Design of Launch Pad for Mitigating Acoustic Loads on Launch Vehicle at Liftoff 우주발사체 발사 시 음향하중 저감을 위한 발사대 설계

Total Page:16

File Type:pdf, Size:1020Kb

Design of Launch Pad for Mitigating Acoustic Loads on Launch Vehicle at Liftoff 우주발사체 발사 시 음향하중 저감을 위한 발사대 설계 한국음향학회지 제39권 제4호 pp. 331~341 (2020) The Journal of the Acoustical Society of Korea Vol.39, No.4 (2020) pISSN : 1225-4428 https://doi.org/10.7776/ASK.2020.39.4.331 eISSN : 2287-3775 Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff 우주발사체 발사 시 음향하중 저감을 위한 발사대 설계 Seiji Tsutsumi1† 1Japan Aerospace Exploration Agency (Received June 17, 2020; accepted July 18, 2020) ABSTRACT: At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis. Keywords: Launch vehicle, Aeroacoustics, Computational fluid dynamics, Computational aeroacoustics PACS numbers: 43.50.Nm, 43.28.Js 초 록: 우주발사체는 발사 시 추진장치에서 발생하는 고강도 소음에 의한 음향하중의 영향을 받는다. 로켓소음은 발사체와 페이로드 내 전자 및 기계 부품의 손상 및 오작동을 유발할 수 있기 때문에 음향하중의 예측 및 저감은 설계에 있어 중요한 고려사항이다. 본 논문에서는 로켓 소음의 생성 및 발사대의 음향설계 기법에 대한 최신 연구동향을 논하 였다. 특히, 새로운 발사대 설계 방법론의 예로서 일본 Epsilon 로켓 발사대의 개발과정을 기술하였다. 전산유체역학 모사 및 1/42 축소모형 실험을 통하여 설계된 발사대의 음향하중 저감 효과를 Epsilon 로켓의 실제 비행 데이터 분석을 통하여 검증하였다. 핵심용어: 우주발사체, 공력음향학, 전산유체역학, 전산공력음향학 I. Introduction dynamic pressure flight regimes. The aerodynamic vibration is generated by oscillating shock waves, a Launch vehicles are exposed to severe vibration and turbulent boundary layer, and separated flow behind shock during flight. Fig. 1 shows an example of vibration protuberances. This study focuses on the acoustic loads measured with an accelerometer mounted on the upper that appear at liftoff. stage of a launch vehicle. There are two major peaks, The retired M-V solid launcher generated 3,700 kN of which appeared at 0 s ~ 5 s and 45 s ~ 80 s. The former is thrust at liftoff, and overall acoustic power radiated from caused by acoustic waves generated from exhaust jets of the exhaust jet was estimated to be 197 dB. The Overall the propulsion systems. The latter is due to aerodynamic Sound Pressure Level (OASPL) measured by a micro- vibration that occurs under transonic or maximum phone located outside the payload fairing reached 157.6 †Corresponding author: Seiji Tsutsumi ([email protected]) Aerospace Research and Development Directorate, Research Unit III, Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuuou, Sagamihara, Kanagawa, 252-5210, Japan (Tel: 81-50-3362-3151, Fax: 81-50-3362-7189) Copyrightⓒ2020 The Acoustical Society of Korea. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 331 332 Seiji Tsutsumi Fig. 1. Typical time history of vibration measured on launch vehicle.[1] dB, and OASPL measured inside the payload fairing was 144 dB.[2] Since electronic and mechanical components in the satellite and the launch vehicle are exposed to an acoustic environment exceeding 140 dB, predicting and reducing liftoff acoustics is one of the important design considerations in developing launch vehicles. Prediction and reduction of liftoff acoustics require knowledge in two domains, aeroacoustics and vibro- Movable Launch acoustics. Aeroacoustics deals with the generation of Platform (ML) acoustic waves from exhaust jets, their interaction with the Exhaust holes launch pad, and the propagation to the payload fairing. Flame duct On the other hand, vibroacoustics is concerned with Deflector the transmission of acoustic waves through the fairing Fig. 2. Schematic of typical launch pad. structure and the effects on the satellite inside. This article focuses on aeroacoustics and introduces the latest studies safely deflects the hot exhaust downstream. on the mechanism of acoustic generation and design The exit Mach number of the exhaust jet from a rocket methodologies of the launch pad. Then, the example of engine is at least 3, and the exit static temperature can be launch pad design for the Epsilon solid launcher, over 1000 K. The Mach wave is radiated from the free jet developed by the Japan Aerospace Exploration Agency region of the exhaust jet due to its large-scale turbulent (JAXA), is introduced with post-flight analysis. structure.[3] Empirical models proposed by Eldred et al. and Varnier are representative of the acoustic prediction II. Mechanisms of method.