Free Riding in Bittorrent Is Cheap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Peer-To-Peer File Transfer? Bandwidth It Can Use
sharing, with no cap on the amount of commonly used to trade copyrighted music What is Peer-to-Peer file transfer? bandwidth it can use. Thus, a single NSF PC and software. connected to NSF’s LAN with a standard The Recording Industry Association of A peer-to-peer, or “P2P,” file transfer 100Mbps network card could, with KaZaA’s America tracks users of this software and has service allows the user to share computer files default settings, conceivably saturate NSF’s begun initiating lawsuits against individuals through the Internet. Examples of P2P T3 (45Mbps) internet connection. who use P2P systems to steal copyrighted services include KaZaA, Grokster, Gnutella, The KaZaA software assesses the quality of material or to provide copyrighted software to Morpheus, and BearShare. the PC’s internet connection and designates others to download freely. These services are set up to allow users to computers with high-speed connections as search for and download files to their “Supernodes,” meaning that they provide a How does use of these services computers, and to enable users to make files hub between various users, a source of available for others to download from their information about files available on other create security issues at NSF? computers. users’ PCs. This uses much more of the When configuring these services, it is computer’s resources, including bandwidth possible to designate as “shared” not only the and processing capability. How do these services function? one folder KaZaA sets up by default, but also The free version of KaZaA is supported by the entire contents of the user’s computer as Peer to peer file transfer services are highly advertising, which appears on the user well as any NSF network drives to which the decentralized, creating a network of linked interface of the program and also causes pop- user has access, to be searchable and users. -
Lab 5: Bittorrent Client Implementation
Lab 5: BitTorrent Client Implementation Due: Nov. 30th at 11:59 PM Milestone: Nov. 19th during Lab Overview In this lab, you and your lab parterner will develop a basic BitTorrent client that can, at minimal, exchange a file between multiple peers, and at best, function as a full feature BitTorrent Client. The programming in this assignment will be in C requiring standard sockets, and thus you will not need to have root access. You should be able to develop your code on any CS lab machine or your personal machine, but all code will be tested on the CS lab. Deliverable Your submission should minimally include the following programs and files: • REDME • Makefile • bencode.c|h • bt lib.c|h • bt setup.c|h • bt client • client trace.[n].log • sample torrent.torrent Your README file should contain a short header containing your name, username, and the assignment title. The README should additionally contain a short description of your code, tasks accomplished, and how to compile, execute, and interpret the output of your programs. Your README should also contain a list of all submitted files and code and the functionality implemented in different code files. This is a large assignment, and this will greatly aid in grading. As always, if there are any short answer questions in this lab write-up, you should provide well marked answers in the README, as well as indicate that you’ve completed any of the extra credit (so that I don’t forget to grade it). Milestones The entire assignment will be submitted and graded, but your group will also hold a milestone meeting to receive feedback on your current implementation. -
A Decentralized Cloud Storage Network Framework
Storj: A Decentralized Cloud Storage Network Framework Storj Labs, Inc. October 30, 2018 v3.0 https://github.com/storj/whitepaper 2 Copyright © 2018 Storj Labs, Inc. and Subsidiaries This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 license (CC BY-SA 3.0). All product names, logos, and brands used or cited in this document are property of their respective own- ers. All company, product, and service names used herein are for identification purposes only. Use of these names, logos, and brands does not imply endorsement. Contents 0.1 Abstract 6 0.2 Contributors 6 1 Introduction ...................................................7 2 Storj design constraints .......................................9 2.1 Security and privacy 9 2.2 Decentralization 9 2.3 Marketplace and economics 10 2.4 Amazon S3 compatibility 12 2.5 Durability, device failure, and churn 12 2.6 Latency 13 2.7 Bandwidth 14 2.8 Object size 15 2.9 Byzantine fault tolerance 15 2.10 Coordination avoidance 16 3 Framework ................................................... 