Publication No153 06.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Publication No153 06.Pdf ಒ ϳ ത ߇њໍяπޠড়ᙬୱᚡ 220 Κȃѵ᎜ᔯ࣬೏౪ 221 ড়ᙬޠΡȃѵ᎜߇؆αளُ 223 Рݳޠήȃᔯ࣬೏౪ 230 ѳȃ୾ѵ२्߇Фড়ᙬӫᓄ 219 ಒϳതȃ߇њໍяπޠড়ᙬୱᚡ ΚτҀൠȂ໸ᔗ୾ѵຶ޲ᄈϛӤ߇ޠݨ२ܛȁȁ߇њ౱ࠣѵ᎜ۗಥ࢑߇њҢ౱޲ ߇њࠣ፵ᇅ኶໕Ȃޠ૗Ң౱ܛሰؒᇅᡑ౵ȂпІՄ໕ѯᢋཿ޲ҐٙޠњൊԂα ࣽȂѵ᎜ٿѯᢋѵ᎜߇њᆎ᜹ᇅߝ᚟Ϥԥ੒ߞȂҀൠ๗ᄻؑԒഎӶᡑϾȂՅᐍᡞ ҀൠӶߗΚȃΡΫԒ࢑ഃᅛԚߞޠȄҐਫߒяޏਣ (1996 Ԓ ) ѵ᎜߇њпϹ߇࣐ ᅶȇޚ୾ঢ়࢑СҐȂխຸܿᖃ໕ΝԚпαȂഷτۡ࢑ງ߇ȃভ╟ᇏȃ܂лȂл्᎜ ᎸҀൠࠍϸයܼज୾ȃϜ୾ڐխҀൠЩ౦७մȂܛ୾Ȃկ܂౫ӶСҐϬ࣐л्᎜ ӼኻϾȂଷϹ߇ѵȂࣶ؂୾ঢ়Ȅ߇њᆎ᜹ٴࠓݎτഛȃᗻ୾ȃॸ෬ȃпІዊ࿘ᇅ ߇ηխԥࣻ࿌ӌ໕ȂϹ߇᜹ଷ༉ಜޠງ߇ȃভ╟ᇏȃޚᅶѵȂᗚєࢃНЗ៍ȃЭ Вਹȃ࿳Ԓߨȃܝȃࢸਸ਼డȃԼӬȂ੖ٍ๊ȇࣶ߇ࠍєࢃߐᓟ៍ȃፆፇ៍ȃ଼៹ ဒ፜कȃቄప߇๊Ȅ Κȃѵ᎜ᔯ࣬೏౪ ׈ӓณড়ᙬԇӶЩژȁȁѵ᎜߇؆ᆎ᜹࡟ӼȂєࢃງ߇ȃভ╟ ାȂమпҥ໣٪ݾႁ ᅶȃ៍߇๊Ϲ߇ȂѫԥϹݓဩȃ᪥ ၷ֩ᜳȄޚᇏȃ Ȅ࣐ᗘռ੿ᙬড় ȁȁөᆎѵ᎜߇؆ϜпϹ߇᜹ഷৡܿึҢ๊ޑඩᕭȃ౩਴ȃ਼ࣶෛ ࢑߇Ꮳ๗ᄻၷ࣐ፓᚖڐၼ౱ְࠣஉ՘ᔯ ড়ᙬᔯ࣬ୱᚡȂЏޠ༉ክයҁȂө୾ᄈໍπ ড়ޠᆎ᜹Ȃ೼᜹߇Ϝৡܿ዗ᙡঐᡞಡϊޠ ޠԥϛӤޑ࡚ȂϛӤ୾ঢ়ᄈϛӤෛښ࣬ 㩴᜹ȂՅйӶҥ໣пΚૢ٪ݾРݳᗷܗᔯࢦЬྦቷᝓϛΚȂѵ᎜߇ ᙬޠȂ्ؒښ४ Ȃ ૗७մড়ᙬஞ࡚Ȃկϛৡܿ஡ড়ᙬᇅড়㩴्ؒޠᔯ࣬ޑ୾ᄈܼෛ܂؆҇ሰӱᔗ᎜ ᔯޠ੒ଷȂ҇໹ܼϹ߇ࡤӕໍ՘੬ੇۼЬ ᄖޠ्ؒܛڐ੖ᜱᔯ࣬ᔯࢦȂಓӬڐ೾ႇ ᙬᡞȂႁޠԥୢӆܛȂϘ૗໸ւᒰяȄ ࣬೏౪Ȃп׈ӓ੒ྟྦ ȁȁஞഗ௢ྤ೪ࢋϲᆎෛޠ߇њձޑȂԄ Ԛѵ᎜ᔯ࣬ޠЬྦȄ ݏᆔ౪ூ࿌Ȃ҂ਣড়ᙬஞ྄࡚մȂ௵Ԟࠊ ȁȁᔯ࣬೏౪࢑ଭᄈෛޑໍяπᔯ࣬Յໍ ϛሰӕစႇ௵ ՘ড়ᙬ੒ྟϏձȂ҇໹Ӭоίӗή໷्ؒȈ܂܂ࢋ᛿ȂۼӕစႇΚԪᄖ ᔯ࣬೏౪Ȃ֊Ѡ஡ড়ᙬ׈ӓ੒ྟȄ ΚޠԞࡤ ኈ៫ڨϜࠓഌȂᐍԒ੊঑ ĩ Ī ߇؆ࠣ፵ϛڐѯᢋΚૢ҂ӵȂЏ ྤཹȂ៪Љ਼ᆎޠෛޑড়ᙬᆎ᜹ӼՅஞ࡚ ȁȁϛ፤ւңեᆎРԓ೏౪ড়ᙬȂ҇໹ณ 220 Κȃѵ᎜ᔯ࣬೏౪ ΚԪᔯؑٻݓ ߇؆ϛ૗ழԥӉեࣁᙬȄ࣐ܗ཭ܼ߇؆ҐٙȂєࢃ೏౪ࡤϛӶϹ߇ Ȃ೏ݏ޼ۢ๗ޠ्ؒܛژ།ড়Ȃ ࣬೏౪ְ૗ႁ๊ދฑܗဩαആԚӉեරᘉȃ಴Ք ఩ӈІಡ࿾ְሰᝓੀॐۢȂԄ᛿ޠ౪ਣ ܗ᝸៊Ңߞᇅ໡߇Ȃ౩਴ޠޑϛኈ៫ࣁෛ ඩᕭ૗ҔளҢߞึ਴ȂпІϛኈ៫Ϲ߇ Ꮩᐩ࡚ȃ೏౪ਣ໣ȃྤ๊࡚ϡпщϸ௢ ޠড়ᙬ׈ӓ੒ྟژԪ೏ְ૗ႁؑٻȂښ ȄϹ߇๊Ңᘁڽ౮ඩჱܗߴᘁޠІϹݓဩ ኈ ҭዀȄڨࠣ፵ϛٻ᛿Ꮩ།ড়Ȃ࣐ڨࣻ࿌ܿޑෛ ៫Ȃᔯ࣬೏౪ਣᔗӒขၑԫΚ೏౪ᄈ߇؆ ή ࢑֐౱Ң།ড়Ȅ ĩ Ī ԋӓณ෥ࢴ ԋӓޠΡ ȁȁ೏౪ਣ҇໹ݨ२ᄈᕘძᇅ΢੻ Ȃ᛿Ꮩᘴᇒȃܺৣጤྲৣ๊੬ੇ೏౪҇ܓ ĩ Ī ড়ᙬ׈ӓयԬ ׭೛΢সᐈձȂпռܼᐈձޠȁȁᔯ࣬೏౪ᇅҥ໣ড়ᙬ٪ݾᄈড়ᙬԬκ ໹्ؒዤጜ ᒮৣȂ੕ᅓȃᘴޠႇ໕ܗϛӤȂΚૢҥ໣٪ݾ्ؒ੒ྟෛ Ϝϛབྷ௦ដࢴ੊्ؒޠ౦ ೏౪η໹Ӷໍ՘ਣݨཏޠড়ᙬȂԄ٪ݾࡤစႇΚࢳਣ ྮ๊ӡᓏ࡚เմޠατഌϸੂ యᙬ᛿షȃޠңႇٻܛԋӓȄޠ໣ড়ᙬஞ࡚έቩߞȂࠍӕ࡚٪ݾȂѬ्ড় ᐈձ΢স ᙬஞ࡚७մӶϛኈ៫ෛੂҢߞޠโ࡚пί ԥࢴᘴᇒ੊ᡞ๊Ȃܼࢻతܗមܺࠊ्စႇ Ȃ ᎍ࿌೏౪Ȃᅿ໕ᗘռખᚾᕘძȄՅ೏౪ႇ्ؒޠѠᅗཏȄᔯ࣬೏౪ࠍຝᒰΤ୾֊ ȂпռӡІܓࢴܗکෛੂαᔗณ෥੽੊ޠ Р߇؆שԄپዀྦȂޠՅ೾ளԥၷ࣐ᝓੀ ԥᒰΤ ੒ຳ޲ԋӓȄܛСҐȂ्ؒޠл्ѵ᎜ҀൠϟΚ ড়ᙬޠġΡȃѵ᎜߇؆αளُ ᛿Ꮩႁٻࢋ᛿Рԓᜳпޠড়ᙬȂ ໣пΚૢባ᜵ԓޠȁȁδ࢑Ѡ૗ԇӶܼѵ᎜߇؆α Ȃ᛿ਞϛܿщϸึදȄԫܛ೏ޠ෗ٙڐژ ᙬޠᄈຬȄҥ໣ԥାਞ౦ޠ࢑ᔯ࣬೏౪ְ ֊෉໣ޠᆎΚ਼۠ޑϡп׈ ᜹ড়ᙬзхࣦ฼Ȃձܗড়ᆔ౪Ȃ஡ড়ᙬ኶ҭ෶Վഷմࣦ ੊঑఩ӈίȂޠȂ೾ள Ѡഀ៊ᖆोӼхȂӶѯᢋᜳ֩ޠӓ੒ྟȂѠп෶Ўѵ᎜ᔯ࣬ ϛᘟȂӱԫ྄ܿԥ׫۾τӼ࢑ҥ໣ ಥԒְѠึҢȂᆮޠ੽Ӷ߇؆αആԚᔯ࣬ୱᚡཽ ᛿ᏙӶစளޠٺሴݏ౱ҢȄ೩Ӽਞޠܓᆎ᜹Ȅ ᛿ޠ੒ྟۼϛܿᄖ ࢴਞȂӱޠ঩Ӓᓻ౵ڐϹ߇ড়ᙬτӼঐᡞಡ ࢋңϟࡤȂ֊ѷџޠȁȁሰ्ᔯ࣬೏౪ Ȃ܈ᒶᐆเԥΚᘉ౶ޠᗵୢ ԫҥ໣٪ݾ᛿ᏙܗϊȂԄᖫ଼ȃ૾ᙬȃဩ㩴๊Ȃ҂С ড়ᙬְ឵ٳݾϛ׈ӓȄԫѵ೼٪ٻཽ֊ ෗ਁܼဩбन८ȂӶҥܗራᖂ໣Ȃޠ߇ܼ 221 ಒϳതȃ߇њໍяπޠড়ᙬୱᚡ ϜЏпΡᘉဩ㩴Ңڐᆎ᜹࡟ӼȂᖫ଼ᇅ truncatus Ehara) ๊Ȃޑ஛лෛڐȂܓᚖॶ Ȃܓԇ૗Ω஽Ȃйᄈయ㩴Ꮩৡܿ౱Ңܱ׫ ڐޠ૾ᙬйԥॵ๣૗ΩȂᓎਣѠՍߤߗ ޠȄԫ᜹ড়ᙬпҥ໣٪ ҥ໣٪ݾϛܿ੒ྟȂӶѵ᎜߇؆αԇӶٿαད࢘Յޑѻձ л ᐡ౦ഷାȄޠϟ਴๙Ȃ֊࣐Ϲ߇ࡤ೏౪ٻݾᜳп ्ᄈຬȄ ȁȁဩ㩴෗ਁӶෛޑޠဩഌȂΚૢӶෛੂ Κ ޠ҃ჹဩαЎȂҢߞՎϜ෉пࡤޠဩбα є֥ԥԫᆎၷԚዤݏ߇؆Ԅޠĩ Ī ᖫ଼ ၷӼȄѵ᎜ ȁȁѯᢋѵ᎜߇њαഷѠ૗ԇӶޠᖫ଼࢑ ޠဩбȂ൸Ѡ૗ཽԥဩ㩴ୱᚡȄဩ㩴Ңࣁ ߇ᖫ଼ (Thrips hawaiiensis (Morgan)) ᇅѯ ໋෉฼ȂؑΚሮᙬ૗֋ӼȂՅ㩴ᡞҐٙಌ ᢋ߇ᖫ଼ (Frankliniella intonsa (Trybom))Ȃ ୞ܓմȂܛп೾ளӶΚဩбαҦ֋ՎԚ㩴 ȂӶӼ᜹Ϲ߇αְ ְӤਣԇӶȄܓᆎᖫ଼ְ࣐ᚖॶڎԫ ԥѠ૗ึҢȄ ή ȁȁ߇ᖫ଼ᇅѯᢋ߇ᖫ଼Ԛᙬᇅ҃ᙬְӶ ĩ Ī ૾ᙬ ߇ϲп߇ᛟȃ߇લᇅ߇ᇚ࣐ॶޑȂ߇ᛟቺ ȁȁ߇њαഷѠ૗ึ౫ޠ૾ᙬ࢑ෞ૾ (Aphis Ȃ඾ႈԇܓᖫ gossypii Glover)Ȃӱ࣐࢑ᚖॶٽ߇њȂӱ૗ණޠ኶Ӽй߇Ꮳᄻആፓᚖ Ѡ ӶӼᆎ߇њαȄ૾ᙬ෗ਁܼჹ߄ȃݓเІޠȂᖫ଼ԇӶܛ෗ਁൠޠԋӓՅᗵጷ଼ ҥ໣٪ݾ૗੒ଷτഌϸޠۼབାȄ ߇ूαȂၷᄖܓ૗ ᗵᙡӶٳ૾ᙬȂดՅԥޠ஼໡࡚ηኈ៫ᖫ଼ ٙᡞኹ៪ܼѵޠȁȁ߇њ௵Ԟਣ߇ԩ Ԛᙬᇅޠራᖂ໣ޠ߇ूᇅာбܗϟ኶ҭȂ߇ᛟۧґՍ߇ԩѵ൝ာб໣៪я ߇ᛟȂ ߇ूȂᖫ଼ۧณݳ߮ΤȂ֊ณᖫ଼ԇ सᙬϛܿ੒ྟȂࢉп߇Ꮳᄻആၷ࣐ፓᚖޠ ӶȄϘথ৥៪яΚᘉ߇ᛟޠ߇ूȂᖫ଼߮ ޠ߇њЩၷৡܿԥሰ्пᔯ࣬೏౪੒ଷ Τޠਣ໣฼ኸȂӱԫτӼѬԥЎ኶ԚᙬȂ ޠ૾ᙬȄ ԥ҃ᙬȄ௵ԞਣϑစໍΤ߇෉Κࢳਣ໣ ѳء ߇њȂᖫ଼Ԛᙬᇅ҃ᙬְ૗ԇӶȂՅй ĩ Ī ျ᜹ޠ ((ျ (Spodoptera exigua (Hübnerۈ኶ҭၷӼȄ ȁȁ౰຋ޠѠ૗ԇӶ ((ျ (Helicoverpa armigera (HübnerۈΡ ᇅอष ĩ Ī ဩ㩴 ӱ࣐ԥӪ߇ूᢤΤޠಭܓȂϹ߇αѠ૗ ျ (Spodoptera lituraۈဩ㩴ԥઢᐪဩ㩴 (Tetranychus ԥ҃ᙬԇӶȄఈવޠȁȁளึ౫ kanzawaii (Kishida))ȃΡᘉဩ㩴 (Tetranychus (Fabricius)) ࢑඾ႈึҢޠျ᜹Ȃߒឮ҃ᙬ urticae Koch)ȃୄΡᘉဩ㩴 (Tetranychus ୌՅя౫ܼ߇ूȄ 222 Рݳޠήȃᔯ࣬೏౪ ϥ ѻড়ᙬڐ ĩ Ī ޠԥᗵୢϛُءȁȁျ᜹҃ᙬঐᡞτȂ ୱᚡȂτӼӶҥ໣Ң౱ਣ൸Ѡп੒ྟȂ ȁȁᓎѵ᎜߇њᆎ᜹ᡑϾȂѠ૗ࡅૐѵ ড়ᙬᆎ᜹ᓎϟ׾ᡑȂଷαख़ΚޠԥЎ኶ঐᡞ෥ԇȂܼє၇߇؆ਣη ᎜ᔯ࣬ٻ֊ ᆎ᜹ϛޑᔯ࣬ড়ᙬѵȂӱѵ᎜ෛޠѠпҭຝᔯࢦՅџଷȄԫ᜹ড়ᙬпΚ ૢளُ پሰ्ᔯ࣬೏౪ড়ᙬȂޠ੕ᅓРԓְၷᜳయ ӤȂѠ૗ԥϛӤܗᘴᇒޠᔯ࣬೏౪ૢ ྟȂഷԂӶҥ໣ᄃ՘ԥਞড়ᙬᆔ౪Ȃܼ ԄӶᒰяޠϹ߇Ѡ૗ೞᔯяᚗૄҭර዗ᜂ ޠȂѠпባࢋయᙬ᛿Ꮩ (Liriomyza sp.)Ȃ౩਴αѠ૗ึ౫ᓚૄҭ؛Ԟࠊ൸Ӓ՘၍௵ ޒРԓ੒ྟȂమпᔯ࣬೏౪Рԓ੒ྟျ я׏ᙬ (carpophilus sp.) ๊๊Ȃሰᓎਣຝޠ ॼѓљȄ ݸՅϡпӱᔗȄٲ᜹҃ᙬȂτӼ Рݳޠήȃᔯ࣬೏౪ ѵ᎜є၇ኆȂᗷดϑԥᘴᇒ೪റȂޠȁȁΚૢড়ᙬ٪ݾ࢑ܼෛੂҢߞਣ෉ໍ ೤ዂ ߇њȂޠᘴᇒࡤৡܿ౱Ң᛿ড়ٳᙬড়ՅҔளҢ կᄈܼΚڨӶܼᆱៗෛੂϛޠ՘Ȃҭ ȂϬޠҭޠࢌϛ཭ᚾϹ߇ՅέయᙬژߞȄᔯ࣬೏౪ࠍ࢑ܼ௵Ԟ׈౴ࡤϘໍ՘Ȃ ࣐ႁ ড়ᙬܼܱႁᒰΤ୾੖ᜱ п᛿ష੕ᅓ೏౪Ȃп࣐ᡑ೾Ȅѯᢋѵ᎜ງޠαޑෛٻӶޠҭ ϟࠊ૗஋ೞ੒ྟȄ ߇ӶҖ୾ΥΫԒхпࠊȂΚޣ࢑п੕ᅓ᛿ αড়ᙬȄڐРԓ೏౪ޠҥ໣٪ݾѠ؈๙ၷτ࠯ড়ᙬԇ ᏙޠԂً