[4,5] According to the Varnier’s model, the major acoustic generation source of the Mach wave is generally around 10D downstream from the nozzle exit. Note that D is the nozzle Fig. 2 is a schematic of a typical launch pad. The launch exit diameter. The major acoustic-emission direction of vehicle is mounted on a Movable Launch pad (ML) and the Mach wave is roughly 50 deg from the direction of transported from a vehicle assembly building to the final jet flow. As shown in Fig. 2, when the launch vehicle rises launch pad location. The ML has exhaust holes to direct to 10D above the launch pad, the region of the jet that the exhaust jets into a flame duct. The flame duct is usually radiates the Mach waves appears from the exhaust hole of constructed underground. A deflector in the flame duct the ML then begins to contribute to the acoustic load on the 한국음향학회지 제39권 제4호 (2020) Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff 333 -0.1 0.1 -0.03 ∆͊⁄ ͊ 0.03 0.1 0.4 0.8 2.0 Acoustic wave due to jet impingement Mach wave radiation from wall jet Fig. 4. (Color available online) Acoustic wave generated due to jet impingement on deflector.[8] (a) Instantaneous result the nozzle exit from the ground were 2D and 20D, ⁄ -0.02 ∆͊ ͕͊ 0.02 respectively. The Mach waves are radiated from the Reflected Mach wave or large-scale turbulent structure in the free jet shear layer acoustic wave due to jet interaction with exhaust hole and propagate obliquely downstream. 1/1 octave band filter is applied to the time series data, and results at a center frequency of 4000 Hz (Strouhal number St = 0.026) is shown in Fig. 3(b). The acoustic waves returning to the Mach wave radiation from free jet launch vehicle are clear. The acoustic waves originated in the Mach waves reflect off the flat plate. The free jet grows up as it proceeds downstream and interacts with the edge of the exhaust hole. This interaction is another source of (b) 1/1 octave bandpass filtered result at St = 0.026 acoustics propagating to the vehicle.[7] It is not clear how Fig. 3. (Color available online) Acoustic wave generated much each contributes to the acoustic environment of the above ML.[6] launch vehicle. launch vehicle. The maximum acoustic level is usually Immediately after liftoff, the high-speed exhaust jet observed when the launch vehicle is elevated to approxi- enters the flame duct through the exhaust hole then mately 20D. To investigate the acoustic field appearing impinges on the deflector. This causes the different above the ML, numerical analysis using Computational acoustic waves from the Mach wave radiation from the Fluid Dynamics (CFD) was conducted to understand the free jet. CFD is applied to analyze the hydrodynamic and hydrodynamic and acoustic field generated by impinge- acoustic field generated when a supersonic cold jet with ment of a supersonic jet exhausted from a 1/42-scale solid the Mach number of 1.8 impinges on the deflector.[8] Fig. 4 [6] motor on an infinite flat plate with an exhaust hole. shows the result. Same with Fig. 3, the hydrodynamic and Instantaneous CFD result of the hydrodynamic field acoustic field is visualized by , and ∆, visualized by density normalized by ambient density , respectively. The deflector studied here was initially and acoustic field by pressure fluctuation ∆ nor- inclined at 45 deg then smoothly connected to the ground. malized by ambient pressure are shown in Fig. 3(a). In The distance from the nozzle exit to the deflector was set to this result, the diameter of the exhaust hole and height of 5D. Two types of the acoustic waves can be seen in Fig. 4. The Journal of the Acoustical Society of Korea Vol.39, No.4 (2020) 334 Seiji Tsutsumi One propagates in all directions from the impingement Empirical method point, while the other is generated from the wall jet and CFD1 Simplified model test propagates obliquely downstream. From the directivity (limited frequency) angle, the latter is probably the Mach wave generated by Flight data the large-scale vortex structure of the shear layer, similar Preliminary design to that of the free jet. While the former is thought to be CFD2 generated by the interaction between the vortex structure Subscale model test (high fidelity) of the jet shear layer and a plate shock wave appeared at the jet impingement region, the interaction of the vortex Detailed design structure with tail shock waves generated inside the wall Fig. 5. Procedure of acoustic design. jet also contributes to the former acoustic wave.[9-12] However, the cause of the waves due to jet impingement preliminary and detailed designs.
