PCl2N]3 ....................................................... 5 1.2.3. Synthesis of [PCl2N]n ............................................................................ 3 1.3. Acid-Base Chemistry of [PCl2N]3 ............................................................. 14 1.3.1. Previously Reported Interactions of Lewis Acids with [PCl2N]3............14 1.3.2. Previously Reported Interactions of Brønsted-Lowry Acids with [PCl2N]3 and [PR2N]3-5............ ............................................................17 1.4. Superacids...............................................................................................19 1.5. Lewis acid/Brønsted acid dichotomy and the protonic impurities affecting the chlorophosphazene chemistry.............................................22 ix 1.6. Topics in this dissertation.........................................................................23 1.7. References..............................................................................................25 II. MECHANISTIC STUDIES OF THE FLUXIONAL BEHAVIOR OF GROUP 13 LEWIS ACID ADDUCTS OF [PCl2N]3 ........................................ 29 2.1. Introduction
Recommended publications
  • Reviews Chemie
    Angewandte Reviews Chemie International Edition:DOI:10.1002/anie.201711735 Phosphorus FlameRetardants German Edition:DOI:10.1002/ange.201711735 Molecular Firefighting—HowModern Phosphorus Chemistry Can Help Solvethe Challenge of Flame Retardancy Maria M. Velencoso+,Alexander Battig+,Jens C. Markwart+,BernhardSchartel, and Frederik R. Wurm* Keywords: biomacromolecules · flame retardants · nanocomposites · phosphorus · polymers Angewandte Chemie 10450 www.angewandte.org 2018 The Authors. Published by Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Angew.Chem.Int. Ed. 2018, 57,10450 –10467 Angewandte Reviews Chemie The ubiquity of polymeric materials in daily life comes with an From the Contents increased fire risk, and sustained researchinto efficient flame retard- ants is key to ensuring the safety of the populace and material goods 1. The Challenge of Flame Retardancy—Demands of from accidental fires.Phosphorus,aversatile and effective element for aGood Flame Retardant 10451 use in flame retardants,has the potential to supersede the halogenated variants that are still widely used today:current formulations employ 2. Phosphate Rock—A Finite avariety of modes of action and methods of implementation, as Natural Resource 10454 additives or as reactants,tosolve the task of developing flame- 3. Recent Developments in retarding polymeric materials.Phosphorus-based flame retardants can Reactive Phosphorus act in both the gas and condensed phase during afire.This Review Compounds 10456 investigates howcurrent phosphorus chemistry helps in reducing the flammability of polymers,and addresses the future of sustainable, 4. Recent Developments in Additive Phosphorus efficient, and safe phosphorus-based flame-retardants from renewable Compounds 10458 sources. 5. Modern Trends and the Future of Phosphorus-Based Flame 1.
    [Show full text]
  • Permanent Flame Retardant Finishing of Textiles by the Photochemical Immobilization of Polyphosphazenes
    Permanent Flame Retardant Finishing of Textiles by the Photochemical Immobilization of Polyphosphazenes Opwis K. 1, *, Mayer-Gall T. 1,2 , Gutmann J.S. 1,2 1 Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, Krefeld, Germany 2 University Duisburg-Essen, Universitätsstr. 5, D-45117 Essen, Germany *Corresponding author’s email: [email protected] ABSTRACT UV-based grafting processes are appropriate tools to improve the surface properties of textile materials without changing the bulk. Based on our previous investigations on the photochemical immobilization of vinyl phosphonic acid, here, a new photochemical method for a permanent flame retardant finishing of textiles is described using allyl-modified linear polyphosphazenes and derivatives. Exemplarily, we show results on the flame-retardant finishing of cotton and cotton/PET blends with allyl polyphosphazene. We used the terminal allyl group for the photo-induced coupling of allyl polyphosphazene on textile substrates. Using our UV technology 20 to 40 weight percent of the functionalized polyphosphazenes can be fixed covalently to different textile substrates. We observed a slight decrease of the fixed polyphosphazene amount after the first washing cycle indicating the removal of non-bonded molecules. After this initial washing step the add-on is stable. Even after six laundering cycles the modified material withstands various standardized flammability tests. In summary, photochemical treatments allow the permanent surface modification of natural and synthetic fibers by irradiating with UV light in the presence of reactive media. We have successfully demonstrated that these procedures are appropriate for the fixation of flame retardants as well. Polyphosphazene modified textiles show high levels of flame retardant performance even after several textile laundering cycles.