యᙬᏙޠңܼҥ໣٪ݾড়ᙬңٻӶȂԄᡡૄҭျ᜹҃ᙬ๊ܼҥ໣֊ϡп੒ ȁȁδ࢑ ңܼ੕ᅓȂดՅΚૢ߇њٻᄈຬ݁ᙬ෶ЎȄϊ࠯ ᇅయ㩴ᏙְѠޠᔯ࣬೏౪ٻȂѠྟ ңࣦ࣐ᓝᖆȂٻޠড়ᙬІড়㩴пҥ໣٪ݾᗷดᜳп਴๙Ȃկ Ң౱ୣయᙬᏙᇅయ㩴Ꮩ ٻȂܓ᛿Ꮩ౱Ң׫ޠңٻஞ࡚Վࣻ࿌ࣩ४ίȂӱՅ෶Ў ݁ᙬ྄ܿᄈစளڐϬѠᔇ׼ ᛿ᏙѷਞȄ࣐ጃߴ੕ޠ࡟ାܓԚంᇅ ூ঩Ґࢴޠ࡚Ȃࢉᔯ࣬೏౪ᜳ֩ޠᔯ࣬೏౪ Ϲ߇੕ᅓң᛿ޠޑȂӤΚձݏਞޠᜱᖓȄ ᅓ೏౪ޠҥ໣٪ݾ࢑֐׈๢Ϭԥࣻ࿌ஞϹ Κ ഷԂᒶңᇅҥ໣ң᛿ϛӤ᜹࠯޲Ȃйစள ޠٺϛݏĩ Ī ੕ᅓݳ ୉੕ᅓ᛿ਞขۢȂᓎਣ؝ඳਞ ݓဩȂ᛿Ꮩ ᛿ᏙȄܗȁȁп᛿Ꮩไមష੕ᅓϹ߇ ੕ᅓޠ஠ߟ ȁȁѯᢋѵ᎜ງ߇෇စҔԓีଅܗ቉Ꮳ೪റޠூৡܿȂϛሰ्ᆡஞڦ ٱᏙ 500 ॼెӬಒྟᄀٱ᎜ ᛿Ꮩ࢑τջ㩴ܗഷᙐ߰ȂΚૢҢ౱޲ٿ׭೛Ȃᐈձକ ୶ཿ޲ְѠஉ՘Ȃࢉೞ඾ႈ௵ાȄЩၷԥ Ꮩ 6000 ॼ (Dicofol + Deltamethrin)Ȃҭࠊ 223 ಒϳതȃ߇њໍяπޠড়ᙬୱᚡ Ρ ᖫ଼η ĩ Ī ᘴᇒݳޠңȂՅ೩Ӽୣ஀ٻτջ㩴ϑ࿲Ц ȄӶज୾ Fluvalinateܓϑᄈಒྟᄀ౱Ң׫ 1. (Marvik Aquaflow, Sandoz) ҔԓีଅܼϹ ளᔇᘴᇒ ߇ᇅϹဩ᜹ޠ੕ᅓȂकᖥ߇п Fluvalinate ȁȁᘴᇒ࢑Κૢໍяπᔯ࣬೏౪ড়ᙬഷள (Ͼҧ∣ (Methyl bromideྫྷڐРݳȂЏޠ੕ᅓ15 ϸយȂॸᒃһ૖૾(Pentalonia ң nigronervosa) Ԭκ౦100%ȇFluvalinate ᇅ⑴ሗ (Hydrogen cyanide) ഷ࣐ளңȄΚૢ ђ޴ػష੕ᅓ5 ϸយȂલϮ෧ᙬ᜹ ᘴᇒְӶளᔇίໍ՘Ȃᘴᇒ৳ϲ੊ᔇᇅѵ (Pseudococcus nigronervosa, P. longispinus, ࣩࣻӤȂङ࣐Κঐዀྦ੊ᔇ 760 mmHgȄ ᙬ૗݁ٻȂ૗ހңኅٻ܂P. citri, P. affinis) 100% ԬκȄ ȁȁྫྷϾҧ∣п ሰᐩ࡚ङӶ 24-40g/m3 ϟܛԼयԬޠԚΚ Լϸםᇅ᛿ష௦ដਣৡܿӶߓ८ޑȁȁෛ ቺޫ੊ጱȂߣ๙Π᛿Ꮩᇅဩߓ८пІߤ຀ ໣Ȃӱᘴᇒ೏౪ޠᄈຬ݁ᙬпІ೏౪ྤ Ꮩ໕ȄดՅྫྷϾޠ߇ ࡚ȃ೏౪ਣ໣ՅԥϛӤޠґ৥໡ۧٳᄃር௦ដȇԥޠαᙬᡞڐ ഌȂԄງ߇ޠՐޒ߇ޠ໣ϤࣻᆨஞєӬȂ ҧ∣ӱԥખᚾτ੊Ϝ૛ੋቺޠᅹኍȂኈ៫ ᔗң ( ߓΚ )Ȅހ੕ᅓਣ໣Ȃ ԫᏙӶᔯ࣬೏౪αϟኅޠࢉ೏౪ਣτӼሰ्ԥΚۢ ৡܿ౱Ң།ޑᎫ୞Ȃ ȁȁ⑴ሗԥቒࢴȂᄈҢᘁෛޠϹ߇ԥࣻ࿌ܗ᛿షٻйᅿ໕ٯ ௦ᕭϟᘴᇒȂᄈܼܗ෇ңܼ౩਴܂᛿Ꮩщϸᅥ ড়Ȃпٻٯ੊Ȃޫޠп҉ખԫቺႥ๙ Τ߇ᛟ໣ራȄᎍ࿌ޠ੕ᅓਣ໣ᇅᎫᕞൾ࡚ ౩਴૾ᙬ (Anuraphis tulipae (Fonsc.))ȃ਴ ӱෛޑᆎ᜹౵ȂΚૢ๗ᄻၷፓᚖޠ߇њሰ ᜂ (Eumerus spp.)ȃ਴㩴(Rhizoglyphus spp.) ्੕ᅓޠਣ໣ၷߞȂӶ᛿షϜޠᎫ୞ൾ࡚ ๊ড়ᙬȂпІ௦ᕭαϮ෧ᙬ(Aspidiotus ၷቒȄ perniciosus Comstock) ໍ՘ᘴᇒਣޠ୥ՄᏙ ȁȁ੕ᅓݳᔗᅿ໕ܼ೾ॴًԂйޫ੊ࢻᄲ ໕ᇅਣ໣Ԅί ( ߓΡ )Ȅ ޠൠܛໍ՘ȂԄݏࢋ՘ޠൠܛޫ੊୅ᅘ᢯ ȁȁᕦϾᗣ (Magnesium phosphide) ளңܼ ң២ዻђٻմྤᘴᇒࡊϲȂޠ΢স౱Ң֝ ྤ࡚ 17ʨٻᐈձஉ՘ϛ࿌ȂৡܿܗඏȂ ᕦϾᗣ (Magnesiumޒᡞбڿ᛿షϬԥࢴ ዦᏣȂαဋޠࢴড়Ȅ੕ᅓႇࡤޠ௦ដܗΤ ޑ੊ϾȂԥਞڐٻኁЬ೏౪Ϙ૗ࢻ phosphate)ȂпାྤߵޠȂᔗ࿌्စႇᎍ࿌ܓ తȂ֐ࠍཽആԚᕘძ԰࢘Ȅ ፵Ҵ֊දึܼޫ੊ϜȂᄈড়ᙬ౱Ңᘴᇒਞ ȁȁ੕ᅓ೏౪ޠϹ߇ܼ၇ၽࠊሰӕစႇॴ ݏȂᄈᖫ଼ȃဩ㩴๊यԬΩାȂᎍ࿌ᐩ࡚ ԼϸϟԼԬκȂᕦϾᗣᄈ૾ᙬژႇโȂϹ߇सґ૗щϸୂᕎȂࠍৡܿ ίְѠႁޠୂ ᆼែȄ ਞݏၷৰȂӶӼᆎᏙ໕ᇅᘴᇒਣ໣ϟಣӬ 80ʦԬκ౦Ȅࣻၷ ژ೏౪ϜȂՎӼѬ૗ႁ 224 Рݳޠήȃᔯ࣬೏౪ ٻΡҧॅᘴᇒງ߇ 2-4 ϊਣȂཽޠ Ͼҧ∣ȂᕦϾᗣ೏౪ᄈܼງ߇๊Ϲ߇ 40ml/m3ྫྷܼ ϛܿ౱Ң᛿ড় ( ߓή )Ȅ 95ʦпαޠΡᘉဩ㩴ԬκȄ ȁȁ Ӷ 17 ʨѿѢп10 ml/m3 ޠΡҧॅ 2. ෶ᔇᘴᇒ ᖫ଼׈ӓٻXylene) ᘴᇒງ߇ 4 ϊਣȂѠ) ϲഌᔇΩ७ٻяȂܫ๙τഌ ȁȁ஡ᘴᇒ৳Ϝޫ੊ٻԬκȄп 40 ml/m3 ᘴᇒ 4 ϊਣѠ Ρ մȂดࡤໍ՘ᘴᇒ೏౪ȂԫਣίᘴᏙᏙٻΡҧॅ੊ᡞཽޠ૾ᙬԬκȄไᖢޠϸ ᏙޠৡܿໍΤᙬᡞȂпၷմ؂Ρ Щளᔇίޠ౫ຬȂดՅޫ੊Ϝޠᘉဩ㩴֖౫݅ଝ ȂޠҭޠᙬԬκ݁ٻژң ໕ᇅਣ໣൸૗ႁٻҧॅᐩ࡚஋ਣȂΡᘉဩ㩴ҼཽԬκȄ ߓΚȃྫྷϾҧ∣ᘴᇒ೏౪ϟᏙ໕ᇅਣ໣ (Monro, 1961) ྤ࡚ (ʨ )MBᏙ໕ (g/m3) ਣ໣ ( ϊਣ ) ᘴᇒᄈຬ ( ԼϸϟԼԬκ ) 16-21 40 2 ૾ᙬȃલፋȃϮ෧ᙬȃ 22-26 32 2 ዗ᜂȃျ᜹҃ᙬ 27-36 24 2 16-21 48 2.5 Ρᘉဩ㩴 22-26 48 2 27-36 40 2 ߓΡȃ⑴ሗᘴᇒ೏౪ϟᏙ໕ᇅਣ໣ (Monro, 1961) ྤ࡚ (ʨпα ) HCN Ꮩ໕ (g/m3) ਣ໣ ( ϊਣ ) ᘴᇒᄈຬ ( ԼϸϟԼԬκ ) 10 2 2 ૾ᙬ 18 6 6 ਴ᜂ 18 6 24 ਴㩴 4 6 0.5 Ϯ෧ᙬ (ߓήȃᕦϾᗣᘴᇒ೏౪ϟᏙ໕ᇅਣ໣ (еᇅݔ, 1984c ྤ࡚ (ʨ )MPᏙ໕ (g/m3) ਣ໣ ( ϊਣ ) ᘴᇒᄈຬ ( ԼϸϟԼԬκ ) 17 2.1 8 ѯᢋ߇ᖫ଼ 7.7 2 12.5 1 17 11.5 12 Ρᘉဩ㩴 15.4 8 225 ಒϳതȃ߇њໍяπޠড়ᙬୱᚡ ȄӶচ៬ݏሰਣ໣ȂණЁଷᙬਞܛৡܿ౱Ң Ў೏౪؂ηЩӶளᔇίޑկ࢑೾ளෛ Ȃѵ᎜ງ߇ޠᔯ࣬ଷᙬҭژ᛿ড়Ȅ Ϲ߇ࠣ፵Іႁ ȁȁп 1.5ʦޠҧሗҧ᎖ (Acetaldehyde) ܼ ϟᘴᇒп 12 g/m3 ྫྷϾҧ∣І 4 g/m3 ᕦϾ ੊ᔇίȂᘴᇒ 2 ϊਣȂѠ׈ӓ లȂᔇΩ 250 mmHgȂᘴᇒ 135 ϸយȂѠޠ 30mmHg ੒ྟੁ૾ (Myzus Persicae)Ȅп 0.5% ޠΛ пᄈܼѵ᎜ງϹ߇ޠဩ㩴ᇅߩࢹງර዗ᜂ ѠᎍңܼভٯȂଷງ߇ѵȂݏ౪དྷਞژౝΛ⢆ (Ethyl formate) Ӷ 30 mmHg ᔇΩί ႁ ѯᢋ߇ᖫ଼ 100% ԬκȂด ╟ᇏȃࢸਸ਼డȃНЗ៍๊߇њȞചᇅᒧȂٻᘴᇒ 1 ϊਣ ґӓԬȂ3 Сࡤङԥљ኶ѠჾϾ ( ߓ 2005ȟ ȄٯՅ֋ ңਣ҇ٻାȂܓѳ )Ȅ ȁȁᘴᇒᏙτӼᄈ΢੻ࢴ ሰ஠ߟ׭೛ٯᘴᇒ৳ȂޠԂًܓ੊ᔇίȂп ໹ԥஞഗޠ ȁȁྫྷϾҧ∣ܼ 50mmHg Κޠg/m3 ᘴᇒ 2 ϊਣȂງ߇αΡᘉဩ㩴ӓԬ ΢স॓ೱᐈձȂ࢑஠ཿ׭೛्ؒၷା 32 ณ᛿ড়ޑᙬԬκՅෛ݁ٻᏙ໕ᇅਣ໣ӶளᔇίΡᘉဩ㩴Ԭ ᆎ೏౪ȄпᘴᇒޠՅࣻӤ κ౦࣐ 71.5%Ȅᄈܼᖫ଼ȃ૾ᙬȃҞԾᕭ ޠᏙ໕ጓ൝೾ளၷભȂӱԫᄈܼ᛿Ꮩᐩ ᙬԼϸϟԼयԬޠᘴᇒᐩ࡚ᇅਣ໣Ҽၷմ ࡚ȃਣ໣ȃྤ࡚ȃΞՎᘴᇒ৳Ϝޫ੊ࢻ୞ ܗ฼ ( ߓϥ )Ȅ ܓȃޑࠣ௷ܺРԓȃޑࠣӶ৳Ϝܛխޫ໣ Ȅښ௢ޠஞڻȂְሰ्ၷ๊پᡘұȂпྫྷϾҧ∣ᇅᕦϾ Щفȁȁߗ෉ः ϛٯң౲ཌྷົ໕ਣȂϹ߇ٻȁȁ࿌ᘴᇒᏙ ٻల ( ֥ 66ʦᕦϾᗣȂп 90-100ʨђྤߵ දึ ) Ӥਣ೏౪ȂѠпึදӔӤ᛿ਞȂ෶ Ҵ֊ᡘұ᛿ড়Ȃ೾ளစႇΚࢳਣ໣߇ᇅဩ ߓѳȃҧሗҧ᎖ᇅΛౝΛ⢆ᘴᇒ೏౪ϟᏙ໕ᇅਣ໣ (е, 1984) ྤ࡚ʨ ᛿Ꮩᇅᐩ࡚ ᔇΩ (mmHg) ਣ໣ ( ϊਣ ) ᘴᇒᄈຬ ( ԼϸϟԼԬκ ) 22 ҧሗҧ᎖ 1.5% 30 2 ੁ૾ 17 ΛౝΛ⢆ 0.5% 30 1 ѯᢋ߇ᖫ଼ ߓϥȃྫྷϾҧ∣෶ᔇᘴᇒ೏౪ϟᏙ໕ᇅਣ໣ (ե, 1992) ྤ࡚ʨ MB Ꮩ໕ (g/m3) ᔇΩ (mmHg) ਣ໣ ( ϊਣ ) ᘴᇒᄈຬ ( ԼϸϟԼԬκ ) 25 9 50 2.0 ҞԾᕭᙬ 25 13 50 2.5 ෞ૾ 25 16 50 2.0 ߇ᖫ଼ȃѯᢋ߇ᖫ଼ȃ ງ߇ᖫ଼ȃϜ୾ᖫ଼ 25 32 50 2.0 Ρᘉဩ㩴 226 Рݳޠήȃᔯ࣬೏౪ ߇њ౱Ң᛿ٻңᏙ໕ႇାηཽܛϘഃᅛᡑ࣐ፒՔȂՅົ໕བӼȂ᛿ড়я౫ ȁȁᘴྮ ᐍбᙾ֖༄ፒȂܗབ฼Ȅ ড়ȂϹ߇ဩбя౫༄රڽȂဩбབ֖౐ፒՔȂ౮ඩჱץབ ߇ഌя౫༄ፒԵරȄٻܗ Ρ ĩ Ī ᘴྮݳ ή ড় ĩ Ī ܺৣጤޠޑȁȁྮᏙӼᔗңܼ٪ݾྤࡊ਼ෛձ ݁ٻ͙ ৣጤྲৣѠп ޠȁȁпϛӤᏙ໕ ٻޠȂηԥًԂܛᙬȂՅঙ৳ȃ╫޿๊೏ ᙬሰ्စႇϛӤ݁ޠϛѺȂࣻ౵ܗዦࡤᐾ ᙬԬκڨయᙬᏙٻ౱Ң࢑ޠȄྮᏙݏңਞ ျ҃ۈጤྲৣȂԄງ߇αอषৣܺޠ᛿Ꮩ Ꮩ໕ޠᄙڿܗ঩Ґ࣐షᄙٻ࢑ᇒึȂܗᐷ ᗼಗȄҭࠊϑԥӼᆎ஠ߟ ᙬစ 20 Krad ྲৣࡤ׈ӓԬκȂѯᢋ߇ᖫޠᙾᡑ࣐೩Ӽཌྷϊ ᛿ᏙᙾԚ ଼ȃ૾ᙬȃ㩴᜹ሰစ 60 Krad ྲৣࡤϘ૗ޠషᄙܗᄙڿٻѠңп౱ҢڏᏣ ࣐ྮȄᘴྮᏙᄈ΢੻ޠࢴܓІӶޫ໣ޠᘘ ӓԬȂဏτւܛҢ౱ஷΞឡαޠࠓߩ௣ဩ ⑴ሗ๊ᘴᇒᏙ஽Ȃ ျ (Epichoristode acerbella (Walker)) ֋෉ܗ∣ϛІྫྷϾҧְܓය ӱԫᐈձਣޠӡᓏܓเմܼᘴᇒ೏౪Ȅ Ԭκሰစ 33-42 Krad ྲৣȂ҃ᙬԬκሰစ ಗ 225-250 Krad ྲৣȂံ෉80 KradȂԚᙬޠಡϊڐȂྮᏙ౱Ңࡤܛȁȁܼஞഗൠ ߩࢹງර዗ᜂ҃ᙬᇅံٻඊᕘ 225-300 KradȂޠφ᝛ਜ਼ܼޫ੊ϜȂԫਣԄ૗ԥᎍ࿌ ᛿Ꮩಗφ҂ְщᅗܼޫ໣Ȃ ෉׈ӓԬκሰ 100 KradȄٻ੊ࢻȂ֊Ѡ Ꮩ໕ϛΚȂףৡޠᄈܼྲৣޑစႇΚࢳਣ໣ࡤ᝛ਜ਼ಗφӕഃᅛӱ२ΩՅ ȁȁؑᆎෛ ಗφΚૢӼӶљ৸ 1μ пίȂ Ꮩ໕ႇାࠍྲৣࡤѠ૗ණԟ࢞ຉȂᕼ฼Ϲޠؖ७ȄྮᏙ Ϲ߇Ӷ 5-10 KradޠȄၷ࣐ఄདڽჱޠ߇ᖣȃ߇ာᄈራᖂ೏ ߇ޠӱԫᗷด྄࣐੮ભ ϛІᘴᇒᏙȂᘴ ྲৣࡤ൸ཽ᛿ড়Ȃࠣᆎ໣Ҽཽԥৰ౵Ȃ༂ܓᘘයޠȄྮᏙژҼѠႁ ྮ೏౪ਣᘴྮ৳ϜϹ߇ܺဋᔗЩᘴᇒਣ౶ Քᇅ๚Քࠣᆎޠງ߇Ӷ 60 Krad пα౱Ң ᏙφᅥΤȄ ᛿ড়ȂҪՔງ߇ࠍӶ 30 Krad ֊ԥ᛿ড়Ȅྮٽ໣ޫޠщϸ؂යȂ҇໹੽ ሰྲৣܛᙬϛѺȂՅߩԬκȂ݁ٻȁȁయᙬྮᏙಗφᇅ݁ᙬ௦ដՅ౱Ңࢴ ༊ ܓȂԄ࣐ᇒ੊ᔇ(vapor pressure) ၷାޠ ޠܺৣጤᏙ໕ၷմȂпԫᏙ໕ྲৣϹ߇ၷ ᛿ᏙȂԥਣҼཽមяЎ໕ԥࢴ੊ᡞȂҦ݁ ϛܿ౱Ң᛿ড়Ȅྲৣࡤޠড়ᙬϛѺȂѷџ ૗ΩȂӱԫᗷด࢑ࣁᙬҼޠߩӉեᆎ ᝸៊ᖆ෦ࡤхٯᙬ੊ЍໍΤՅ౱ҢᘴᇒձңȄ యᙬ ᔗϛཽᄈᒰΤ୾ആԚӉեӡᓏȄԥ΢ᇰ࣐ٳңȂԥٻయᙬᏙְᎍܼпྮᏙޠ᜹ ΚᆎРݳȂԫΚޠഌϸೞખᚾȃϸ ᔗ࿌Ѡп୉࣐ᔯ࣬೏౪ܗᏙӶђዦႇโϜཽӓഌ ၍ȂηӱԫᆎጣࢉȂӤᆎ᛿Ꮩп੕ᅓ೏౪ Рԓ౪፤αᗷดѠ՘Ȃկ҇໹စႇᒰΤ୾ ᄃατഌϸ୾ঢ়ۧґٲጃᇰȂޠϛᅿࣻӤȄ ᔯ࣬൑՞ݏయᙬਞޠпᘴᇒ೏౪ܗ 227 ಒϳതȃ߇њໍяπޠড়ᙬୱᚡ ޠ࢑߇ᛟ޴ࠕܗ࢑ϹݓဩڐȂЏޑԫᆎРԓȄ ፭ෛڨ௦ ȁȁ࡟Ӽ΢ᄈܼܺৣጤԇԥ৽ិདȂᛅᅹ Ϲ߇ȂԄਢ΢ᒃȃЉஇഩȃकᖥ߇๊Ȅ Ԅ៍߇ȃЭ៹ȃΚૢޑձޠϹ߇Ϭ෥੽ܺৣ ᄈܼЩၷఄདܗॶࠣޠጤݳ೏౪ႇৣܺ ࢑ܗ߇ဩᡑՔȂٻय੿Ȃӡড়΢᜹ᇅᕘძȂ Ϲ߇๊ৡܿ౱Ңᐼ།Ȃܓ΢ᡞᄛٻȂཽܓ ȄڽຉডȂᕼ฼౮ඩჱٯഁ৥໡ץ߇ूٻࠣȂԚ࣐ ߵޑޠစႇܺৣጤ೏౪ڨϛ᜺௦ۧ ᔗңܺৣጤܼᔯ࣬೏౪αޠΚτሬᛥȄ ϥ ݳږѳ ĩ Ī ؠ ϹݓဩȂпޠĩ Ī ዦ೏౪ݳ ȁȁߓ८๗ᄻၷ࣐஁฾ࠕᄃ ஽ΩЬ࢙ഃбؠࣀȂѠؠ௭ַޠᎍӬྤ࡚ጓ൝Ȃ ାᔇଛяޠȁȁ݁ᙬԥࣁ୞ᇅҢߞ մܼܗົႇԫΚᎍӬྤ࡚Ȃ݁ᙬ൸ཽ୅Ц ழޠલϮ෧ᙬȃ૾ᙬ๊ȂӤਣ஡ဩбαޠ कᖥ߇ȃЉޠჩρఽࣀୂ౒ȄৈࡅӽҢ౱ ףณݳژࣁ୞ᇅҢߞȂसົႇጓ൝ЋӼႁ մྤ இഩ๊߇ᛟሴࠕȂѵ᎜ࠊӒܺໍ޴ػЬϜޠᙬयԬ݁ٻȄڽӵؐ൸୅ЦҢޠट ૾ᙬᇅલϮ෧ᙬȄޠࣀᙡܼ߇ഌږϛାȄւ п΢Ϗܓ౱Ңঞ།Ȃᔗңޑෛٻ೏౪ள ңӉեయᙬ᛿ᏙȂၷณԋӓٻዦᇒ੊ପӬϛӤ೏౪ਣ໣యᙬȂ ȁȁԫݳϛܗңዦЬ ៬ኍȄկࣦ࣐૊ຳ΢Ϗᇅ೏౪ਣ໣Ȃޠܓ αѠпᔗңՅ࣐ᔯޑෛޠၷटዦٳࠍӶ࢛ །ܓРݳȄ йᐈձਣৡܿӱ࿧ኢኟᔣՅ౱Ңᐡఢޠ࣬೏౪ ੬ੇ೏౪Ȅޠ࡚ᇅ ড়Ȃӱԫ༊ᎍңܼၷЎ኶໕ྤޠԼयԬޠϛӤড়ᙬԼϸٻȁȁ ਣ໣ҼөϛࣻӤȂӱԫሰ्ϡпΚΚข ϳ ίӗ ĩ Ī ৉ೢݳޤ೏౪РݳȂϑޠၑȂϘ૗ԥ޼ۢ ኶ᆎড়ᙬᇅձޑၷᎍңܼዦ੊ܗዦЬ೏ ȁȁӶҥ໣ෛੂ໡߇ࠊȂҼ֊Ѭԥ߇ूာ ౪ ( ߓϳ)Ȅዦ೏౪Щၷᎍңܼዦழᢏ бՅ߇ᛟۧґ៪яਣȂ֊஡ᐍঐ߇ᖣп৉ ߓϳȃዦЬܗዦ੊೏౪ϛӤᄈຬϟਣ໣ (Hara.
Recommended publications
  • Tuff Crater Insects
