11. Inheriting the Earth

Total Page:16

File Type:pdf, Size:1020Kb

11. Inheriting the Earth 11 INHERITING THE EARTH Having established a zoological ancestry for humanity, countering the fundamental religious argument that we are unique and outside of nature, we follow the paths that humans have travelled out of Africa. Originating in Africa, humanity undertook a series of migrations, spreading through Europe and Asia, finally arriving in Australia and the Americas. At some point a suite of evolutionary changes occurred that separated one line of hominins from their close relatives, with unforeseeable consequences. Perhaps the need to accommodate to the rapid – from an evolutionary point of view – enlargement of their brains or to some other change in their environment, such as diet, our ancestors began to enter the world in an immature and defenceless condition. At another time and in another place, this could have been an evolutionary calamity, but it was accompanied by other changes to protect the newborn, including intense maternal care. A process of neoteny, not uncommon in evolution, had begun. The change proved not to be the disaster it might have been. The babies had the potential to grow large brains, unhampered by premature hardening of the brain case. Early birthing also allowed a baby’s head to fit better in the birth canal. The downside was that the hominins had to spend more time and effort in rearing their young successfully. We are now remarkable among animals for the years of work we put into our children. 163 CooperaTive evoluTioN It turned out in the end to be a great evolutionary success. The changes led eventually to all we take for granted in our human condition. Of course, one thing does not change in isolation. The need for prolonged child care created a selection pressure for greater cooperation within the family group to provide for and protect nursing mothers. And there were physical changes as well, developmental changes that once happened in utero that now happened in early childhood. These characteristics, once isolated from the environment, were exposed to it and subject to its influences. Our ancestors, it seems, were the first hominins to show this form of evolution, called neoteny. It is essentially the retention of juvenile features into adulthood. It is a phenomenon that exposes persistent embryonic features to direct natural selection. Other primate species do not experience this as intrauterine development produces newborns with more advanced muscular development. The idea thatHomo sapiens is a neotenic chimpanzee is an idea of some antiquity. In 1929, a Dutch anatomist, Lodewijk Bolk, first drew up a list of the probable neotenic characteristics that we, as adults, display: 1. A rounded, bowl-shaped cranium to house a brain that will grow to about four times its volume at birth. 2. A juvenile face that lacks the brow ridges and the heavy jaw development that is characteristic of adult apes. 3. The spinal cord enters the skull at a point vertically underneath it and does not move towards the back during development, thus making an upright stance possible. 4. Late closure of skull sutures and persistence of cartilaginous bone ends (epiphyses) into early adulthood. 5. In women, the vaginal canal does not rotate backwards, as it does in chimpanzees, but remains directed forward. 6. A big toe that remains aligned with the other toes and does not rotate sideways and become opposable, like a thumb. Compared with our simian cousins, our skeleton is under-developed at birth, with cranial sutures not yet joined, and uncalcified ends to the long bones which do not fuse together until puberty and a ‘straight’, rather than a grasping, big toe. An unfortunate legacy, a backbone better suited to walking on all fours than standing upright is still a human drawback today. 164 11. iNHeriTiNG THe earTH In women, the reproductive tract does not rotate rearwards, as in apes. Its more forward position facilitates face-to-face sexual and other communication. All this was accompanied by a period of intense social evolution that paved the way for collaborating communities. It must be said that this appealing concept is not without its critics. Shea (1989) considered the evidence, and concluded that there was a case, but it was ‘relatively weak’ (which might be interpreted as ‘quite strong’ depending on your point of view!). So now, equipped with a bipedal posture made possible by longer legs and changes to the skull, combined with a Palaeolithic tool kit that included stone points, hand-held axes and fire-hardened spears, ancient humans were ready to leave Africa. Recent fossil evidence from Morocco suggests that archaic Homo sapiens were in north Africa as much as 300,000 years ago (Hublin et al. 2017). According to Groves (pers. comm.) ‘modern’ humans appeared first in Africa and began their migrations into Europe and Asia about 80,000 years BP (before present). Evidence for this comes from ‘modern’ human fossils found in the Middle East, suggesting the trip was made from the Horn of Africa to the Arabian Peninsula by rafts or by island-hopping, or even walking, when the sea level was about 70 metres lower than it is today. This was a trip that other non-sapiens hominins had made much earlier. For example, the diminutive ‘hobbit’ had already drifted as far as Indonesia. Argue and colleagues (2017) conclude that the most likely origin for the ‘hobbit’ is from an early Homo lineage, such as Homo erectus, who wandered all over Africa, but also made it out of Africa and into Asia. Its most recent fossils in Asia are dated at 140,000 BP. The Neanderthals were in Europe and Asia 400,000 BP, and persisted until 40,000 BP, making them partly contemporaneous with modern humans. Cohabitation probably accounts for the Neanderthal genes we possess. The fact that the date for the exodus from Africa ofHomo sapiens is set around 80,000 years ago is consistent with the new estimates for human arrival in northern Australia. This is ample time for humans to have made the trip given the built-in error in the age estimates. The very recent discovery of polished stone axes dated to 65,000 BP, and other artefacts, such as the presence of red ochre for decoration and/or ritual purposes, suggests that modern humans – Aboriginals – were in Australia at least 10,000 years earlier than previously thought. 165 CooperaTive evoluTioN The first scanty suggestions of human abstract thought come from well before the last ice age. The carefully laid-out body of Mungo man in Australia, from 40,000 years ago, supports this. More recently, even clearer evidence of abstract thought is found in the cave paintings in Australia, France and Spain. The images are of animals and food sources, and other symbols of social custom. It has been suggested that these cave drawings were intended to increase the luck of the hunters, to show respect for others or to invoke help from spiritual beings. A stone figure of a plump woman, the ‘Venus of Willendorf’, carved 28,000 years ago, might have served all three purposes. The careful burial of a man, at about the same time, decorated with ochre strongly suggests that those who grieved had the concept of an afterlife. Exciting recent finds in northern Australia carry implications for our understanding of the spread of humans around the globe, but also pose some more immediate questions (Clarkson et al. 2017). If humans have been in Australia for 65,000 years, why is there no evidence for their spread to the Lake Mungo region over the following 15,000 or so years? Perhaps the Lake Mungo people just took a long way round or the time gap is simply due to too few archaeologists searching too large an area. If you go to Lake Mungo – now dry for several thousand years – and stand on the old lakebed, you can gaze up at the huge sand dunes on its eastern shore. You are now looking at the so-called ‘Walls of China’. The dunes are called lunettes and they are on the move. The prevailing wind is picking them up, sand grain by sand grain, and shifting them further east. As the top of the dune drifts away it uncovers a few old and twisted long-dead trees, stone tools and old fireplaces, all that remains of an ancient Aboriginal community. As you stand there, you will experience a silence broken only by the soughing of the wind and the hissing of the sand. For a European it is a numinous experience, akin to standing in the nave of a great cathedral. A conservative estimate suggests that the site may have been occupied for 50,000 years. There are two important discoveries of early humans at Mungo. Lake Mungo 1 includes the earliest evidence, 40,000 years old, of a cremation. The bones are those of a woman, who has now been returned to her people. A second skeleton, Lake Mungo 3, an unusually tall and slim man, had been buried on his back with his hands folded over his abdomen. Controversy surrounded his geological age, but it is now accepted that he was more or less contemporaneous with the cremated woman. 166 11. iNHeriTiNG THe earTH Good stone for the manufacture of tools is scarce in the area, and most of that worked by the Lake Mungo people has been imported from elsewhere. Points, knives, hand axes and grindstones have been recovered. The grindstones served the same purpose as the mortars and pestles used in kitchens of today: they are large and flat, with a circular, shallow bowl worn into one surface by the continuous pounding and grinding of seeds and other plant material with a rounded stone reserved for the purpose.
Recommended publications
  • Denisovan Portrait Drawn From
    IN FOCUS NEWS trees across 13 provinces in the country’s north since the programme began in 1978. Around 2000, deserts across the country MAAYAN HAREL MAAYAN were expanding by 10,400 square kilometres a year, says the government. But in 2017, it reported that China’s deserts were shrinking by more than 2,400 square kilometres a year. A 2018 study1 of satellite data from the US National Oceanic and Atmospheric Administration found that forest cover has increased in line with government statistics, but suggested that changes in logging policy were more important than afforestation — planting forests where none were before. In 1999, the Chinese government began planting millions of trees in its Grain for Green Program, intended to repair dam- aged farmland in the northern Loess Plateau, which is roughly the size of France. And the afforestation drive is continuing apace: in 2018, the government announced a target of 30% forest coverage by 2050. At the moment, the coverage is around 22%. It’s still too early to determine whether it has solved the problem, says Congbin Fu, director of the Institute for Climate and Global Change Research at Nanjing University. Land restoration can take An artist’s impression of a young female Denisovan, based on skeletal traits derived from ancient DNA. several decades or even 100 years, he says. There are pitfalls to mass tree-planting. ANCIENT HUMANS Large parts of China — including some areas where trees are being planted — are getting drier. A paper2 co-authored by Sternberg found that arid areas in China had increased Denisovan portrait by roughly 1.6 million square kilometres, about the size of Iran, since 1980 — probably due largely to anthropogenic climate change.
