An Updated List of Species Used in Tree -Ring Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Western Juniper Woodlands of the Pacific Northwest
Western Juniper Woodlands (of the Pacific Northwest) Science Assessment October 6, 1994 Lee E. Eddleman Professor, Rangeland Resources Oregon State University Corvallis, Oregon Patricia M. Miller Assistant Professor Courtesy Rangeland Resources Oregon State University Corvallis, Oregon Richard F. Miller Professor, Rangeland Resources Eastern Oregon Agricultural Research Center Burns, Oregon Patricia L. Dysart Graduate Research Assistant Rangeland Resources Oregon State University Corvallis, Oregon TABLE OF CONTENTS Page EXECUTIVE SUMMARY ........................................... i WESTERN JUNIPER (Juniperus occidentalis Hook. ssp. occidentalis) WOODLANDS. ................................................. 1 Introduction ................................................ 1 Current Status.............................................. 2 Distribution of Western Juniper............................ 2 Holocene Changes in Western Juniper Woodlands ................. 4 Introduction ........................................... 4 Prehistoric Expansion of Juniper .......................... 4 Historic Expansion of Juniper ............................. 6 Conclusions .......................................... 9 Biology of Western Juniper.................................... 11 Physiological Ecology of Western Juniper and Associated Species ...................................... 17 Introduction ........................................... 17 Western Juniper — Patterns in Biomass Allocation............ 17 Western Juniper — Allocation Patterns of Carbon and -
Pollen-Based Temperature and Precipitation Records of the Past
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 2017 Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation Ignacio Jara Victoria University of Wellington Rewi Newnham Victoria University of Wellington Brent V. Alloway University of Wollongong Janet M. Wilmshurst Landcare Research NZ Andrew Rees Victoria University of Wellington Publication Details Jara, I. A., Newnham, R. M., Alloway, B. V., Wilmshurst, J. M. & Rees, A. B.H. (2017). Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation. The oH locene: a major interdisciplinary journal focusing on recent environmental change, 27 (11), 1756-1768. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation Abstract Regional vegetation, climate history, and local water table fluctuations for the past 14,600 years are reconstructed from pollen and charcoal records of an ombrogenous peatbog in northern New Zealand (38°S). A long-term warming trend between 14,600 and 10,000 cal. yr BP is punctuated by two brief plateaux between 14,200-13,800 and 13,500-12,000 cal. yr BP. Periods of relatively drier conditions are inferred between 14,000-13,400 and 12,000-10,000 cal. -
Western Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions
Western Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions Circular 1321 U.S. Department of the Interior U.S. Geological Survey Cover: Photograph taken by Richard F. Miller. Western Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions By R.F. Miller, Oregon State University, J.D. Bates, T.J. Svejcar, F.B. Pierson, U.S. Department of Agriculture, and L.E. Eddleman, Oregon State University This is contribution number 01 of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), supported by funds from the U.S. Joint Fire Science Program. Partial support for this guide was provided by U.S. Geological Survey Forest and Rangeland Ecosystem Science Center. Circular 1321 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials con- tained within this report. Suggested citation: Miller, R.F., Bates, J.D., Svejcar, T.J., Pierson, F.B., and Eddleman, L.E., 2007, Western Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions: U.S. -
Regeneration of Subalpine Nothofagus Pumilio in Northwestern Patagonia Argentina
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2000 Regeneration of subalpine Nothofagus pumilio in northwestern Patagonia Argentina Christopher A. Wall The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Wall, Christopher A., "Regeneration of subalpine Nothofagus pumilio in northwestern Patagonia Argentina" (2000). Graduate Student Theses, Dissertations, & Professional Papers. 6805. https://scholarworks.umt.edu/etd/6805 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of JV IO N T A N A Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. ** Please check "Yes" or and provide signature ** Yes, I grant permission k No, I do not grant permission Author’s Signature Date S - P ^ 6 O O Any copying for commercial purposes or financial gain may be undertaken only with the author’s explicit consent. Regeneration of SubalpineNothofagus pumilio in Northwestern Patagonia, Argentina By Christopher A. Wall B.A. Vassar College, 1991 Presented in partial fulfillment of the requirements for the Degree of Master of Science The University of Montana 2000 Approved By Committee Co-Chairs Dean of the Graduate School S'^Zo ' Date UMI Number: EP37606 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Hygroscopic Weight Gain of Pollen Grains from Juniperus Species
