A Longitudinal Genetic Survey Identifies Temporal Shifts in the Population
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Population Genetics: It's About Time
Spatial Population Genetics: It's About Time Gideon S. Bradburd1a and Peter L. Ralph2 May 13, 2019 1Ecology, Evolutionary Biology, and Behavior Group, Department of Inte- grative Biology, Michigan State University, East Lansing, MI, USA, 48824 2Institute of Ecology and Evolution, Departments of Mathematics and Bi- ology, University of Oregon, Eugene, OR 97403 [email protected] Abstract Many questions that we have about the history and dynamics of organisms have a geographical component: How many are there, and where do they live? How do they move and interbreed across the land- scape? How were they moving a thousand years ago, and where were the ancestors of a particular individual alive today? Answers to these questions can have profound consequences for our understanding of his- tory, ecology, and the evolutionary process. In this review, we discuss how geographic aspects of the distribution, movement, and reproduc- tion of organisms are reflected in their pedigree across space and time. Because the structure of the pedigree is what determines patterns of relatedness in modern genetic variation, our aim is to thus provide in- tuition for how these processes leave an imprint in genetic data. We also highlight some current methods and gaps in the statistical toolbox arXiv:1904.09847v2 [q-bio.PE] 10 May 2019 of spatial population genetics. 1 Contents 1 Introduction 3 2 The spatial pedigree 4 2.1 Peeking at the spatial pedigree . 6 2.2 Simulating spatial pedigrees . 6 2.3 Estimating \effective" parameters from the spatial pedigree . 7 3 Things we want to know 8 3.1 Where are they? . -
Effective Population Size Is Strongly Correlated with Breeding Pond Size in the Endangered California Tiger Salamander, Ambystoma Californiense
Conserv Genet (2011) 12:911–920 DOI 10.1007/s10592-011-0194-0 RESEARCH ARTICLE Effective population size is strongly correlated with breeding pond size in the endangered California tiger salamander, Ambystoma californiense Ian J. Wang • Jarrett R. Johnson • Benjamin B. Johnson • H. Bradley Shaffer Received: 19 October 2010 / Accepted: 31 January 2011 / Published online: 18 February 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Maintaining genetic diversity and population breeding habitat for A. californiense. We found no cor- viability in endangered and threatened species is a primary relation between pond area and heterozygosity or allelic concern of conservation biology. Genetic diversity diversity, but we identified a strong positive relationship depends on population connectivity and effective popula- between breeding pond area and Ne, particularly for vernal tion size (Ne), both of which are often compromised in pools. Our results provide some of the first empirical endangered taxa. While the importance of population evidence that variation in breeding habitat can be associ- connectivity and gene flow has been well studied, inves- ated with differences in Ne and suggest that a more tigating effective population sizes in natural systems has complete understanding of the environmental features that received far less attention. However, Ne plays a prominent influence Ne is an important component of conservation role in the maintenance of genetic diversity, the preven- genetics and management. tion of inbreeding depression, and in determining the probability of population persistence. In this study, we Keywords Effective population size Á Landscape examined the relationship between breeding pond char- genetics Á Dispersal Á Bottleneck Á Population structure Á acteristics and Ne in the endangered California tiger sal- Microsatellite amander, Ambystoma californiense. -
Impact of Landscape on Host–Parasite Genetic Diversity and Distribution Using the Puumala Orthohantavirus–Bank Vole System
microorganisms Article Impact of Landscape on Host–Parasite Genetic Diversity and Distribution Using the Puumala orthohantavirus–Bank Vole System Maria Razzauti 1,* , Guillaume Castel 1 and Jean-François Cosson 2 1 CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université Montpellier, 34000 Montpellier, France; [email protected] 2 UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; [email protected] * Correspondence: [email protected] Abstract: In nature, host specificity has a strong impact on the parasite’s distribution, prevalence, and genetic diversity. The host’s population dynamics is expected to shape the distribution of host-specific parasites. In turn, the parasite’s genetic structure is predicted to mirror that of the host. Here, we study the tandem Puumala orthohantavirus (PUUV)–bank vole system. The genetic diversity of 310 bank voles and 33 PUUV isolates from 10 characterized localities of Northeast France was assessed. Our findings show that the genetic diversity of both PUUV and voles, was positively correlated with forest coverage and contiguity of habitats. While the genetic diversity of voles was weakly structured in space, that of PUUV was found to be strongly structured, suggesting that the dispersion of voles was not sufficient to ensure a broad PUUV dissemination. Genetic diversity of PUUV was mainly shaped by purifying selection. Genetic drift and extinction events were better Citation: Razzauti, M.; Castel, G.; reflected than local adaptation of PUUV. These contrasting patterns of microevolution have important Cosson, J.-F. Impact of Landscape on consequences for the understanding of PUUV distribution and epidemiology. -
Current Status, Future Opportunities, and Remaining Challenges in Landscape Genetics