    [Show full text]
  • No Evidence for Recent Selection at FOXP2 Among Diverse Human Populations
    Article No Evidence for Recent Selection at FOXP2 among Diverse Human Populations Graphical Abstract Authors Elizabeth Grace Atkinson, Amanda Jane Audesse, Julia Adela Palacios, Dean Michael Bobo, Ashley Elizabeth Webb, Sohini Ramachandran, Brenna Mariah Henn Correspondence [email protected] (E.G.A.), [email protected] (B.M.H.) In Brief An in-depth examination of diverse sets of human genomes argues against a recent selective evolutionary sweep of FOXP2, a gene that was believed to be critical for speech evolution in early hominins. Highlights d No support for positive selection at FOXP2 in large genomic datasets d Sample composition and genomic scale significantly affect selection scans d An intronic ROI within FOXP2 is expressed in human brain cells and cortical tissue d This ROI contains a large amount of constrained, human- specific polymorphisms Atkinson et al., 2018, Cell 174, 1424–1435 September 6, 2018 ª 2018 Elsevier Inc. https://doi.org/10.1016/j.cell.2018.06.048 Article No Evidence for Recent Selection at FOXP2 among Diverse Human Populations Elizabeth Grace Atkinson,1,8,9,10,* Amanda Jane Audesse,2,3 Julia Adela Palacios,4,5 Dean Michael Bobo,1 Ashley Elizabeth Webb,2,6 Sohini Ramachandran,4 and Brenna Mariah Henn1,7,* 1Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA 2Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA 3Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA 4Department of Ecology and Evolutionary
    [Show full text]
  • A Longitudinal Genetic Survey Identifies Temporal Shifts in the Population
    Heredity (2016) 117, 259–267 & 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows L Cousseau1, M Husemann2, R Foppen3,4, C Vangestel1,5 and L Lens1 Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. Heredity (2016) 117, 259–267; doi:10.1038/hdy.2016.38; published online 8 June 2016 INTRODUCTION demographic population growth and increased genetic variation as Rapid land use changes, most severely the loss or fragmentation of a result of gene flow (Hanski and Gilpin, 1991; Clobert et al.,2001).
    [Show full text]
  • THE FORGOTTEN CONTINENT Fossil Finds in China Are Challenging Ideas About the Evolution of Modern Humans and Our Closest Relatives
    NEWS FEATURE THE FORGOTTEN CONTINENT Fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives. n the outskirts of Beijing, a small BY JANE QIU government is setting up a US$1.1-million limestone mountain named Dragon laboratory at the IVPP to extract and sequence Bone Hill rises above the surround- spread around the globe — and relegated Asia ancient DNA. Oing sprawl. Along the northern side, a path to a kind of evolutionary cul-de-sac. The investment comes at a time when palaeo- leads up to some fenced-off caves that draw But the tale of Peking Man has haunted anthropologists across the globe are starting to DEAGOSTINI/GETTY 150,000 visitors each year, from schoolchildren generations of Chinese researchers, who have pay more attention to Asian fossils and how to grey-haired pensioners. It was here, in 1929, struggled to understand its relationship to they relate to other early hominins — creatures that researchers discovered a nearly complete modern humans. “It’s a story without an end- that are more closely related to humans than ancient skull that they determined was roughly ing,” says Wu Xinzhi, a palaeontologist at the to chimps. Finds in China and other parts of half a million years old. Dubbed Peking Man, Chinese Academy of Sciences’ Institute of Ver- Asia have made it clear that a dazzling variety of it was among the earliest human remains ever tebrate Paleontology and Paleoanthropology Homo species once roamed the continent. And uncovered, and it helped to convince many (IVPP) in Beijing.