    «L» «NZAC_CODE1», «LOC_WIDE», «LOCALITY», «LOC_NARROW», «LOC_Specific» Herbivores found at locality, all observations listed by species within major group 192 Acalitus australis (Lamb, 1952) (Arachnida, Acari: Prostigmata, Eriophyoidea, Eriophyidae) (Puriri erineum mite). Biostatus: endemic CFA1303_N02: record 31/03/2013 leaf erineum seen 208 Aceria calystegiae (Lamb, 1952) (Arachnida, Acari: Prostigmata, Eriophyoidea, Eriophyidae) (Bindweed gall mite). Biostatus: endemic CFA1303_N06: record 31/03/2013 pocket galls common 222 Aceria melicyti Lamb, 1953 (Arachnida, Acari: Prostigmata, Eriophyoidea, Eriophyidae) (Mahoe leaf roll mite). Biostatus: endemic CFA1303_N30: record 31/03/2013 a few leaf edge roll galls seen 241 Eriophyes lambi Manson, 1965 (Arachnida, Acari: Prostigmata, Eriophyoidea, Eriophyidae) (Pohuehue pocket gall mite). Biostatus: endemic CFA1303_N20: record 31/03/2013 pocket galls on leaves 2997 Illeis galbula Mulsant, 1850 (Insecta, Coleoptera, Cucujoidea, Coccinellidae) (Fungus eating ladybird). Biostatus: adventive CFA1303_N04: record 31/03/2013 large larva on puriri leaf, no obvious fungal food 304 Neomycta rubida Broun, 1880 (Insecta, Coleoptera, Curculionoidea, Curculionidae) (Pohutukawa leafminer). Biostatus: endemic CFA1303_N32: record 31/03/2013 holes in new leaves 7 Liriomyza chenopodii (Watt, 1924) (Insecta, Diptera, Opomyzoidea, Agromyzidae) (Australian beet miner). Biostatus: adventive CFA1303_N18: record 31/03/2013 a few narrow leaf mines 9 Liriomyza flavocentralis (Watt, 1923) (Insecta, Diptera, Opomyzoidea, Agromyzidae) (Variable Hebe leafminer). Biostatus: endemic CFA1303_N08: record 31/03/2013 a few mines on shrubs planted near Wharhouse entrance 21 Liriomyza watti Spencer, 1976 (Insecta, Diptera, Opomyzoidea, Agromyzidae) (New Zealand cress leafminer). Biostatus: endemic CFA1303_N07: record 31/03/2013 plant in shade with leaf mines, one leaf with larval parasitoids, larva appears to be white 362 Myrsine shoot tip gall sp.
