The Status of Homo Heidelbergensis (Schoetensack 1908)

Total Page:16

File Type:pdf, Size:1020Kb

The Status of Homo Heidelbergensis (Schoetensack 1908) See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227710322 The status of Homo heidelbergensis (Schoetensack 1908) Article in Evolutionary Anthropology Issues News and Reviews · May 2012 DOI: 10.1002/evan.21311 · Source: PubMed CITATIONS READS 121 866 1 author: Christopher Brian Stringer Natural History Museum, London 331 PUBLICATIONS 12,575 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Prehistoric Human behaviour in 3D View project Gibraltar Caves Project – Palaeoenvironmental record of the Late Neanderthals refuge View project All content following this page was uploaded by Christopher Brian Stringer on 13 October 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Evolutionary Anthropology 21:101–107 (2012) ISSUES The Status of Homo heidelbergensis (Schoetensack 1908) Chris Stringer The species Homo heidelbergensis is central to many discussions about two clearly do not articulate well. In recent human evolution. For some workers, it was the last common ancestor for the early 1980s, with a shift to cladis- the subsequent species Homo sapiens and Homo neanderthalensis; others tic thinking and influences, I began regard it as only a European form, giving rise to the Neanderthals. Following the to gravitate toward the idea that impact of recent genomic studies indicating hybridization between modern Neanderthals were, after all, a dis- humans and both Neanderthals and ‘‘Denisovans’’, the status of these as sepa- tinct species from Homo sapiens rate taxa is now under discussion. Accordingly, clarifying the status of Homo sensu stricto, and that this implied heidelbergensis is fundamental to the debate about modern human origins. the existence of a distinct ancestral species, if neanderthalensis and sapi- ens were sister taxa, and erectus did not represent the last common THE SPECIES HOMO was little used during the earlier part ancestor. Through linking Mauer HEIDELBERGENSIS of the twentieth century and, by the with Petralona and Petralona with 1960s the lumping together of taxa Broken Hill, the concept of a Eura- In 1907, the robustly built mandi- often treated the fossil as a European frican stem species named Homo hei- ble that was to become the holotype 2 form of Homo erectus. However, delbergensis began to develop.9 The of Homo heidelbergensis was discov- 3 Howell took exception to that, argu- following extract and accompanying ered in the Grafenrain sandpit at ing that the fossil probably was mor- figure (Fig. 1) summarize the cau- Mauer, near Heidelberg, Germany, phologically distinct enough to repre- tious arguments made at that time: associated with what is now termed sent a separate species. ‘‘Because at present they cannot be a Galerian or Cromerian (early Mid- In 1974, I completed my doctoral defined satisfactorily by their own dle Pleistocene) fauna. The species thesis, which concentrated on cranial distinctive within-group characteris- name was bestowed a year later by shape comparisons of Neanderthal tics, it is difficult to justify creating a Otto Schoetensack,1 who noted in and modern humans but, along the separate taxon for the Petralona and the Mauer mandible the combination way, I noted clear phenetic resem- Broken Hill fossils on the basis of of primitive features (for example, blances between the Broken Hill characters they lack, or ones they high corpus thickness, very wide (Zambia) and Petralona (Greece) fos- share with other taxa. Nevertheless, ramus, and receding symphysis) and sils, and considered both of these to given the need to recognize their more recent human features, such as be clearly distinct from Neander- similarities to each other, and to small dentition, particularly the can- thals.4,5 Rather than allocate either other Middle Pleistocene fossils, they ines and anterior teeth. The name of these specimens to Homo erectus, could be placed in a separate species, I preferred, at that time, to regard H. rhodesiensis or H. heidelbergensis them as related primitive forms of (if the Mauer mandible is also Homo sapiens sensu lato, eventually included), provided the distinctive- Chris Stringer has worked at The Natural History Museum London since 1973, and assigning them to Homo sapiens ness of the Neanderthals from is now Research Leader in Human Ori- grade 1 in a gradistic scheme.6 ‘modern’ H. sapiens is also consid- gins and a Fellow of the Royal Society. He has excavated at sites in Britain and Following discussions with Bjorn ered worthy of specific recognition abroad, and is currently leading the Kurte´n, I became aware of biostrati- (Fig. 1a). Alternatively their possible Ancient Human Occupation of Britain graphic evidence that elements of the position as a ‘stem group’ for the project. Email: [email protected] Petralona mammalian faunas were Upper Pleistocene hominids could be of Cromerian age, potentially compa- recognized by the use of a subspe- 7 ?? rable to those from Mauer. Both cific name for the evolutionary grade Kurte´n and I considered the possibil- they are supposed to represent VC 2012 Wiley