    [Show full text]
  • Bayesian Analysis of Evolutionary Divergence with Genomic Data
    bioRxiv preprint doi: https://doi.org/10.1101/080606; this version posted October 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. i \MIST" | 2016/10/12 | 16:46 | page 1 | #1 i i i Bayesian Analysis of Evolutionary Divergence with Genomic Data Under Diverse Demographic Models Yujin Chung,∗ Jody Hey 1Center for Computational Genetics and Genomics, 2Biology Department, Temple University, 1900 North 12th Street Philadelphia, PA 19122, USA ∗Corresponding author: E-mail: [email protected]. Associate Editor: Abstract We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation with Migration framework. For the Markov chain Monte Carlo (MCMC) phase of the analysis, we use a reduced state space, consisting of simple coalescent trees without migration paths, and a simple importance sampling distribution without demography. Migration paths are analytically integrated using a Markov chain as a representation of genealogy. The new method is scalable to a large number of loci with excellent MCMC mixing properties. Once obtained, a single sample of trees is used to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. As implemented in the computer program MIST, we demonstrate the accuracy, scalability and other advantages of the new method using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes troglodytes (P.
    [Show full text]
  • Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks University of Wisconsin-Madison, [email protected]
    Wayne State University Human Biology Open Access Pre-Prints WSU Press 10-18-2017 Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks University of Wisconsin-Madison, [email protected] Recommended Citation Hawks, John, "Introgression Makes Waves in Inferred Histories of Effective Population Size" (2017). Human Biology Open Access Pre- Prints. 120. http://digitalcommons.wayne.edu/humbiol_preprints/120 This Article is brought to you for free and open access by the WSU Press at DigitalCommons@WayneState. It has been accepted for inclusion in Human Biology Open Access Pre-Prints by an authorized administrator of DigitalCommons@WayneState. Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks1* 1Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin. *Correspondence to: John Hawks, Department of Anthropology, University of Wisconsin– Madison, 5325 Sewell, Social Science Building, Madison, Wisconsin 53706. E-mail: [email protected]. KEY WORDS: DEMOGRAPHY, ARCHAIC HUMANS, PSMC, GENE FLOW, POPULATION GROWTH Abstract Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size.
    [Show full text]
  • Ancient Hybridization with an Unknown Population Facilitated
    Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids Ming-Shan Wang,†,1,2,3,4 Sheng Wang,†,1,2 Yan Li,†,5 Yadvendradev Jhala,†,6 Mukesh Thakur,†,7 Newton O. Otecko,1,2 Jing-Fang Si,8 Hong-Man Chen,1 Beth Shapiro,*,3,4 Rasmus Nielsen ,*,9,10 Ya-Ping Zhang,*,1,5,11 and Dong-Dong Wu*,1,11 1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Downloaded from https://academic.oup.com/mbe/article/37/9/2616/5834723 by University of California, Santa Cruz user on 02 November 2020 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China 3Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 4Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 5State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China 6Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India 7Zoological Survey of India, New Alipore, Kolkata, West Bengal, India 8Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 9Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 10Globe Institute, University of Copenhagen, Copenhagen, Denmark 11Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China †These authors contributed equally to this work. Corresponding authors: E-mails: [email protected]; [email protected]; [email protected] z.ac.cn; [email protected].
    [Show full text]
  • Global Invasion History of the Tropical Fire Ant: a Stowaway on the First
    Molecular Ecology (2015) 24, 374–388 doi: 10.1111/mec.13040 Global invasion history of the tropical fire ant: a stowaway on the first global trade routes DIETRICH GOTZEK,*† 1 HEATHER J. AXEN,‡ 1 ANDREW V. SUAREZ,* SARA HELMS CAHAN‡ and DEWAYNE SHOEMAKER§ *Department of Animal Biology and Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, †Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA, ‡Department of Biology, University of Vermont, Burlington, VT 05405, USA, §CMAVE, USDA-ARS, Gainesville, FL 32608, USA Abstract Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Eur- ope and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world’s most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S.