    [Show full text]
  • View PDF Version
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Functional biodegradable polymers via ring-opening polymerization of monomers Cite this: Chem. Soc. Rev., 2018, 47, 7739 without protective groups Greta Beckerab and Frederik R. Wurm *a Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further Received 28th June 2018 post-modification of the corresponding chemically functional polymers after polymerization. Synthetic Creative Commons Attribution 3.0 Unported Licence. DOI: 10.1039/c8cs00531a concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications rsc.li/chem-soc-rev highlighted. a Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. E-mail: [email protected] b Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany This article is licensed under a Greta Becker studied biomedical Frederik R. Wurm (Priv.-Doz. chemistry at the University of Dr habil.) is currently heading Open Access Article. Published on 17 September 2018. Downloaded 10/4/2021 12:31:40 PM.
    [Show full text]
  • Polymer-Based Carriers for Controlled Delivery Of
    Submitted by M.Sc. Javier Pérez Quiñones P OLYMER - BASED Submitted at Institute of Polymer Chemistry CARRIERS FOR Supervisor and First Examiner CONTROLLED DELIVERY Univ. - Prof. Dr. Oliver Brüggemann OF DIOSGENIN, Second Supervisor and Examiner Univ. - Prof. in Dr. in Sabine Hild AGROCHEMICALS AND October 2019 ANTICANCER DRUGS Doctoral Thesis to obtain the academic degree of Doktor der Naturwissenschaften in the Doct oral Program Naturwissenschaften JOHANNES KEPLER U NIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATIO N I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and i ndirect sources are acknowledged as references. This printed thesis is identical with the electronic versi on submitted. Linz , iii To my Ma m and Grandma v ACKNOWLEDGMENTS First of all , I want to thank Univ. - Prof. Dr. Oliver Brüggemann. Thank you so much for giving me th e opportunity to work in ICP for more than 4 years! Many thanks also for being my supervisor, an example to follow and for your support to carry out the research and writing the related papers. I hope that our LIT application or other project applications will succeed. Univ. - Prof. in Dr. in Sabine Hild is also thanked for being my second supervisor of the thesis. I would like to thank Prof. Dr. Carlos Peniche Covas for his help and guidance during my time at University of Havana, and continued scientific coll aboration. I am very grateful to Ms. Emma Huss at the JKU International Office for providing me with all the tips, support and great help to solve every problem during my stay in Linz.
    [Show full text]
  • Polyphosphazenes with Stimulated Degradation
    Submitted by M.Sc. Aitziber Iturmendi Submitted at POLYPHOSPHAZENES Institute of Polymer Chemistry Supervisor and First Examiner WITH STIMULATED Assoc. Univ.-Prof. Dr. Ian Teasdale Second Examiner Assoc. Univ.-Prof. Dr. Uwe DEGRADATION Monkowius Month Year May 2018 PATHWAYS Doctoral Thesis to obtain the academic degree of Doktorin der Naturwissenschaften in the Doctoral Program Naturwissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATION I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and indirect sources are acknowledged as references. This printed thesis is identical with the electronic version submitted. Linz, May 2018 iii The Amazing thing about life is that You choose what you allow into it You choose how things affect you You choose how you react Happiness is a Choice Make it It´s up to you v ACKNOWLEDGMENTS First of all, I want to thank Assoc. Univ.-Prof. Dr. Ian Teasdale. Thank you so much for giving me the opportunity to work in your team not only for 6 months, even for more than 5 years! Many thanks also for being my supervisor, my guide, my support (in and out of work) and why not part of my stress ;) I am grateful to Univ.-Prof. Dr. Oliver Brüggemann for providing me with all equipments I needed, the access to the labs and his support. I would like to thank also Assoc. Univ.-Prof. Dr. Uwe Monkowius for his help and guidance during my thesis.