Recommended publications
  • New Pad Constructed for Smaller Rocket Launches
    PROGRAM HIGHLIGHTS • JULY 2015 At NASA’s Kennedy Space Center in Florida, the Ground Systems Development and Operations (GSDO) Program Office is leading the center’s transfor- mation from a historically government-only launch complex to a spaceport bustling with activity involving government and commercial vehicles alike. GSDO is tasked with developing and using the complex equipment required to safely handle a variety of rockets and spacecraft during assembly, transport and launch. For more information about GSDO accomplishments happening around the center, visit http://go.nasa.gov/groundsystems. New Pad Constructed for Smaller Rocket Launches NASA's Kennedy Space Center in Florida took another step forward in its transformation to a 21st century multi-user spaceport with the completion of the new Small Class Vehicle Launch Pad, designated 39C, in the Launch Pad 39B area. This designated pad to test smaller rockets will make it more affordable for smaller aerospace companies to develop and launch from the center, and to break into the commercial spaceflight market. Kennedy Director Bob Cabana and representatives from the Ground Systems Development and Operations (GSDO) Program and the Center Planning and Development (CPD) and Engineering Directorates marked the completion of the new pad during a ribbon-cutting ceremony July 17. NASA Kennedy Space Center Director Bob Cabana, center, helps cut the ribbon on the new Small Class Vehicle Launch Pad, designated 39C, at Kennedy Space Center in Florida. Also helping to cut the ribbon are, from left, Pat Simpkins, director, Engineering and Technology Directorate; Rich Koller, senior vice president of design firm Jones Edmunds; Scott Col- loredo, director, Center Planning and Development; and Michelle Shoultz, president of Frazier Engineering.
    [Show full text]
  • Proposal to Construct and Operate a Satellite Launching Facility on Christmas Island
    Environment Assessment Report PROPOSAL TO CONSTRUCT AND OPERATE A SATELLITE LAUNCHING FACILITY ON CHRISTMAS ISLAND Environment Assessment Branch 2 May 2000 Christmas Island Satellite Launch Facility Proposal Environment Assessment Report - Environment Assessment Branch – May 2000 3 Table of Contents 1 INTRODUCTION..............................................................................................6 1.1 GENERAL ...........................................................................................................6 1.2 ENVIRONMENT ASSESSMENT............................................................................7 1.3 THE ASSESSMENT PROCESS ...............................................................................7 1.4 MAJOR ISSUES RAISED DURING THE PUBLIC COMMENT PERIOD ON THE DRAFT EIS .................................................................................................................9 1.4.1 Socio-economic......................................................................................10 1.4.2 Biodiversity............................................................................................10 1.4.3 Roads and infrastructure .....................................................................11 1.4.4 Other.......................................................................................................12 2 NEED FOR THE PROJECT AND KEY ALTERNATIVES ......................14 2.1 NEED FOR THE PROJECT ..................................................................................14 2.2 KEY
    [Show full text]
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • 7. Operations
    7. Operations 7.1 Ground Operations The Exploration Systems Architecture Study (ESAS) team addressed the launch site integra- tion of the exploration systems. The team was fortunate to draw on expertise from members with historical and contemporary human space flight program experience including the Mercury, Gemini, Apollo, Skylab, Apollo Soyuz Test Project, Shuttle, and International Space Station (ISS) programs, as well as from members with ground operations experience reaching back to the Redstone, Jupiter, Pershing, and Titan launch vehicle programs. The team had a wealth of experience in both management and technical responsibilities and was able to draw on recent ground system concepts and other engineering products from the Orbital Space Plane (OSP) and Space Launch Initiative (SLI) programs, diverse X-vehicle projects, and leadership in NASA/Industry/Academia groups such as the Space Propulsion Synergy Team (SPST) and the Advanced Spaceport Technology Working Group (ASTWG). 