Periodicals, Inc. ity that the Petralona cranium could within H. sapiens (Fig. 1b). However, DOI 10.1002/evan.21311 Published online in Wiley Online Library represent a counterpart for the the other possibility that must (wileyonlinelibrary.com). Mauer mandible,6,8 even though the be considered (Fig. 1c) is that we 102 Stringer ISSUES blance to the Elandsfontein calva- ria,11 and the possibility that Middle Pleistocene Chinese and Indian fos- sils might also belong in this group (Table 2) was raised.12,13 Rightmire has adopted a comparable Eurafri- can concept of heidelbergensis,14,15 while some have preferred to retain a more gradistic concept of Homo sapiens, arguing that fossils such as Broken Hill and Bodo are primitive examples of the modern human spe- cies.16 Other workers have used the informal term ante- or preneander- thal for earlier European fossils, including Mauer and Arago, some- times with a purely chronological meaning, and in other cases imply- ing an evolutionary relationship.17 This latter option has become increasingly popular with the recog- nition that the Sima de los Huesos (SH) material displays a mosaic of heidelbergensis and neanderthalensis features. For such workers, H. heidel- bergensis could represent an early stage in the accretion model of Ne- anderthal evolution,17,18,35 forming a heidelbergensis-neanderthalensis con- tinuum. I briefly considered this argument, going so far as to suggest that all heidelbergensis material might be lumped into Homo neander- 19 Figure 1. Illustration of the possible phylogenetic relationships of the Petralona and Broken thalensis, but I did not persist in Hill fossils. Redrawn, with permission, from Stringer.9 that view. However, if the European- only model of heidelbergensis is cannot at present resolve the exact heidelbergensis hypodigm. A separate correct, then the non-European com- phylogenetic position of these homi- study of the first Bilzingsleben cra- ponents assigned to heidelbergensis nids because they are close to the nial finds reinforced their resem- by workers such as Rightmire and point of divergence between Nean- derthals and ‘modern’ H. sapiens TABLE 1. Some Traits Observed in H. heidelbergensis Fossils (assuming that the Neanderthals are Endocranial volumes overlap those of H. erectus and H. sapiens/H. not directly ancestral to ‘modern’ neanderthalensis Torus often highly pneumatized laterally, and superiorly into frontal squama humans). At present I believe this to Vault shape parallel-sided in posterior view be quite likely, and that these fossils Strong and continuous supraorbital torus* are close to the morphotype expected Occipital bone strongly angled* in the common ancestor of Neander- Strong continuous occipital torus* thals and ‘modern’ H. sapiens. If this Wide interorbital breadth* is so, only further careful analysis Iliac pillar* will allow a decision about the clad- Elongated superior pubic ramus*# Femoral platymeria*# istic affinities, and thus the classifica- High arched temporal squama1# tion, of fossils such as Arago 21, Pet- Gracile tympanic1# ralona and Broken Hill.’’ Increased midfacial projection expressed through measures of midline nasal I began to develop a suite of traits prominence1# (Table 1; Fig. 2) for grouping Broken In large-faced specimens there may be lack of both canine fossa and Hill and Petralona.10 European and infraorbital retraction# African fossils such as Bilzingsleben, Reduced total facial prognathism1# Vertesszo¨ llo¨ s, Bodo 1, and Elands- *Found in Homo erectus; þ potential synapomorphies with H. sapiens; # potential fontein were added to an enlarged synapomorphies with H. neanderthalensis. ISSUES The Status of Homo heidelbergensis 103 Figure 2. Facial (A) and lateral (B) views of crania. Clockwise from top left: Homo erectus (replica, Sangiran, Java), heidelbergensis (Broken Hill, Zambia), sapiens (recent, Indonesia), and neanderthalensis (replica, La Ferrassie, France). All pictures Ó The Natural Histroy Museum London. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] me, which show few or no Neander- at all. In effect, the morphology of ples of heidelbergensis, such as thal apomorphies, would require a certain specimens does
Recommended publications
  • The Evolutionary History of the Human Face
    This is a repository copy of The evolutionary history of the human face. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/145560/ Version: Accepted Version Article: Lacruz, Rodrigo S, Stringer, Chris B, Kimbel, William H et al. (5 more authors) (2019) The evolutionary history of the human face. Nature Ecology and Evolution. pp. 726-736. ISSN 2397-334X https://doi.org/10.1038/s41559-019-0865-7 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE EVOLUTIONARY HISTORY OF THE HUMAN FACE Rodrigo S. Lacruz1*, Chris B. Stringer2, William H. Kimbel3, Bernard Wood4, Katerina Harvati5, Paul O’Higgins6, Timothy G. Bromage7, Juan-Luis Arsuaga8 1* Department of Basic Science and Craniofacial Biology, New York University College of Dentistry; and NYCEP, New York, USA. 2 Department of Earth Sciences, Natural History Museum, London, UK 3 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.
