Polymer-Based Carriers for Controlled Delivery Of
Total Page:16
File Type:pdf, Size:1020Kb
Submitted by M.Sc. Javier Pérez Quiñones P OLYMER - BASED Submitted at Institute of Polymer Chemistry CARRIERS FOR Supervisor and First Examiner CONTROLLED DELIVERY Univ. - Prof. Dr. Oliver Brüggemann OF DIOSGENIN, Second Supervisor and Examiner Univ. - Prof. in Dr. in Sabine Hild AGROCHEMICALS AND October 2019 ANTICANCER DRUGS Doctoral Thesis to obtain the academic degree of Doktor der Naturwissenschaften in the Doct oral Program Naturwissenschaften JOHANNES KEPLER U NIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATIO N I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and i ndirect sources are acknowledged as references. This printed thesis is identical with the electronic versi on submitted. Linz , iii To my Ma m and Grandma v ACKNOWLEDGMENTS First of all , I want to thank Univ. - Prof. Dr. Oliver Brüggemann. Thank you so much for giving me th e opportunity to work in ICP for more than 4 years! Many thanks also for being my supervisor, an example to follow and for your support to carry out the research and writing the related papers. I hope that our LIT application or other project applications will succeed. Univ. - Prof. in Dr. in Sabine Hild is also thanked for being my second supervisor of the thesis. I would like to thank Prof. Dr. Carlos Peniche Covas for his help and guidance during my time at University of Havana, and continued scientific coll aboration. I am very grateful to Ms. Emma Huss at the JKU International Office for providing me with all the tips, support and great help to solve every problem during my stay in Linz. I also want to thank the ICP “family” for your help and collaboration, specifically to : - Aitziber Iturmendi, because you had a lot of patience with me and share your expertise about polyphosphazenes, and anything that I asked you. Thanks also for your collaboration on the writing of the manuscripts. - Helena Henke, because y ou were helpful and always sharing your lab experience. I hope to keep our collaboration on the papers, further scientific projects. - The Spanish speaking group at the ICP: Aitzi, Dra. Yolanda Salinas and Adriana Estrada, que hablamos en Español. Siempre me río mucho con Yolanda y Aitzi, que contagian a todos con su risotada! Gracias Yolanda porque siempre puedo contar contigo en mis problemas con mi mamá, por la paella! - Renate Herbrik (“Renate”) and Andreas Schnölzer (“Andy”) . Both of you helped me whenever I needed . Thank you so much for everything! I would like to thank also Dr. Cezarina C. Mardare and Prof. Dr. Achim W. Hassel for their help doing some SEM and collaboration on our papers. Mr. G ü nter Hesser is acknowledged for his help with the TEM. Lisa M . Uiberlacker and Ines Traxler are also acknowledged for the AFM imaging of my samples. Prof. Dr. Claudia Schmidt is thanked for the elemental analysis. Dr. in Cornelia Roschger is greatly acknowledged for the biological assays of all my samples and fruitfu l collaboration. I want to thank my family. THANKS a lot for all to my mam Nivia and grandma Nanina! vii ABSTRACT Diosgenin ((25 R ) - spirost - 5 - en - 3β - ol) is a steroidal sapogenin prepared mostly from dioscin, the main bioactive component of Chinese medicinal herbs of the Dioscoreacea family. Diosgenin itself is known to show cardioprotective activity in animals, in vitro cytotoxicity t o cancer cells, anti tumor activity, as well as antidiabetic and antioxidant properties. However, its l ow oral bioavailability in mice and the poor aqueous solubil ity of diosgenin (10 µg/L) hold back its use. Diosgenin is the main substrate in the synthesis of steroids and analogues of brassinosteroids for medical and agricultural applications. In this sense, DI31 (trademark Biobras - 16), a synthetic analogue of brassinosteroid is synthesized from diosgenin for agrochemical use (increase of efficiency in crop s ~5 to 30%). However , the fast vegetal metabolism and low aqueous solubility of DI31 and S7 (another brassinosteroid analogue) limit achieving their full potential in agriculture, with multiple foliar spray applications to crops needed. Additionally, the anticancer potential of DI31 and S7 must be explored, as some brassinosteroid analogues are described to exhibit good anti tumor activity. On the other hand, traditional anticancer drugs like camptothecin derivatives (i.e. irinotecan, topotecan) and epirubi cin have shown limited aqueous solubility and severe to medium adverse side effects when administered. That is why the design, preparation and characterization of some polymer - based carriers for all mentioned drugs are still under active research. In this research project , cellulose ethers (methyl cellulose, hydroxyethyl