18 3.1 Framework overview 18 3.2 Storage nodes 19 3.3 Peer-to-peer communication and discovery 19 3.4 Redundancy 19 3.5 Metadata 23 3.6 Encryption 24 3.7 Audits and reputation 25 3.8 Data repair 25 3.9 Payments 26 4 4 Concrete implementation .................................... 27 4.1 Definitions 27 4.2 Peer classes 30 4.3 Storage node 31 4.4 Node identity 32 4.5 Peer-to-peer communication 33 4.6 Node discovery 33 4.7 Redundancy 35 4.8 Structured file storage 36 4.9 Metadata 39 4.10 Satellite 41 4.11 Encryption 42 4.12 Authorization 43 4.13 Audits 44 4.14 Data repair 45 4.15 Storage node reputation 47 4.16 Payments 49 4.17 Bandwidth allocation 50 4.18 Satellite reputation 53 4.19 Garbage collection 53 4.20 Uplink 54 4.21 Quality control and branding 55 5 Walkthroughs ............................................... -
Downloading Copyrighted Materials
What you need to know before... Downloading Copyrighted Materials Including movies, TV shows, music, digital books, software and interactive games The Facts and Consequences Who monitors peer-to-peer file sharing? What are the consequences at UAF The Motion Picture Association of America for violators of this policy? (MPAA), Home Box Office, and other copyright Student Services at UAF takes the following holders monitor file-sharing on the Internet minimum actions when the policy is violated: for the illegal distribution of their copyrighted 1st Offense: contents. Once identified they issue DMCA Loss of Internet access until issue is resolved. (Digital Millennium Copyright Act) take-down 2nd Offense: notices to the ISP (Internet Service Provider), in Loss of Internet access pending which the University of Alaska is considered as resolution and a $100 fee assessment. one, requesting the infringement be stopped. If 3rd Offense: not stopped, lawsuit against the user is possible. Loss of Internet access pending resolution and a $250 fee assessment. What is UAF’s responsibility? 4th, 5th, 6th Offense: Under the Digital Millennium Copyright Act and Loss of Internet access pending resolution and Higher Education Opportunity Act, university a $500 fee assessment. administrators are obligated to track these infractions and preserve relevent logs in your What are the Federal consequences student record. This means that if your case goes for violators? to court, your record may be subpoenaed as The MPAA, HBO and similar organizations are evidence. Since illegal file sharing also drains becoming more and more aggressive in finding bandwidth, costing schools money and slowing and prosecuting alleged offenders in criminal Internet connections, for students trying to use court. -
Seedboxes Cc Forum
Seedboxes Cc Forum It's simple to get started with, and incredibly functional. Never had problems using. cc Mobile Apps for ios and android user. cc German- English Dictionary: Translation for Sumpf. Ellenkező esetben a webhely funkcionalitása korlátozott. Ask questions regarding our services or generic seedbox related tasks. Gradstein & Celis, M. 2021, 19:09 Replies: 3 [Wait for Plugin Update] Pornhub plugin - only HLS - duplicate problem. Seedbucket was developed in-house by Seedboxes. eu e as velocidades de UP e DOWN são muitos boas mas a limitação de tráfego complica. OB Config for seedboxes. Seedbox & Hosting. A lot slower to post updates though. 2011-05-18: Added a link to a post on HP’s support forum where the post helped a bit. A good starting place for additional information about Rapidleech is the Wiki and the official forum. cc, byte-sized-hosting. ---Description---Tellytorrent is an Indian private tracker for Indian movies & series with a collection of BD50, 4kUHD, DVD9, NetFlix DL & Amazon DL- Source. cc often offers special discounts – called “promo codes” on its website. We have not put down all the specifications but you can read more about them in this post. The Raspberry Pi 4 dropped and it's a major update for the flagship single-board computer. On September 2, 2009, isoHunt announced the launch of a spinoff site, hexagon. 53GHz HyperThreading),. cc - Quality and affordable seedbox with premium bandwidth Seedboxes. Sdedi propose des solutions Seedbox uniques et innovantes : un espace disque illimité, un réseau de 10 Gigas, une app seedbox mobile et plus encore, à partir de 2,99 euros. -
Replication Strategies for Streaming Media