7.1.1 Ground Operations Summary The physical and functional integration of the proposed exploration architecture elements will occur at the primary launch site at the NASA Kennedy Space Center (KSC). In order to support the ESAS recommendation of the use of a Shuttle-derived Cargo Launch Vehicle (CaLV) and a separate Crew Launch Vehicle (CLV) for lunar missions and the use of a CLV for ISS missions, KSC’s Launch Complex 39 facilities and ground equipment were selected for conversion. Ground-up replacement of the pads, assembly, refurbishment, and/or process- ing facilities was determined to be too costly and time-consuming to design, build, outfit, activate, and certify in a timely manner to support initial test flights leading to an operational CEV/CLV system by 2011.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]
  • Launching Orion Into Space
    National Aeronautics and Space Administration LAUNCHING ORION INTO SPACE LAUNCHING ORION 27,000 MPH Speed to propel into Space to Deep Space Learn about the tremendous effort put forth by thousands of people across the country to launch Orion into orbit, and the challenges that will be faced as Orion 17,500 MPH is prepared for flight. Orion separating from the launch vehicle Orion has been designed Flight tests are difficult and There are thousands of Separation events that are with the minimal mass and complex but are necessary for steps that must be carried critical during Orion’s first few maximum capability needed engineers to gain confidence out sequentially – or even minutes of spaceflight are very to safely transport everything that the systems critical to simultaneously – and function dynamic, requiring the close needed for four crew crew safety will work during in perfect harmony for a attention of the entire members to live and work in space flight. seamless launch. flight team. space for up to 21 days. E SPAC N OF ITIO FIN ES) DE MIL THE JOURNEY TO THE LAUNCH PAD LAUNCHING ORION (62 DESIGNING ORION PUTTING ORION SENDING ORION THROUGH PUSHING ORION TO THE TEST THE ATMOSPHERE INTO DEEP SPACE Orion accelerating through Earth’s atmosphere Orion on the launch pad O MPH at NASA’s multi-purpose AN ENGINEER’S MAGNUM OPUS RIGOROUS TESTING PRIOR TO FLIGHT OVERCOMING EARTH’S GRAVITY ACHIEVING SUCCESS spaceport in Florida www.nasa.gov Challenges of Spaceflight: Putting Orion to the Test Spaceflight Stage Fright Launching Orion into Space The Orion spacecraft is comprised of the crew module, On Orion’s way to orbit, there are a series of events where astronauts will live and work during the mission; that must occur to separate the spacecraft from the Orion is America’s next-generation spacecraft.
    [Show full text]
  • Spaceport Infrastructure Cost Trends
    AIAA 2014-4397 SPACE Conferences & Exposition 4-7 August 2014, San Diego, CA AIAA SPACE 2014 Conference and Exposition Spaceport Infrastructure Cost Trends Brian S. Gulliver, PE1, and G. Wayne Finger, PhD, PE2 RS&H, Inc. The total cost of employing a new or revised space launch system is critical to understanding its business potential, analyzing its business case and funding its development. The design, construction and activation of a commercial launch complex or spaceport can represent a significant portion of the non-recurring costs for a new launch system. While the historical cost trends for traditional launch site infrastructure are fairly well understood, significant changes in the approach to commercial launch systems in recent years have required a reevaluation of the cost of ground infrastructure. By understanding the factors which drive these costs, informed decisions can be made early in a program to give the business case the best chance of economic success. The authors have designed several NASA, military, commercial and private launch complexes and supported the evaluation and licensing of commercial aerospaceports. Data from these designs has been used to identify the major factors which, on a broad scale, drive their non-recurring costs. Both vehicle specific and location specific factors play major roles in establishing costs. I. Introduction It is critical for launch vehicle operators and other stakeholders to understand the factors and trends that affect the non-recurring costs of launch site infrastructure. These costs are often an area of concern when planning for the development of a new launch vehicle program as they can represent a significant capital investment that must be recovered over the lifecycle of the program.