Int J Biometeorol (2015) 59:533–540 DOI 10.1007/s00484-014-0866-9 ORIGINAL PAPER Hygroscopic weight gain of pollen grains from Juniperus species Landon D. Bunderson & Estelle Levetin Received: 12 June 2013 /Revised: 26 June 2014 /Accepted: 27 June 2014 /Published online: 10 July 2014 # ISB 2014 Abstract Juniperus pollen is highly allergenic and is pro- Introduction duced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations ad- The Cupressaceae is a significant source of airborne allergens, and jacent to the trees, and since it can be transported hundreds of the genus Juniperus is a major component of many ecosystems kilometers by the wind, it also affects people who are far from across the northern hemisphere (Mao et al. 2010; Pettyjohn and the source. Predicting and tracking long-distance transport of Levetin 1997). New Mexico, Texas, and Oklahoma are home to pollen is difficult and complex. One parameter that has been many species of juniper. Three species that represent a significant understudied is the hygroscopic weight gain of pollen. It is allergy contribution are Juniperus ashei, Juniperus monosperma, believed that juniper pollen gains weight as humidity increases and Juniperus pinchotii. J. ashei pollen is considered the most which could affect settling rate of pollen and thus affect pollen allergenic species of Cupressaceae in North America (Rogers and transport. This study was undertaken to examine how changes Levetin 1998). This species is distributed throughout central in relative humidity affect pollen weight, diameter, and settling Texas, Northern Mexico, the Arbuckle Mountains of south central rate. -
Spatial Patterns in a Prosopis – Juniperus Savannah
The Texas Journal of Agriculture and Natural Resources 30:63-77 (2017) 63 © Agricultural Consortium of Texas Spatial Patterns in a Prosopis – Juniperus Savannah Steven Dowhower Richard Teague*1 Department of Ecosystem Science and Management, Texas A&M University System, Texas A&M AgriLife Research Center, P.O. Box 1658, Vernon, TX, USA. ABSTRACT We determined the distribution patterns and distance to nearest neighbor for Prosopis glandulosa and Juniperus pinchotii trees and saplings in west Texas to examine the intra- and interspecific spacing patterns of juvenile and mature trees to relate these patterns to their establishment dynamics on deep and shallow soils. Ordination was used to compare microsite vegetation associated with open grassland habitat and habitat proximal to big and small Prosopis and Juniperus plants. Analysis of similarities provided a multivariate index and probability of differences of vegetation between and among groups. Big Juniperus trees were randomly distributed on both soils, while the big Prosopis trees were random on the deep soil but aggregated on the shallow soil. Saplings of both species were strongly aggregated on both soils. Big and small Juniperus plants were positively associated with the dominant, established Prosopis trees and with litter cover but were negatively associated with bare soil and C4 grasses. In contrast, small Prosopis plants were negatively associated with both Juniperus and Prosopis trees on either soil and were positively associated with bare soil and C4 grasses. Prosopis trees facilitate establishment of Juniperus on deep or shallow soils, but Prosopis presence is probably not necessary for Juniperus establishment on either soil. The presence of big and small Juniperus plants close to and under the canopies of Prosopis trees and the inability of Prosopis seedlings to establish near Prosopis or Juniperus plants indicates that Juniperus trees would eventually dominate on the deep as well as the shallow soils. -
Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5. -
Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur. -
Species-Specific Basic Stem-Wood Densities for Twelve Indigenous Forest and Shrubland Species of Known Age, New Zealand