    [Show full text]
  • Language Evolution to Revolution: from a Slowly Developing Finite Communication System with Many Words to Infinite Modern Language
    bioRxiv preprint doi: https://doi.org/10.1101/166520; this version posted July 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Language evolution to revolution: from a slowly developing finite communication system with many words to infinite modern language Andrey Vyshedskiy1,2* 1Boston University, Boston, USA 2ImagiRation LLC, Boston, MA, USA Keywords: Language evolution, hominin evolution, human evolution, recursive language, flexible syntax, human language, syntactic language, modern language, Cognitive revolution, Great Leap Forward, Upper Paleolithic Revolution, Neanderthal language Abstract There is overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. There is also widespread agreement that modern syntactic language arose with behavioral modernity around 100,000 years ago. We attempted to answer two crucial questions: (1) how different was the communication system of hominins before acquisition of modern language and (2) what triggered the acquisition of modern language 100,000 years ago. We conclude that the communication system of hominins prior to 100,000 years ago was finite and not- recursive. It may have had thousands of words but was lacking flexible syntax, spatial prepositions, verb tenses, and other features that enable modern human language to communicate an infinite number of ideas. We argue that a synergistic confluence of a genetic mutation that dramatically slowed down the prefrontal cortex (PFC) development in monozygotic twins and their spontaneous invention of spatial prepositions 100,000 years ago resulted in acquisition of PFC-driven constructive imagination (mental synthesis) and converted the finite communication system of their ancestors into infinite modern language.
    [Show full text]
  • 5 Years on Ice Age Europe Network Celebrates – Page 5
    network of heritage sites Magazine Issue 2 aPriL 2018 neanderthal rock art Latest research from spanish caves – page 6 Underground theatre British cave balances performances with conservation – page 16 Caves with ice age art get UnesCo Label germany’s swabian Jura awarded world heritage status – page 40 5 Years On ice age europe network celebrates – page 5 tewww.ice-age-europe.euLLING the STORY of iCe AGE PeoPLe in eUROPe anD eXPL ORING PLEISTOCene CULtURAL HERITAGE IntrOductIOn network of heritage sites welcome to the second edition of the ice age europe magazine! Ice Age europe Magazine – issue 2/2018 issn 2568­4353 after the successful launch last year we are happy to present editorial board the new issue, which is again brimming with exciting contri­ katrin hieke, gerd­Christian weniger, nick Powe butions. the magazine showcases the many activities taking Publication editing place in research and conservation, exhibition, education and katrin hieke communication at each of the ice age europe member sites. Layout and design Brightsea Creative, exeter, Uk; in addition, we are pleased to present two special guest Beate tebartz grafik Design, Düsseldorf, germany contributions: the first by Paul Pettitt, University of Durham, cover photo gives a brief overview of a groundbreaking discovery, which fashionable little sapiens © fumane Cave proved in february 2018 that the neanderthals were the first Inside front cover photo cave artists before modern humans. the second by nuria sanz, water bird – hohle fels © urmu, director of UnesCo in Mexico and general coor­­­di nator of the Photo: burkert ideenreich heaDs programme, reports on the new initiative for a serial transnational nomination of neanderthal sites as world heritage, for which this network laid the foundation.
    [Show full text]
  • Krapina and Other Neanderthal Clavicles: a Peculiar Morphology?
    Krapina and Other Neanderthal Clavicles : A Peculiar Morphology? Jean-Luc Voisin To cite this version: Jean-Luc Voisin. Krapina and Other Neanderthal Clavicles : A Peculiar Morphology?. Periodicum Biologorum, 2006, 108 (3), pp.331-339. halshs-00352689 HAL Id: halshs-00352689 https://halshs.archives-ouvertes.fr/halshs-00352689 Submitted on 13 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PERIODICUM BIOLOGORUM UDC 57:61 VOL. 108, No 3, 331–339, 2006 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Krapina and Other Neanderthal Clavicles: A Peculiar Morphology? Abstract JEAN-LUC VOISIN The clavicle is the less studied element of the shoulder girdle, even if it is USM 103 a very important bone for human evolution because it permits all move- Institut de Paléontologie Humaine ments outside the parasagittal plan. In this work, clavicle curvatures are 1 rue René Panhard 75013 Paris studied by projecting them on a cranial and a dorsal plan, which are perpen- E-mail: [email protected] dicular. In cranial view, there is no difference within the genus Homo, and [email protected] Neanderthal clavicles are not more S-shaped than modern human ones.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Homo Heidelbergensis: the Ot Ol to Our Success Alexander Burkard Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship 2016 Homo heidelbergensis: The oT ol to Our Success Alexander Burkard Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/auctus Part of the Archaeological Anthropology Commons, Biological and Physical Anthropology Commons, and the Biology Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/auctus/47 This Social Sciences is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Homo heidelbergensis: The Tool to Our Success By Alexander Burkard Homo heidelbergensis, a physiological variant of the species Homo sapien, is an extinct spe- cies that existed in both Europe and parts of Asia from 700,000 years ago to roughly 300,000 years ago (carbon dating). This “subspecies” of Homo sapiens, as it is formally classified, is a direct ancestor of anatomically modern humans, and is understood to have many of the same physiological characteristics as those of anatomically modern humans while still expressing many of the same physiological attributes of Homo erectus, an earlier human ancestor. Since Homo heidelbergensis represents attributes of both species, it has therefore earned the classifica- tion as a subspecies of Homo sapiens and Homo erectus. Homo heidelbergensis, like anatomically modern humans, is the byproduct of millions of years of natural selection and genetic variation. It is understood through current scientific theory that roughly 200,000 years ago (carbon dat- ing), archaic Homo sapiens and Homo erectus left Africa in pursuit of the small and large animal game that were migrating north into Europe and Asia.
    [Show full text]
  • The Human Evolutionary Calendar - Evolution in a Year)I------1 January • December F------{( March ) ( June September
    The Human Evolutionary Calendar - Evolution in a Year)I---------1 January • December f-------{( March ) ( June September SahelanthropusTchadensi Australopithecus sediba Homo rh odes iensis Ardipithecus ramidus 7,000,000 - 6,000,000 yrs. 2,000,000 - , ,750,000 yrs. 300,000 -125,000 yrs. 3,200,000 • 4,300,000 yrs. Homo rudolfensis Orrorin tugenensis 1,900,000 - 1.750,000 yrs. Homo pekin ensi s 6, 100,000 - 5,BOO,Oci:l yrs. 700,000 - 500,000 yrs. Australopit ec us anamensis 4,200,00 - 3,900,000 yrs. Ardipithecus kadabba 5,750,000 - 5,200,000 yrs. Ho m o Ergaster 1,900,000 - 1,3,000,000 yrs. Homo heidelberge nsis 700,000 • 200,000 yrs. Australopithecus afarensis Homo erectus 3,900,000 - 2,900,000 yrs. 1,800,000 • 250,000 yrs. Ho mo antecessor Australopithecus africa nus Ho mo habilis 1,000,000 -700,000 yrs. 3,800,000 - 3,000,000 yrs. 2,350,000 - 1,450,000 yrs. Ho m o g eorgicus Kenya nthropus platyo ps 1,800,000- 1.3000,000 yrs. 3,500,000 - 3,200,000 yrs. Ho m o nea nderthalensis 200,000 · 28,000 yrs. Paranthropus bo ise i Paranthropus aethiopicu 2,275,000- 1,250,000 yrs. De nisova ho minins 2,650,000 - 2,300,000 yrs. 200,000 - 30,000 yrs. Paranthropus robustus/crass iden s Australopithecus garhi 1,750,000- 1,200,000 yrs. 2,750,000 - 2.400,000 yrs. Red Deer Cave Peo ple ?- 11,000yrs. Ho mo sa piens sapien s 200~ Ho m o fl o res iensis 100,000 • 13,000 yrs.