Chapter 14 CURRENT STATUS, FUTURE OPPORTUNITIES, AND REMAINING CHALLENGES IN LANDSCAPE GENETICS 1 2 3 4 Niko Balkenhol, Samuel A. Cushman, Lisette P. Waits, and Andrew Storfer 1 Department of Wildlife Sciences, University of Göttingen, Germany 2 Forest and Woodlands Ecosystems Program, Rocky Mountain Research Station, United States Forest Service, USA 3 Fish and Wildlife Sciences, University of Idaho, USA 4 School of Biological Sciences, Washington State University, USA 14.1 INTRODUCTION essentially replaced the isolation-by-distance paradigm with spatially explicit tests of effects of landscape varia- Just over a decade ago, advances in geographic informa- bles on genetic population structure. More generally, tion systems and genetic methodology helped usher in landscape genetics has advanced the field of evolution- the field of landscape genetics, an amalgamation of ary ecology by providing a direct focus on relationships landscape ecology, population genetics, and spatial sta- between landscape patterns and population processes, tistics aimed at testing how landscape heterogeneity such as gene flow, selection, and genetic drift. shapes patterns of spatial genetic variation. It is clear Since the inception of landscape genetics, there have that the tools developed in landscape genetics have been many calls for: (1) better communication among shaped a new paradigm for conducting empirical popu- spatial statisticians, landscape ecologists, and population lation genetics studies; although population genetics geneticists (Storfer et al. 2007; Balkenhol et al. 2009a); theory itself remains largely unchanged, the majority (2) more rigorous hypothesis testing (Storfer et al. 2007, of empirical studies of spatial genetic structure now 2010; Cushman & Landguth 2010; Segelbacher et al. include spatially explicit tests of landscape influences 2010; Manel & Holderegger 2013); (3) increased con- on gene flow. -
Using Landscape Genetics to Assess Population Connectivity in a Habitat Generalist
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Using Landscape Genetics To Assess Population Connectivity In A Habitat Generalist Tyler Duncan Hether University of Central Florida Part of the Biology Commons, and the Natural Resources and Conservation Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hether, Tyler Duncan, "Using Landscape Genetics To Assess Population Connectivity In A Habitat Generalist" (2010). Electronic Theses and Dissertations, 2004-2019. 1567. https://stars.library.ucf.edu/etd/1567 USING LANDSCAPE GENETICS TO ASSESS POPULATION CONNECTIVITY IN A HABITAT GENERALIST by TYLER DUNCAN HETHER B.S. University of Central Florida, 2006 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biological Sciences in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2010 Major Professor: Eric A. Hoffman © 2010 Tyler Hether ii ABSTRACT Understanding the nature of genetic variation in natural populations is an underlying theme of population genetics. In recent years population genetics has benefited from the incorporation of landscape and environmental data into pre-existing models of isolation by distance (IBD) to elucidate features influencing spatial genetic variation. Many of these landscape genetics studies have focused on populations separated by discrete barriers (e.g., mountain ridges) or species with specific habitat requirements (i.e., habitat specialists). -
Bayesian Analysis of Evolutionary Divergence with Genomic Data
bioRxiv preprint doi: https://doi.org/10.1101/080606; this version posted October 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. i \MIST" | 2016/10/12 | 16:46 | page 1 | #1 i i i Bayesian Analysis of Evolutionary Divergence with Genomic Data Under Diverse Demographic Models Yujin Chung,∗ Jody Hey 1Center for Computational Genetics and Genomics, 2Biology Department, Temple University, 1900 North 12th Street Philadelphia, PA 19122, USA ∗Corresponding author: E-mail: [email protected]. Associate Editor: Abstract We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation with Migration framework. For the Markov chain Monte Carlo (MCMC) phase of the analysis, we use a reduced state space, consisting of simple coalescent trees without migration paths, and a simple importance sampling distribution without demography. Migration paths are analytically integrated using a Markov chain as a representation of genealogy. The new method is scalable to a large number of loci with excellent MCMC mixing properties. Once obtained, a single sample of trees is used to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. As implemented in the computer program MIST, we demonstrate the accuracy, scalability and other advantages of the new method using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes troglodytes (P. -
Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks University of Wisconsin-Madison, [email protected]
Wayne State University Human Biology Open Access Pre-Prints WSU Press 10-18-2017 Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks University of Wisconsin-Madison, [email protected] Recommended Citation Hawks, John, "Introgression Makes Waves in Inferred Histories of Effective Population Size" (2017). Human Biology Open Access Pre- Prints. 120. http://digitalcommons.wayne.edu/humbiol_preprints/120 This Article is brought to you for free and open access by the WSU Press at DigitalCommons@WayneState. It has been accepted for inclusion in Human Biology Open Access Pre-Prints by an authorized administrator of DigitalCommons@WayneState. Introgression Makes Waves in Inferred Histories of Effective Population Size John Hawks1* 1Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin. *Correspondence to: John Hawks, Department of Anthropology, University of Wisconsin– Madison, 5325 Sewell, Social Science Building, Madison, Wisconsin 53706. E-mail: [email protected]. KEY WORDS: DEMOGRAPHY, ARCHAIC HUMANS, PSMC, GENE FLOW, POPULATION GROWTH Abstract Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. -