    [Show full text]
  • WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1St Edition
    WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1st Edition 2 Water Chemistry 1st Edition 2015 © TLC Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat DC reader. Adobe Acrobat DC reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes. 3 Water Chemistry 1st Edition 2015 © TLC We require the final exam to be proctored. Do not solely depend on TLC’s Approval list for it may be outdated. A second certificate of completion for a second State Agency $25 processing fee. Most of our students prefer to do the assignment in Word and e-mail or fax the assignment back to us. We also teach this course in a conventional hands-on class. Call us and schedule a class today. Responsibility This course contains EPA’s federal rule requirements. Please be aware that each state implements drinking water/wastewater/safety regulations may be more stringent than EPA’s or OSHA’s regulations.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,317.046 B2 Fukuoka Et Al
    USOO7317046B2 (12) United States Patent (10) Patent No.: US 7,317.046 B2 Fukuoka et al. (45) Date of Patent: Jan. 8, 2008 (54) CYCLIC PHOSPHAZENES, PROCESS FOR FOREIGN PATENT DOCUMENTS PREPARING THEM, FLAME RETARDANT CONTAINING THEM AS ACTIVE JP 11-263885 * 9/1999 INGREDIENT, AND RESIN COMPOSITION CONTAINING THEM AND MOLDED ARTICLE THEREFROM OTHER PUBLICATIONS (75) Inventors: Naohiko Fukuoka, Koube (JP): Heinosuke Yasuda, Koube (JP); Fukuoka et al. 1999, CAS: 13 1:2441 14.* Masayuki Nishimatsu, Koube (JP); * cited by examiner Yoshinori Ohmae, Koube (JP) Primary Examiner Rei-tsang Shiao (73) Assignee: Chemipro Kasei Kaisha, Limited, (74) Attorney, Agent, or Firm—Oliff & Berridge, PLC Koube (JP) (57) ABSTRACT (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 565 days. The present invention relates to cyclic phosphaZenes of general formula (1) (21) Appl. No.: 10/479,235 (22) PCT Filed: Jun. 5, 2002 (1) (86). PCT No.: PCT/UPO2/O5554 S 371 (c)(1), (2), (4) Date: Dec. 1, 2003 (87) PCT Pub. No.: WO02/098886 wherein Q is a halogen and/or an aryloxy group, and m is an PCT Pub. Date: Dec. 12, 2002 integer of 3 to 10, which are characterized by being sub stantially free from linear phosphaZenes of general formula (65) Prior Publication Data (2) US 2004/0152910 A1 Aug. 5, 2004 (30) Foreign Application Priority Data (2) Q Jun. 5, 2001 (JP) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2001-170228 Jun. 5, 2001 (JP) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2001-1703.19 -n (51) Int. Cl. Q COSK 5/5399 (2006.01) C07F 9/02 (2006.01) wherein Q is a halogen and/or an aryloxy group, and n is an (52) U.S.