“replication-strategies” — 2007/4/24 — 10:56 — page 1 — #1 Research Report No. 2007:03 Replication Strategies for Streaming Media David Erman Department of Telecommunication Systems, School of Engineering, Blekinge Institute of Technology, S–371 79 Karlskrona, Sweden “replication-strategies” — 2007/4/24 — 10:56 — page 2 — #2 °c 2007 by David Erman. All rights reserved. Blekinge Institute of Technology Research Report No. 2007:03 ISSN 1103-1581 Published 2007. Printed by Kaserntryckeriet AB. Karlskrona 2007, Sweden. This publication was typeset using LATEX. “replication-strategies” — 2007/4/24 — 10:56 — page i — #3 Abstract Large-scale, real-time multimedia distribution over the Internet has been the subject of research for a substantial amount of time. A large number of mechanisms, policies, methods and schemes have been proposed for media coding, scheduling and distribution. Internet Protocol (IP) multicast was expected to be the primary transport mechanism for this, though it was never deployed to the expected extent. Recent developments in overlay networks has reactualized the research on multicast, with the consequence that many of the previous mechanisms and schemes are being re-evaluated. This report provides a brief overview of several important techniques for media broad- casting and stream merging, as well as a discussion of traditional IP multicast and overlay multicast. Additionally, we present a proposal for a new distribution system, based on the broadcast and stream merging algorithms in the BitTorrent distribution and repli- cation system. “replication-strategies” — 2007/4/24 — 10:56 — page ii — #4 ii “replication-strategies” — 2007/4/24 — 10:56 — page iii — #5 CONTENTS Contents 1 Introduction 1 1.1 Motivation . -
Bittorrent Files Hace Stopped Downloading
bittorrent files hace stopped downloading Why Some Torrents Don’t Download? A torrent that doesn’t start downloading or one that suddenly stops can be very frustrating. You check your Internet connection, the cables, and everything looks good. So what can be the reasons for those torrents that don’t seem to work? Some Torrents Don’t Download. The main reason behind a torrent file that doesn’t even start downloading is the lack of seeders and peers. In other words, there is no one seeding that file, meaning there’s no place where you can download it from. That’s why it’s very important that you have a look at the number of seeders and peers every time you start a new download. Seeders are the users who already finished downloading and are only sharing. The peers are the ones like you, the ones who are downloading and uploading at the same time. Some Files Suddenly Stop Downloading. This is another common scenario. We’ve all been there when a torrent stops at some moment, such as 99%. That usually happens when there are only peers, but no seeders . If you think about it, it makes total sense. The peers have many parts of the torrent in common, and they will share those between them. But because there are zero seeders, no one has the entire file , and everyone will share the same parts and stop in the same percentage point. A Dead Torrent. Both of the situations we just saw are what users in the community call a “dead torrent”. -
Improving Fairness in Peer-To-Peer Networks by Separating the Role of Seeders in Network Infrastructures
Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci (2016) 24: 2255 { 2266 http://journals.tubitak.gov.tr/elektrik/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/elk-1402-304 Improving fairness in peer-to-peer networks by separating the role of seeders in network infrastructures Alireza NAGHIZADEH∗, Reza EBRAHIMI ATANI Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran Received: 27.02.2014 • Accepted/Published Online: 08.07.2014 • Final Version: 15.04.2016 Abstract:Fairness is one of the most important challenges that should be considered as a priority when designing a P2P file-sharing network. An unfair P2P network may attract free-riders, frustrate the majority of users, and consequently shorten the longevity of files. When BitTorrent protocol was first introduced, by suggesting new algorithms like tit-for- tat or rarest-first and combining them with methods like choking and unchoking, it pushed fairness one step forward. However, BitTorrent did not bring a plenary solution and has its own shortcomings. For instance, neither this protocol nor other P2P protocols that we are aware of precisely indicate how seeders should be treated in their networks. Most of the time they dictate that seeders upload as much as possible. With this approach, seeders can easily be abused by free-riders. It gets even worse when we realize that for lack of a good infrastructure a lawful user may become a free-rider unknowingly. The purpose of this paper is to address this problem by suggesting a novel and universal method that can be implemented in current P2P networks. -