Ancient Hybridization with an Unknown Population Facilitated
Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids Ming-Shan Wang,†,1,2,3,4 Sheng Wang,†,1,2 Yan Li,†,5 Yadvendradev Jhala,†,6 Mukesh Thakur,†,7 Newton O. Otecko,1,2 Jing-Fang Si,8 Hong-Man Chen,1 Beth Shapiro,*,3,4 Rasmus Nielsen ,*,9,10 Ya-Ping Zhang,*,1,5,11 and Dong-Dong Wu*,1,11 1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Downloaded from https://academic.oup.com/mbe/article/37/9/2616/5834723 by University of California, Santa Cruz user on 02 November 2020 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China 3Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 4Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 5State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China 6Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India 7Zoological Survey of India, New Alipore, Kolkata, West Bengal, India 8Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 9Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 10Globe Institute, University of Copenhagen, Copenhagen, Denmark 11Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China †These authors contributed equally to this work. Corresponding authors: E-mails: [email protected]; [email protected]; [email protected] z.ac.cn; [email protected]. -
Global Invasion History of the Tropical Fire Ant: a Stowaway on the First
Molecular Ecology (2015) 24, 374–388 doi: 10.1111/mec.13040 Global invasion history of the tropical fire ant: a stowaway on the first global trade routes DIETRICH GOTZEK,*† 1 HEATHER J. AXEN,‡ 1 ANDREW V. SUAREZ,* SARA HELMS CAHAN‡ and DEWAYNE SHOEMAKER§ *Department of Animal Biology and Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, †Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA, ‡Department of Biology, University of Vermont, Burlington, VT 05405, USA, §CMAVE, USDA-ARS, Gainesville, FL 32608, USA Abstract Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Eur- ope and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world’s most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. -
Insights Into the Introduction Histories and Population Genetic
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2016 Insights into the introduction histories and population genetic dynamics of the Nile monitor (Varanus niloticus) and Argentine black and white Tegu (Salvator merianae) in Florida. Jared Price Wood University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Biology Commons, Genetics Commons, and the Population Biology Commons Recommended Citation Wood, Jared Price, "Insights into the introduction histories and population genetic dynamics of the Nile monitor (Varanus niloticus) and Argentine black and white Tegu (Salvator merianae) in Florida." (2016). Electronic Theses and Dissertations. Paper 2472. https://doi.org/10.18297/etd/2472 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. INSIGHTS INTO THE INTRODUCTION HISTORIES AND POPULATION GENETIC DYNAMICS OF THE NILE MONITOR (VARANUS NILOTICUS) AND ARGENTINE BLACK AND WHITE TEGU (SALVATOR MERIANAE) IN FLORIDA By Jared Price Wood B.S., Southeastern Oklahoma State University, 2010 A Dissertation Submitted -
Contemporary and Historic Factors Influence Differently Genetic
Heredity (2015) 115, 216–224 & 2015 Macmillan Publishers Limited All rights reserved 0018-067X/15 www.nature.com/hdy ORIGINAL ARTICLE Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm C da Silva Carvalho1,2, MC Ribeiro2, MC Côrtes2, M Galetti2 and RG Collevatti1 Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. -
Assessing the Relationship of Ancient and Modern Populations
HIGHLIGHTED ARTICLE | INVESTIGATION Assessing the Relationship of Ancient and Modern Populations Joshua G. Schraiber1 Department of Biology, and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122 ORCID ID: 0000-0002-7912-2195 (J.G.S.) ABSTRACT Genetic material sequenced from ancient samples is revolutionizing our understanding of the recent evolutionary past. However, ancient DNA is often degraded, resulting in low coverage, error-prone sequencing. Several solutions exist to this problem, ranging from simple approach, such as selecting a read at random for each site, to more complicated approaches involving genotype likelihoods. In this work, we present a novel method for assessing the relationship of an ancient sample with a modern population, while accounting for sequencing error and postmortem damage by analyzing raw reads from multiple ancient individuals simultaneously. We show that, when analyzing SNP data, it is better to sequence more ancient samples to low coverage: two samples sequenced to 0.53 coverage provide better resolution than a single sample sequenced to 23 coverage. We also examined the power to detect whether an ancient sample is directly ancestral to a modern population, finding that, with even a few high coverage individuals, even ancient samples that are very slightly diverged from the modern population can be detected with ease. When we applied our approach to European samples, we found that no ancient samples represent direct ancestors of modern Europeans. We also found that, as shown previously, the most ancient Europeans appear to have had the smallest effective population sizes, indicating a role for agriculture in modern population growth.