    [Show full text]
  • Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
    Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded. The percentage of individuals that succeeded in visiting a patch following departure from one, or an attempted visit, or after waiting near a patch for t 10 s, did not differ greatly among species, despite the distinctive differences in dominance between V. mandarinia and the other species. These results suggest that subordinate species may be equally effective at foraging for sap as the dominant species. The competitor-avoidance behaviour differed among the species. Vespa crabro and satyrine butterflies mainly avoided competition by actively moving away from com- petitors. The beetle Rhomborrhina japonica (Coleoptera: Scarabaeidae) often remained close to an occupied patch and waited for the occupant to leave, whereas V.
    [Show full text]
  • Male and Female Bees Show Large Differences in Floral Preference
    bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Male and female bees show large differences in floral preference 2 3 Michael Roswell [email protected] 4 Graduate program in ecology and evolution, Rutgers University 5 14 College Farm Road, New Brunswick, NJ 08904 6 7 Jonathan Dushoff 8 Department of biology, McMaster University 9 1280 Main St. West, Hamilton, Ontario ON L8S 4K1 10 11 Rachael Winfree 12 Department of ecology, evolution, and natural resources, Rutgers University 13 14 College Farm Road, New Brunswick, NJ 08904 1 bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 1. Intraspecific variation in foraging niche can drive food web dynamics and 17 ecosystem processes. Field studies and theoretical analysis of plant-pollinator 18 interaction networks typically focus on the partitioning of the floral community 19 between pollinator species, with little attention paid to intraspecific variation 20 among plants or foraging bees. In other systems, male and female animals 21 exhibit different, cascading, impacts on interaction partners.
    [Show full text]
  • Biolphilately Vol-64 No-3
    BIOPHILATELY OFFICIAL JOURNAL OF THE BIOLOGY UNIT OF ATA MARCH 2020 VOLUME 69, NUMBER 1 Great fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so ad infinitum. —Augustus De Morgan Dr. Indraneil Das Pangolins on Stamps More Inside >> IN THIS ISSUE NEW ISSUES: ARTICLES & ILLUSTRATIONS: From the Editor’s Desk ......................... 1 Botany – Christopher E. Dahle ............ 17 Pangolins on Stamps of the President’s Message .............................. 2 Fungi – Paul A. Mistretta .................... 28 World – Dr. Indraneil Das ..................7 Secretary -Treasurer’s Corner ................ 3 Mammalia – Michael Prince ................ 31 Squeaky Curtain – Frank Jacobs .......... 15 New Members ....................................... 3 Ornithology – Glenn G. Mertz ............. 35 New Plants in the Philatelic News of Note ......................................... 3 Ichthyology – J. Dale Shively .............. 57 Herbarium – Christopher Dahle ....... 23 Women’s Suffrage – Dawn Hamman .... 4 Entomology – Donald Wright, Jr. ........ 59 Rats! ..................................................... 34 Event Calendar ...................................... 6 Paleontology – Michael Kogan ........... 65 New Birds in the Philatelic Wedding Set ........................................ 16 Aviary – Charles E. Braun ............... 51 Glossary ............................................... 72 Biology Reference Websites ................ 69 ii Biophilately March 2020 Vol. 69 (1) BIOPHILATELY BIOLOGY UNIT
    [Show full text]
  • Lepidoptera, Limacodidae) 23 Doi: 10.3897/Zookeys.306.5216 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 306: 23–36A review (2013) of the genus Monema Walker in China (Lepidoptera, Limacodidae) 23 doi: 10.3897/zookeys.306.5216 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A review of the genus Monema Walker in China (Lepidoptera, Limacodidae) Zhaohui Pan1,†, Chaodong Zhu2,‡, Chunsheng Wu2,§ 1 Institute of Plateau Ecology, Agriculture and Animal Husbandry College of Tibet University, Linzhi 860000, P.R. China 2 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China † urn:lsid:zoobank.org:author:327D5273-1638-4F19-BF87-345AA1E264D9 ‡ urn:lsid:zoobank.org:author:8B542B39-2118-4146-83F8-73AB65257FB9 § urn:lsid:zoobank.org:author:9ED21D9F-83DB-4F22-AAB2-C9F0F5ABD12C Corresponding author: Chaodong Zhu ([email protected]); Chunsheng Wu ([email protected]) Academic editor: E. van Nieukerken | Received 27 March 2013 | Accepted 29 May 2013 | Published 3 June 2013 urn:lsid:zoobank.org:pub:4FFDB920-7E4A-4F33-9D8E-16CC7189723F Citation: Pan Z, Zhu C, Wu C (2013) A review of the genus Monema Walker in China (Lepidoptera, Limacodidae). ZooKeys 306: 23–36. doi: 10.3897/zookeys.306.5216 Abstract Four species and one subspecies of the genus Monema Walker, 1855 are recognized from China, in which M. tanaognatha Wu & Pan sp. n. is described as new, M. coralina Dudgeon, 1895 and M. meyi Solovyev & Witt, 2009 are newly recorded for China. The female of M. meyi is reported for the first time. Monema ni- grans de Joannis, 1901 and M. melli Hering, 1931 are synonymized with M.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Limacodidae Belippe Horrida Walker, 1865
    Limacodidae Belippe horrida Walker, 1865 Taxonomy Belippa horrida Walker, 1865.– S. China. Cheromettia formosaensis Kawada, 1930.– Horisya, Taiwan. Hostplant Flight period: v-vi. Altitude: 1750-2020 m. Imago Distribution map Limacodidae Birthamiodes junctura (Walker, 1865) Taxonomy: Hyblaea junctura Walker, 1865.– Cambo- dia. Hostplant:: Flight period: v, viii. Altitude: 875-900 m. Imago Distribution map Limacodidae Chalcoscelides castaneipars (Moore, 1865) Taxonomy Miresa castaneipars Moore, 1865.– India (Darjeeling). Hostplant Flight period: v-vi. Altitude: 910-2020 m. Imago Distribution map Limacodidae Nephelimorpha argentilinea (Hampson, 1892) Taxonomy Parasa argentilinea Hampson, 1892.– Margarita, Assam, India. Hostplant Flight period: vi. Altitude: 575 m. Imago Distribution map Limacodidae Parasa himalepida Holloway, 1987 Taxonomy Parasa himalepida Holloway, 1987.– Htawgaw, Upper Burma, 1830 m. Hostplant Flight period: vi. Altitude: 2020 m. Remarks. Niet volledig zekere determi- natie. Imago Distribution map Limacodidae Parasa pastoralis Butler, 1885 Taxonomy Parasa pastoralis Butler, 1885.– Bhutan. Hostplant Flight period Altitude Imago Distribution map Limacodidae Scopelodes venosa Walker, 1855 Taxonomy: Scopelodes venosa Walker, 1855.– Bangladesh (Silhet). Scopelodes aurogrisea Moore, 128.- Ceylon. Scopelodes ursina Butler, 1886.– Bangladesh (Silhet). Hostplant Flight period: v-vi. Altitude: 340-575 m. Imago Distribution map Limacodidae Scopelodes vulpina Moore, 1879 Taxonomy Scopelodes vulpina Moore, 1879.– India (Darjeeling). Scopelodes tantula Swinhoe, 1904.– India (Khasia Hills). Hostplant : Flight period: v. Altitude: 1750 m. Imago Distribution map Limacodidae Setora postornata (Hampson, 1900) Taxonomy Setora sinensis Moore, 1877.– Shanghai, China. Thosea postornata Hampson, 1900 Thosea postornata ab. Hampsoni Strand, 1916.– Sikkim, India. Hostplant Flight period: vi. Altitude: 1530 m. Imago Distribution map Limacodidae Squamosa ocellata (Moore, 1879) Taxonomy Monema ocellata Moore, 1879.– India (Darjeeling).