    [Show full text]
  • Commercial Spaceports: a New Frontier of Infrastructure Law
    Copyright © 2020 Environmental Law Institute®, Washington, DC. Reprinted with permission from ELR®, http://www.eli.org, 1-800-433-5120. COMMENTS COMMErcIAL SPACEPORTS: A NEW FRONTIER OF INfrASTRUCTURE LAW by Kathryn Kusske Floyd and Tyler G. Welti Kathryn Kusske Floyd and Tyler G. Welti are infrastructure lawyers advising commercial space developers as part of Venable LLP’s commercial space legal and policy practice. hile a “spaceport” may sound like a concept fies several considerations associated with the new frontier of mostly confined to science fiction, several commercial space transportation infrastructure projects. commercial spaceports are in operation in the WUnited States and abroad, and more are being developed. I. The Commercial Space Industry As the name suggests, spaceports, or commercial space launch sites, are used to conduct launch and reentry opera- tions to and from space, such as launching satellites into A. The Space Economy orbit or sending space tourists to the edge of space and back. A commercial space launch site can be operated by The burgeoning commercial space industry comprises a nonfederal entity, such as a business, state or local gov- private ventures, public ventures, and public-private part- ernment, or public-private partnership, and offers its infra- nerships. Launch operations can be solely commercial or structure and related services to private space companies can provide services pursuant to government contracts or federal agencies seeking to conduct launch operations. with civil and/or defense agencies. Currently, the industry Operating a commercial space launch site in the United includes the following commercial activities: States requires a launch site operator license (LSOL) issued by the Federal Aviation Administration’s (FAA’s) Office of Com- • Orbital launches to place satellites and other payloads mercial Space Transportation (AST).
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Successful Launch of the First Epsilon Launch Vehicle
    Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) 59 Contribution to Japan's Flagship Launch Vehicle – part 2 -Successful Launch of the first Epsilon Launch Vehicle- TATSURU TOKUNAGA*1 NOBUHIKO KOHARA*2 KATSUYA HAKOH*3 TSUTOMU TAKAI*4 KYOICHI UI*5 TETSUYA ONO*6 On September 14, 2013, the first Epsilon Launch Vehicle was launched from (Independent Administrative Institution) Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Center, and succeeded in properly injecting a satellite into orbit. In Epsilon Launch Vehicle development, we participate in the development/manufacture of the second-stage reaction control system(RCS) and modification maintenance of the launcher for the Epsilon launch system. The development/maintenance details and launch results are introduced in this report. |1. Introduction JAXA started development of the Epsilon Launch Vehicle in 2010, going through the stages of vehicle development, manufacturing, and maintenance of launch-related facilities, until the first Epsilon Launch Vehicle was launched from Uchinoura Space Center in 2013. We contributed to the successful launch of the first Epsilon Launch Vehicle through development of the second-stage reaction control system, which was equipped onto the launch vehicle, and modification maintenance of the launcher. Details of the development/maintenance and the launch results are introduced here. |2. Approach to Epsilon Launch Vehicle Development 2.1 General The Epsilon Launch Vehicle is the three-staged solid rocket developed by JAXA since 2010, and is the successor to the M-V launch vehicle technology, which completed operations in 2006, and develops to organize technical application/commonality of the H-IIA launch vehicle.
    [Show full text]
  • A Launch Pad Escape System for Human Spaceflight Is One of Those Things That Everyone Hopes They Will Never Need but Is Critical for Every Manned Space Program
    https://ntrs.nasa.gov/search.jsp?R=20110012275 2019-08-30T15:55:02+00:00Z Launch Pad Escape System Design (Human Spaceflight): -Kelli Maloney A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types ofthese EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well.
    [Show full text]
  • The Official Magazine of the Tau Epsilon Phi Fraternity
    the Plume The Official Magazine of the Tau Epsilon Phi Fraternity Winter 2017 Issue Volume 75 Issue 1 THE CONSUL’S CORNER the Consul’s Corner Brothers, I’d like to welcome you all to the first new edition of TEΦ’s Plume in over 20 years. We hope this finds you all well. To our alumni members I hope that this brings back great memories of your time in Tau Epsilon Phi. To our lifeblood, our undergraduates, I hope you find our National publication filled with interesting articles. As always, we’d love to hear of your accomplishments, both individually and as a chapter. I’d also like to extend to you the warm fraternal greetings of our Grand Council. It is certainly an honor and privilege to serve as the 47th Consul of TEΦ and lead this prestigious group of Brothers. I’d like to thank everyone who was able to attend our 2016 Grand Chapter in Orlando, Florida. We had such a diverse group of attendees and I’m glad that many of you are remaining involved whether serving on a committee, the Grand Council, or the TEΦ Foundation. I look forward to working with each of you and meeting many more of you as I continue to visit our chapters and attend alumni meet and greets around the country. I’d like to take a moment to recognize and thank my predecessor, Lane Koplon, for his many years of service to our great Fraternity, particularly as our Consul for the past five years. He helped lead our Fraternity out of bankruptcy and pave a path forward for the revitalization of TEΦ.
    [Show full text]