    [Show full text]
  • An Unexpected Staudinger Reaction at an N-Heterocyclic Carbene-Carbon Center
    Canadian Journal of Chemistry An Unexpected Staudinger Reaction at an N-Heterocyclic Carbene-carbon Center Journal: Canadian Journal of Chemistry Manuscript ID cjc-2017-0607.R1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018 Complete List of Authors: Roy, Matthew; University of Alberta Department of Chemistry Miao, Linkun; University of Alberta Department of Chemistry Ferguson, Michael; University of Alberta Department of Chemistry McDonald, DraftRobert; University of Alberta, Chemistry Rivard, Eric; University of Alberta, Chemistry Is the invited manuscript for consideration in a Special N Burford Issue?: Keyword: Staudinger reaction, phosphazenes, carbene, phosphine https://mc06.manuscriptcentral.com/cjc-pubs Page 1 of 17 Canadian Journal of Chemistry An Unexpected Staudinger Reaction at an N-Heterocyclic § Carbene-carbon Center Matthew M. D. Roy, Linkun Miao, Michael J. Ferguson, Robert McDonald, Eric Rivard* Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, AB, Canada, T6G 2G2 § This paper is dedicated to Prof. Neil Burford in recognition of his profoundly important scientific and mentorship contributions to the chemical community in Canada. Abstract The previously unreported carbene-phosphine adduct (IPr)PCl2N3, [IPr = (HCNDipp)2C:; Dipp = i Draft 2,6- Pr2C6H3] was synthesized and used as a synthon toward the elusive dichlorophosphazene monomer unit, [Cl2P=N]. (IPr)PCl2N3 was found to undergo halide and azide abstraction when combined with various electrophiles and its thermolysis yielded the unexpected Staudinger reaction product (IPr=N)PCl2. Introduction Originally referred to as ‘inorganic rubber’, poly(dichlorophosphazene) [Cl2P=N]n was first reported by Stokes in 1895.1 This important parent polymer is typically synthesized by the ring- opening polymerization (ROP) of hexachlorophosphazene [Cl2P=N]3, however it was initially of little practical importance due to its propensity to undergo hydrolysis.
    [Show full text]
  • Chapter 5, Environmentally-Friendly Fatty Acids with Different Chemical Characteristics Have Be Evaluated As Phase Change Materials
    Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas Departamento de Ingeniería Química DEVELOPMENT OF MICROCAPSULES WITH THERMAL ENERGY STORAGE (TES) CAPABILITY FOR CONCRETE APPLICATIONS A thesis submitted for the degree of Doctor of Philosophy (PhD) by ANNA MARIA SZCZOTOK-PIECHACZEK Supervisors: Prof. Juan Francisco Rodríguez Romero Prof. Anna-Lena Kjøniksen Ciudad Real, April 2018 Prof. Juan Francisco Rodríguez Romero, Professor of Chemical Engineering at the University of Castilla-La Mancha and Prof. Anna-Lena Kjøniksen, Professor of Materials Science at Østfold University College, certify that: The research work: "Development of Microcapsules with Thermal Energy Storage (TES) Capability for Concrete Applications", is part of thesis presented by Mrs. Anna Maria Szczotok-Piechaczek to aspire to the degree of Doctor in Chemical Engineering and that has been carried out in the laboratories of the Department of Chemical Engineering of the University of Castilla-La Mancha and Østfold University College under their direction. And for the record, they sign this certificate in Ciudad Real, at April 16th 2018 Juan Fco. Rodríguez Romero Anna-Lena Kjøniksen Table of content Summary .......................................................................................................................... vi 1. Introduction .............................................................................................................. 1 1.1. Motivation and background ..............................................................................