Marden et al. New Zealand Journal of Forestry Science (2021) 51:1 https://doi.org/10.33494/nzjfs512021x121x E-ISSN: 1179-5395 published on-line: 15/02/2021 Research Article Open Access New Zealand Journal of Forestry Science Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand Michael Marden1,*, Suzanne Lambie2 and Larry Burrows3 1 31 Haronga Road, Gisborne 4010, New Zealand 2 Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand 3 Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand *Corresponding author: [email protected] (Received for publication 19 July 2019; accepted in revised form 26 January 2021) Abstract Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and nationalbasic stem-wood greenhouse densities gas accounting. derived from We a limitedaugment number existing of publishedtrees, often basic of unspecified stem-wood age density and from data a limited with new number age- old, across 21 widely-distributed sites between latitudes 35° tospecific estimate values carbon for 12stocks. indigenous forest and shrubland species, including rarely obtained values for trees <6-years and 46° S, and explore relationships commonly used Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH). -
Amelanchier Alnifolia. Araucaria Araucana
Woodland Garden Plants The present-day cultivation of large areas of single annual crops such as wheat might seem, on the surface, to be a very productive and efficient use of land (average wheat yields this century have increased more than three-fold to over 3 tons per acre). When other factors are taken into account, however, it can be argued that this is a very unproductive and unsustainable use of the land. A woodland, on the other hand, might seem to be a very unproductive area for human food (unless you happen to like eating acorns). By choosing the right species, however, a woodland garden can produce a larger crop of food than the same area of wheat, will require far less work to manage it and will be able to be sustainably harvested without harm to the soil or the environment in general. I do not intend to go into any more details of the pros and cons of annuals versus perennials here. If you would like more information on this subject then please see our leaflet Why Perennials. One of the main reasons why a woodland garden can be so productive is that such a wide range of plants can be grown together, making much more efficient use of the land. The greater the diversity of plants being grown together then the greater the overall growth of plant matter there is. Thus you can have tall growing trees with smaller trees and shrubs that can tolerate some shade growing under them. Climbing plants can make their own ways up the trees and shrubs towards the light, whilst shade- tolerant herbaceous plants and bulbs can grow on the woodland floor. -
Common Conifers in New Mexico Landscapes
Ornamental Horticulture Common Conifers in New Mexico Landscapes Bob Cain, Extension Forest Entomologist One-Seed Juniper (Juniperus monosperma) Description: One-seed juniper grows 20-30 feet high and is multistemmed. Its leaves are scalelike with finely toothed margins. One-seed cones are 1/4-1/2 inch long berrylike structures with a reddish brown to bluish hue. The cones or “berries” mature in one year and occur only on female trees. Male trees produce Alligator Juniper (Juniperus deppeana) pollen and appear brown in the late winter and spring compared to female trees. Description: The alligator juniper can grow up to 65 feet tall, and may grow to 5 feet in diameter. It resembles the one-seed juniper with its 1/4-1/2 inch long, berrylike structures and typical juniper foliage. Its most distinguishing feature is its bark, which is divided into squares that resemble alligator skin. Other Characteristics: • Ranges throughout the semiarid regions of the southern two-thirds of New Mexico, southeastern and central Arizona, and south into Mexico. Other Characteristics: • An American Forestry Association Champion • Scattered distribution through the southern recently burned in Tonto National Forest, Arizona. Rockies (mostly Arizona and New Mexico) It was 29 feet 7 inches in circumference, 57 feet • Usually a bushy appearance tall, and had a 57-foot crown. • Likes semiarid, rocky slopes • If cut down, this juniper can sprout from the stump. Uses: Uses: • Birds use the berries of the one-seed juniper as a • Alligator juniper is valuable to wildlife, but has source of winter food, while wildlife browse its only localized commercial value. -
Bosque Pehuén Park's Flora: a Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(S): Daniela Mellado-Mansilla, Iván A
Bosque Pehuén Park's Flora: A Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(s): Daniela Mellado-Mansilla, Iván A. Díaz, Javier Godoy-Güinao, Gabriel Ortega-Solís and Ricardo Moreno-Gonzalez Source: Natural Areas Journal, 38(4):298-311. Published By: Natural Areas Association https://doi.org/10.3375/043.038.0410 URL: http://www.bioone.org/doi/full/10.3375/043.038.0410 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. R E S E A R C H A R T I C L E ABSTRACT: In Chile, most protected areas are located in the southern Andes, in mountainous land- scapes at mid or high altitudes. Despite the increasing proportion of protected areas, few have detailed inventories of their biodiversity. This information is essential to define threats and develop long-term • integrated conservation programs to face the effects of global change.