    [Show full text]
  • Acrolepiopsis Assectella
    Acrolepiopsis assectella Scientific Name Acrolepiopsis assectella (Zeller, 1893) Synonym: Lita vigeliella Duponchel, 1842 Common Name Leek moth, onion leafminer Type of Pest Moth Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Acrolepiidae Figures 1 & 2. Adult male (top) and female (bottom) Reason for Inclusion of A. assectella. Scale bar is 1 mm (© Jean-François CAPS Community Suggestion Landry, Agriculture & Agri-Food Canada, 2007). Pest Description Eggs: “Roughly oval in shape with raised reticulated sculpturing; iridescent white” (Carter, 1984). Eggs are 0.5 by 1 0.2 mm (< /16 in) (USDA, 1960). Larvae: “Head yellowish brown, sometimes with reddish brown maculation; body yellowish green; spiracles surrounded by sclerotised rings, on abdominal segments coalescent with SD pinacula, these grayish brown; prothoracic and anal plates yellow with brown maculation; thoracic legs yellowish brown’ crochets of abdominal prologs arranged in uniserial circles, each enclosing a short, longitudinal row of 3–5 crochets” 1 (Carter, 1984). Larvae are about 13 to 14 mm (approx. /2 in) long (McKinlay, 1992). Pupae: “Reddish brown; abdominal spiracles on raised tubercles; cremaster abruptly terminated, dorsal lobe with a Figure 3. A. assectella larvae rugose plate bearing eight hooked setae, two rounded ventral on stem of elephant garlic lobes each bearing four hooked setae” (Carter, 1984). The (eastern Ontario, June 2000) (© 1 cocoon is 7 mm (approx. /4 in) long (USDA, 1960). “The Jean-François Landry, cocoon is white in colour and is composed of a loose net-like Agriculture & Agri-Food Canada, 2007). structure” (CFIA, 2012). Last updated: August 23, 2016 9 Adults: “15 mm [approx. /16 in wingspan]. Forewing pale brown, variably suffused with blackish brown; terminal quarter sprinkled with white scales; a distinct triangular white spot on the dorsum near the middle.
    [Show full text]
  • Attraction of Monema Flavescens Males to Synthetic Blends of Sex Pheromones
    Bulletin of Insectology 69 (2): 193-198, 2016 ISSN 1721-8861 Attraction of Monema flavescens males to synthetic blends of sex pheromones 1 2 1 2 3 2 Shuzhen YANG , Hongxia LIU , Haixia ZHENG , Meihong YANG , Yanxia REN , Jintong ZHANG 1Agronomy College, Shanxi Agricultural University, Taigu, Shanxi, China 2Institute of Chemical Ecology, Shanxi Agricultural University, Taigu, Shanxi, China 3Shanxi Branch Valley Biological Pesticide Co. Ltd, Taigu, Shanxi, China Abstract This study was performed in Luanxian County, Hebei Province, China, from June to August of 2014 and 2015. We sought to de- velop a new and effective method for controlling the moth Monema flavescens. We synthesized the principal female sex phero- mones and conducted a series of field experiments using traps baited with (E)-8-decen-1-ol (E8-10:OH), (Z)-7,9-decadien-1-ol (Z7,9-10:OH), and (Z)-9,11-dodecadien-1-ol (Z9,11-12:OH), alone or in combination. The number of males captured by traps baited with synthetic E8-10:OH increased when Z7,9-10:OH, Z9,11-12:OH, or both was/were added. Traps baited with a 10:2:1 (w/w/w) mixture of E8-10:OH, Z7,9-10:OH, and Z9,11-12:OH at a total dose of 650 µg septum−1 were the most efficient. Further, a delta trap hung about 1.5 m above the ground was very effective. Our work will facilitate safer and more environmentally friendly management of M. flavescens. Key words: Monema flavescens, sex pheromone trapping, (E)-8-decen-1-ol, (Z)-7,9-decadien-1-ol, (Z)-9,11-dodecadien-1-ol.
    [Show full text]
  • White Plant Shoots, Wax-Producing Insects and Other White Structures Made by Arthropods: a Mimicry Complex?
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 343–349, 2017 http://www.eje.cz doi: 10.14411/eje.2017.043 POINT OF VIEW White plant shoots, wax-producing insects and other white structures made by arthropods: A mimicry complex? KAZUO YAMAZAKI Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji, Osaka 543-0026, Japan; e-mail: [email protected]. jp Key words. Plant mimicry, anti-herbivore defence, cocoon, entomopathogenic fungus, spider egg sac, spittlebug froth, trichome, wax Abstract. Many insects masquerade as parts of plants, such as bark or leaves, or mimic poisonous organisms in order to defend themselves against predators. However, recent studies indicate that plants may mimic insects and other arthropods to deter herbi- vores. Here, I report visually similar white structures of plants and arthropods in Japan and suggest they are part of a mimicry com- plex. Young shoots covered with white trichomes or waxy substances may mimic wax-producing insects, such as woolly aphids, coccids and caterpillars, potentially resulting in reduced herbivory. Since wax-producing insects would reduce plant quality and quantity, be distasteful and attract natural enemies, herbivorous insects and mammals may avoid such white shoots. Furthermore, fungus-infected insects, gregarious braconid cocoons, spider egg sacs and froth made by froghopper nymphs or blasticotomid sawfl y larvae are also conspicuously white and impose risks for herbivorous insects. Thus, these white structures may be mimicry models for white shoots and are likely to be part of a defensive mimicry complex. Although this study focuses on defence against herbivores, there are simultaneous physiological roles for white colouration that will not be discussed in depth here.
    [Show full text]
  • Thesis Draft Rough
    Wesleyan University The Honors College Plant-pollinator interactions across California grassland and coastal scrub vegetation types on San Bruno Mountain, San Mateo County by Miles Gordon Brooks Class of 2020 A thesis submitted to the faculty of Wesleyan University in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Departmental Honors from the College of the Environment Middletown, Connecticut April, 2020 1 2 Abstract Animal pollination of plants is a crucial ecosystem service for maintaining biodiversity and ecosystem function, worldwide. High pollinator abundance and diversity can likewise improve the reproductive success of the plant community. Plant-pollinator interaction networks have the potential to identify dominant, specialist, and generalist pollinator species within a system, and their host plant counterparts. Understanding these relationships is paramount for buffering natural systems from biodiversity loss in a world where pollinator abundance continues to decline rapidly. San Bruno Mountain (SBM) in San Mateo County, California, is one of the last natural, open spaces in the urban landscape in the northern San Francisco Peninsula. I conducted a series of timed meanders and vegetation surveys at eight sample sites within SBM (four grassland and four coastal scrub sites) to identify plant species prevalence and pollinator species visitation of flowering plants. I employed a multivariate approach for investigating plant and pollinator species richness, plant and pollinator community composition, and trophic-level interactions across the SBM landscape, and I evaluated differences in these relationships between grassland and coastal scrub habitats. A total of 59 pollinator species and 135 plant species were inventoried over the course of the study.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]