    [Show full text]
  • Insights Into the Introduction Histories and Population Genetic
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2016 Insights into the introduction histories and population genetic dynamics of the Nile monitor (Varanus niloticus) and Argentine black and white Tegu (Salvator merianae) in Florida. Jared Price Wood University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Biology Commons, Genetics Commons, and the Population Biology Commons Recommended Citation Wood, Jared Price, "Insights into the introduction histories and population genetic dynamics of the Nile monitor (Varanus niloticus) and Argentine black and white Tegu (Salvator merianae) in Florida." (2016). Electronic Theses and Dissertations. Paper 2472. https://doi.org/10.18297/etd/2472 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. INSIGHTS INTO THE INTRODUCTION HISTORIES AND POPULATION GENETIC DYNAMICS OF THE NILE MONITOR (VARANUS NILOTICUS) AND ARGENTINE BLACK AND WHITE TEGU (SALVATOR MERIANAE) IN FLORIDA By Jared Price Wood B.S., Southeastern Oklahoma State University, 2010 A Dissertation Submitted
    [Show full text]
  • South Bay Historical Society Bulletin December 2017 Issue No
    South Bay Historical Society Bulletin December 2017 Issue No. 17 First People ocean and from the broad Tijuana River lagoon that existed back then. Also found was Coso Who were the First People? Where did they obsidian from Inyo County over 300 miles away, live? How were they able to survive? At our showing that these people had an extensive meeting on Monday, December 11 at 6 pm in trade network.2 the Chula Vista Library, Dennis Gallegos will answer these questions. His new book, First The First People may have come to the South People: A Revised Chronology for San Diego Bay long before those found at Remington Hills. County, examines the archaeological evidence Scientists from the San Diego Natural History going back to the end of the Ice Age 10,000 Museum have examined mastodon bones years ago. The ancestors of todayʼs Kumeyaay may have come down the coast from the shrinking Bering land bridge. Ancestors who spoke the ancient Hokan language may have come from the east, overland from the receding waters of the Great Basin. These early people (Californiaʼs first migrants) were called the “Scraper-Makers” by the pioneering archaeologist Malcolm Rogers in the 1920s.1 The name came from the stone tools that Rogers discovered at many sites in San Diego County, from the San Dieguito River in the north to the Otay River in the south. Rogers described their culture as the “San Dieguito pattern” based on his research at the Harris site near Lake Hodges on the San Dieguito River. This same cultural pattern and stone tools have been found at the Remington Hills site in western Otay Mesa.
    [Show full text]
  • Arguments That Prehistorical and Modern Humans Belong to the Same Species
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 doi:10.20944/preprints201905.0038.v1 Arguments that Prehistorical and Modern Humans Belong to the Same Species Rainer W. Kühne Tuckermannstr. 35, 38118 Braunschweig, Germany e-mail: [email protected] May 2, 2019 Abstract called either progressive Homo erectus or archaic Homo sapiens. I argue that the evidence of the Out-of-Africa A more primitive group of prehistorical hu- hypothesis and the evidence of multiregional mans is sometimes classified as Homo erec- evolution of prehistorical humans can be un- tus, but mostly classified as belonging to dif- derstood if there has been interbreeding be- ferent species. These include Homo anteces- tween Homo erectus, Homo neanderthalensis, sor, Homo cepranensis, Homo erectus, Homo and Homo sapiens at least during the preced- ergaster, Homo georgicus, Homo heidelbergen- ing 700,000 years. These interbreedings require sis, Homo mauretanicus, and Homo rhodesien- descendants who are capable of reproduction sis. Sometimes the more primitive Homo habilis and therefore parents who belong to the same is regarded as belonging to the same species as species. I suggest that a number of prehistori- Homo ergaster. cal humans who are at present regarded as be- A further species is Homo floresiensis, a dwarf longing to different species belong in fact to one form known from Flores, Indonesia. This species single species. shows some anatomical characteristics which are similar to those of the more primitive humans Keywords Homo ergaster and Homo georgicus and other Homo sapiens, Homo neanderthalensis, Homo anatomical characteristics which are similar to erectus, Homo floresiensis, Neandertals, Deniso- those of Homo sapiens [1][2][3].
    [Show full text]
  • Assessing the Relationship of Ancient and Modern Populations
    HIGHLIGHTED ARTICLE | INVESTIGATION Assessing the Relationship of Ancient and Modern Populations Joshua G. Schraiber1 Department of Biology, and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122 ORCID ID: 0000-0002-7912-2195 (J.G.S.) ABSTRACT Genetic material sequenced from ancient samples is revolutionizing our understanding of the recent evolutionary past. However, ancient DNA is often degraded, resulting in low coverage, error-prone sequencing. Several solutions exist to this problem, ranging from simple approach, such as selecting a read at random for each site, to more complicated approaches involving genotype likelihoods. In this work, we present a novel method for assessing the relationship of an ancient sample with a modern population, while accounting for sequencing error and postmortem damage by analyzing raw reads from multiple ancient individuals simultaneously. We show that, when analyzing SNP data, it is better to sequence more ancient samples to low coverage: two samples sequenced to 0.53 coverage provide better resolution than a single sample sequenced to 23 coverage. We also examined the power to detect whether an ancient sample is directly ancestral to a modern population, finding that, with even a few high coverage individuals, even ancient samples that are very slightly diverged from the modern population can be detected with ease. When we applied our approach to European samples, we found that no ancient samples represent direct ancestors of modern Europeans. We also found that, as shown previously, the most ancient Europeans appear to have had the smallest effective population sizes, indicating a role for agriculture in modern population growth.
    [Show full text]