    [Show full text]
  • Cave Radon Exposure, Dose, Dynamics and Mitigation
    Chris L. Waring, Stuart I. Hankin, Stephen B. Solomon, Stephen Long, Andrew Yule, Robert Blackley, Sylvester Werczynski, and Andrew C. Baker. Cave radon exposure, dose, dynamics and mitigation. Journal of Cave and Karst Studies, v. 83, no. 1, p. 1-19. DOI:10.4311/2019ES0124 CAVE RADON EXPOSURE, DOSE, DYNAMICS AND MITIGATION Chris L. Waring1, C, Stuart I. Hankin1, Stephen B. Solomon2, Stephen Long2, Andrew Yule2, Robert Blackley1, Sylvester Werczynski1, and Andrew C. Baker3 Abstract Many caves around the world have very high concentrations of naturally occurring 222Rn that may vary dramatically with seasonal and diurnal patterns. For most caves with a variable seasonal or diurnal pattern, 222Rn concentration is driven by bi-directional convective ventilation, which responds to external temperature contrast with cave temperature. Cavers and cave workers exposed to high 222Rn have an increased risk of contracting lung cancer. The International Commission on Radiological Protection (ICRP) has re-evaluated its estimates of lung cancer risk from inhalation of radon progeny (ICRP 115) and for cave workers the risk may now (ICRP 137) be 4–6 times higher than previously recognized. Cave Guides working underground in caves with annual average 222Rn activity 1,000 Bq m3 and default ICRP assumptions (2,000 workplace hours per year, equilibrium factor F 0.4, dose conversion factor DCF 14 µSv 3 1 1 d13 (kBq h m ) could now receive a dose of 20 mSv y . Using multiple gas tracers ( C CO2, Rn and N2O), linked weather, source gas flux chambers, and convective air flow measurements a previous study unequivocally identified the external soil above Chifley Cave as the source of cave222 Rn.
    [Show full text]
  • CV Karkanas 2018.Pdf
    PANAGIOTIS (TAKIS) KARKANAS CURRICULUM VITAE May 2018 Malcolm H. Wiener Laboratory for Archaeological Science American School of Classical Studies 54 Soudias, 10676 Athens, Greece Tel.: (30) 2130002400x224 Fax: (30) 2107294047 E-mail: [email protected] Personal Web Pages: https://www.researchgate.net/profile/Panagiotis_Karkanas https://ascsa.academia.edu/PanagiotisKarkanas EDUCATIONAL BACKGROUND 1994: Ph.D. in Geology (Specialty: mineralogy, petrology, geochemistry), Department of Geology, University of Athens. 1990: Postgraduate Seminar (300 hours) in Geology of sedimentary basin and energy resources. EU funded Research Seminar for Geologists, Department of Geology, University of Athens. 1986: B.Sc. in Geology, Department of Geology, University of Athens. AREAS OF INTEREST Geoarchaeology: site formation processes (stratigraphy, micromorphology, post-depositional chemical alterations) palaeoenvironmental reconstructions, paleoclimate, methods and techniques (dating, petrography, mineralogy, sedimentary analysis, provenance analysis). PROFESSIONAL APPOINTMENTS 2014-: Director, Malcolm H. Wiener Laboratory of Archaeological Science, American School of Classical Studies at Athens, Greece. 1994-2014: Senior Geologist, Ephoreia of Palaeoanthropology-Speleology (EPS), Ministry of Culture, Greece. 2004-2013: Adjunct Lecturer, Department of Geography, Harokopio University of Athens. OTHER PROFESSIONAL AND LABORATORY EXPERIENCE 1995-2003 (approx. one month per year): Visiting research scientist, Kimmel Center for Archaeological Sciences,
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
    K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA.
    [Show full text]
  • Denisovan Portrait Drawn From
    IN FOCUS NEWS trees across 13 provinces in the country’s north since the programme began in 1978. Around 2000, deserts across the country MAAYAN HAREL MAAYAN were expanding by 10,400 square kilometres a year, says the government. But in 2017, it reported that China’s deserts were shrinking by more than 2,400 square kilometres a year. A 2018 study1 of satellite data from the US National Oceanic and Atmospheric Administration found that forest cover has increased in line with government statistics, but suggested that changes in logging policy were more important than afforestation — planting forests where none were before. In 1999, the Chinese government began planting millions of trees in its Grain for Green Program, intended to repair dam- aged farmland in the northern Loess Plateau, which is roughly the size of France. And the afforestation drive is continuing apace: in 2018, the government announced a target of 30% forest coverage by 2050. At the moment, the coverage is around 22%. It’s still too early to determine whether it has solved the problem, says Congbin Fu, director of the Institute for Climate and Global Change Research at Nanjing University. Land restoration can take An artist’s impression of a young female Denisovan, based on skeletal traits derived from ancient DNA. several decades or even 100 years, he says. There are pitfalls to mass tree-planting. ANCIENT HUMANS Large parts of China — including some areas where trees are being planted — are getting drier. A paper2 co-authored by Sternberg found that arid areas in China had increased Denisovan portrait by roughly 1.6 million square kilometres, about the size of Iran, since 1980 — probably due largely to anthropogenic climate change.
    [Show full text]