cellulose, (hydroxypropyl)methyl cellulose), silk fibroin hydrolysate and poly(dichloro)phosphazene were properly functionalized and used as polymeric carriers of the studied drugs with in creased aqueous solubility or dispersibility, controlled drug delivery and maintained biological activity. This thesis focuses on the synthesis of polymer - based carriers for diosgenin, brassinosteroids DI31 and S7, camptothecin and epirubicin hydrochlorid e by two main routes: amphiphilic polymer - drug conjugates appearing in aqueous media as aggregates with a micelle - like or a c ore - shell particle structure, and loading of anticancer drugs via non - covalent interactions on synthesized amphiphilic polymer - co - d rug conjugates that self - aggregated as core - shell particles in aqueous media. The synthesis of cellulose ethers esterified with diosgenin, DI31 and S7 with good agrochemical activity, and the hydrophobic loading of camptothecin in testosterone - , tocopherol - and ergocalciferol - grafted cellulose ethers with maintained anticancer ix activity are discussed in the first part of the thesis. Similarly, functionalization of a silk fibroin hydrolysate with steroids and vitamins allowed obtaining polymeric aggregates wi th sustained drug release and good agrochemical and anticancer activity, as shown in the second part of the thesis. Finally, functionalization of poly(dichloro)phosphazene s with the drugs and Jeffamine M - 1000 affording aqueous aggregates with excellent agr ochemical and anticancer activities is presented. x KURZFASSUNG Diosgenin ((25R) - spirost - 5 - en - 3β - ol) ist ein steroidales Sapogenin, das hauptsächlich aus Dioscin hergestellt wird, dem wichtigsten bioaktiven Bestandteil chinesischer Heilkräuter der Dioscoreacea - Familie. Es ist bekannt, dass Diosgenin selbst eine kardiop rotektive Aktivität bei Tieren, eine in vitro - Zytotoxizität gegenüber Krebszellen, eine Antitumoraktivität sowie antidiabetische und antioxidative Eigenschaften aufweist. Die geringe orale Bioverfügbarkeit bei Mäusen und die schlechte Wasserlöslichkeit von Diosgenin (10 µg/L) schränkt jedoch dessen Verwendung ein. Diosgenin ist das Hauptsubstrat bei der Synthese von Steroiden und Analoga von Brassinosteroiden für medizinische und landwirtschaftliche Anwendungen. In diesem Sinne wird DI31 (Warenzeichen Biobr as - 16), ein synthetisches Analogon von Brassinosteroid, aus Diosgenin zur agrochemischen Verwendung synthetisiert (Steigerung der Effizienz in Kulturpflanzen ~ 5 bis 30%). Der schnelle Pflanzenstoffwechsel und die geringe Wasserlöslichkeit von DI31 und S7 (einem weiteren Brassinosteroid - Analogon) begrenzen jedoch die Ausschöpfung ihres vollen Potenzials in der Landwirtschaft. Darüber hinaus muss das Antikrebspotential von DI31 und S7 untersucht werden, da einige Brassinosteroid - Analoga beschrieben werden, d ie eine gute Anti - Tumor - Aktivität aufweisen. Andererseits haben herkömmliche Krebsmedikamente wie Camptothecinderivate (d. H. Irinotecan, Topotecan) und Epirubicin eine begrenzte Wasserlöslichkeit und schwere bis mittelschwere Nebenwirkungen bei der Verabr eichung gezeigt. Aus diesem Grund werden Design, Herstellung und Charakterisierung einiger Trägerstoffe auf Polymerbasis für alle genannten Arzneimittel noch aktiv erforscht. In dieser Forschungsarbeit wurden Celluloseether (Methylcellulose, Hydroxyethylce llulose, (Hydroxypropyl)methylcellulose), Seidenfibroinhydrolysat und Poly(dichlor)phosphazen e passend funktionalisiert und als polymere Träger der untersuchten Medikamente mit erhöhter Wasserlöslichkeit oder Dispergierbarkeit, kontrollierter Wirkstoffabga be und aufrechterhaltener biologischer Aktivität verwendet. Diese Dissertation befasst sich mit der Synthese polymerbasierter Trägerstoffe für Diosgenin, Brassinosteroide DI31 und S7, Camptothecin und Epirubicinhydrochlorid auf zwei Hauptwegen: amphiphile Polymer - Wirkstoff - Konjugate, die in wässrigen Medien als Aggregate mit einer micellartigen oder einer Kern - Schale - Partikelstruktur erscheinen, und das Laden von Krebsmedikamenten über nicht - kovalente Wechselwirkungen auf synthetisierten amphiphilen Polymer - Co - Medikamenten - xi Konjugaten, die als Kern - Schale - Partikel in wässrigen Medien selbstständig aggregiert sind. Die Synthese von mit Diosgenin, DI31 und S7 veresterten Celluloseethern mit guter agrochemischer Aktivität und die hydrophobe Beladung von Testoste ron - , Tocopherol - und Ergocalciferol - gepfropften Celluloseethern mit Camptothecin bei gleichbleibender Antikrebsaktivität werden im ersten Teil der Arbeit diskutiert. Auch die Funktionalisierung eines Seidenfibroinhydrolysats mit Steroiden und Vitaminen e rmöglichte den Erhalt polymerer Aggregate mit verzögerter Wirkstofffreisetzung und