    [Show full text]
  • PRICES SUBJECT to CHANGE 'V.S Reproduced by 0 :: ;
    Second Annual Summary Report "DEVELOPMENT OF THERMALLY STABLE PHOSPHONITRILE ELASTOMERS FOR ADVANCED AEROSPACE STRUCTURES" Contract No. NAS8-25184 DCN 1-1-50-13631 April 24, 1971 to April 23, 1972 Authors ( Kennard A. Reynard Selwyn H. Rose June 1972 A: ' ,; to :; :: National Aeronautics and Space Administration George A: C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 AS PRICES SUBJECT TO CHANGE 'V.S Reproduced by 0 :: ;. f NATIONAL TECHNICAL INFORMATION SERVICE : : : : l _epartmen olf Commerce I i II, If 7I , ,3 :; : Second Annual Summary Report "DEVELOPMENT OF THERMALLY STABLE PHOSPHONITRILE ELASTOMERS FOR ADVANCED AEROSPACE STRUCTURES" Contract No. NAS8-25184 DCN 1-1-50-13631 April 24, 1971 to April 23, 1972 Authors Kennard A. Reynard Selwyn H. Rose June 1972 to National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 i ABSTRACT Attempts to prepare low molecular weight, curable poly(fluoroalkoxyphosphazenes)have been successful. De- rivatization of [C12PN]n polymer with alkoxides derived from CF3 CH20H, C3 F7 CH2OH, and CH3 CHCH2 CH20H or C2 H5 NHCH2 CH 2 0H OH gave functionally reactive terpolymers. These terpolymers could be crosslinked with polyisocyanates at room temperature. Attempts to control molecular weight have not been as successful. The effects of (C12PN)3 monomer purity, use of (C12PN) 3 4 mixture, and early termination of the bulk polymeri- zation of (C12PN) 3 were studied briefly. Both low and high molecular weight polymers were obtained. Reaction of NH4 C1 with PC15 with subsequent heating to give chain extension gave either gels or oils with molecular weights of several thousand.
    [Show full text]
  • Novel Anhydrous Superprotonic Ionic Liquids and Membranes for Application In
    Novel Anhydrous Superprotonic Ionic Liquids and Membranes for Application in Mid-temperature Fuel Cells by Younes Ansari A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved May 2013 by the Graduate Supervisory Committee: C. Austen Angell, Chair Andrew Chizmeshya Ranko Richert George Wolf ARIZONA STATE UNIVERSITY August 2013 ABSTRACT This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due − − equally to a mobile OTf or H(OTf) 2 component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while o enhancing free proton motion. Conductivity studies are reported to 285 C and full H 2/O 2 cell polarization curves to 226 oC.
    [Show full text]
  • Process for Producing Amide Or Lactam
    (19) & (11) EP 2 301 918 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 30.03.2011 Bulletin 2011/13 C07D 201/04 (2006.01) C07D 223/10 (2006.01) C07B 61/00 (2006.01) (21) Application number: 09762269.0 (86) International application number: (22) Date of filing: 10.06.2009 PCT/JP2009/002627 (87) International publication number: WO 2009/150838 (17.12.2009 Gazette 2009/51) (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • IWAHAMA, Takahiro HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Himeji-shi PT RO SE SI SK TR Hyogo 671-1283 (JP) Designated Extension States: • NAKANO, Tatsuya AL BA RS Himeji-shi Hyogo 671-1283 (JP) (30) Priority: 11.06.2008 JP 2008152424 • ISHII, Yasutaka Takatsuki-shi (71) Applicant: Daicel Chemical Industries, Ltd. Osaka 569-1112 (JP) Kita-ku Osaka-shi (74) Representative: Grünecker, Kinkeldey, Osaka 530-0001 (JP) Stockmair & Schwanhäusser Anwaltssozietät Leopoldstrasse 4 80802 München (DE) (54) PROCESS FOR PRODUCING AMIDE OR LACTAM (57) A process produces an amide or lactam by sub- leaving group, wherein G is bound to one or more atoms jecting an oxime compound to rearrangement in a solvent or groups in addition to L A; and a co-catalyst including a in the presence of: at least one catalyst selected from halogen-containing organic acid, to give the correspond- the group consisting of an aromatic compound (A1) con- ing amide or lactam, wherein, when the aromatic com- taining a leaving group bound to a carbon atom consti- pound (A1) alone is used as the catalyst, the solvent is tuting the aromatic ring, the aromatic ring including, as a at least one solvent selected typically from hydrocarbon constitutive atom thereof, a heteroatom or including, as solvents.
    [Show full text]