Sok: Tools for Game Theoretic Models of Security for Cryptocurrencies
SoK: Tools for Game Theoretic Models of Security for Cryptocurrencies Sarah Azouvi Alexander Hicks Protocol Labs University College London University College London Abstract form of mining rewards, suggesting that they could be prop- erly aligned and avoid traditional failures. Unfortunately, Cryptocurrencies have garnered much attention in recent many attacks related to incentives have nonetheless been years, both from the academic community and industry. One found for many cryptocurrencies [45, 46, 103], due to the interesting aspect of cryptocurrencies is their explicit consid- use of lacking models. While many papers aim to consider eration of incentives at the protocol level, which has motivated both standard security and game theoretic guarantees, the vast a large body of work, yet many open problems still exist and majority end up considering them separately despite their current systems rarely deal with incentive related problems relation in practice. well. This issue arises due to the gap between Cryptography Here, we consider the ways in which models in Cryptog- and Distributed Systems security, which deals with traditional raphy and Distributed Systems (DS) can explicitly consider security problems that ignore the explicit consideration of in- game theoretic properties and incorporated into a system, centives, and Game Theory, which deals best with situations looking at requirements based on existing cryptocurrencies. involving incentives. With this work, we offer a systemati- zation of the work that relates to this problem, considering papers that blend Game Theory with Cryptography or Dis- Methodology tributed systems. This gives an overview of the available tools, and we look at their (potential) use in practice, in the context As we are covering a topic that incorporates many different of existing blockchain based systems that have been proposed fields coming up with an extensive list of papers would have or implemented. -
Analyzing Peer Selection Policies for Bittorrent Multimedia On-Demand Streaming Systems in Internet
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014 ANALYZING PEER SELECTION POLICIES FOR BIT TORRENT MULTIMEDIA ON -DEMAND STREAMING SYSTEMS IN INTERNET Carlo Kleber da Silva Rodrigues 1,2 1Electrical and Electronics Department, Armed Forces University – ESPE, Sangolquí, Ecuador 2University Center of Brasília – UniCEUB, Brasília, DF, Brazil ABSTRACT The adaptation of the BitTorrent protocol to multimedia on-demand streaming systems essentially lies on the modification of its two core algorithms, namely the piece and the peer selection policies, respectively. Much more attention has though been given to the piece selection policy. Within this context, this article proposes three novel peer selection policies for the design of BitTorrent-like protocols targeted at that type of systems: Select Balanced Neighbour Policy (SBNP), Select Regular Neighbour Policy (SRNP), and Select Optimistic Neighbour Policy (SONP). These proposals are validated through a competitive analysis based on simulations which encompass a variety of multimedia scenarios, defined in function of important characterization parameters such as content type, content size, and client´s interactivity profile. Service time, number of clients served and efficiency retrieving coefficient are the performance metrics assessed in the analysis. The final results mainly show that the novel proposals constitute scalable solutions that may be considered for real project designs. Lastly, future work is included in the conclusion of this paper. KEYWORDS BitTorrent, peer selection, multimedia, streaming, interactivity. 1. INTRODUCTION The BitTorrent protocol is undoubtedly an effective peer-to-peer (P2P) solution for file (content) replication over Internet [1, 2, 3, 4]. The overall idea of this protocol is that peers must cooperate with each other to replicate the wanted file. -
Blockchain and The
NOTES ACKNOWLEDGMENTS INDEX Notes Introduction 1. The manifesto dates back to 1988. See Timothy May, “The Crypto Anarchist Manifesto” (1992), https:// www . activism . net / cypherpunk / crypto - anarchy . html. 2. Ibid. 3. Ibid. 4. Ibid. 5. Ibid. 6. Timothy May, “Crypto Anarchy and Virtual Communities” (1994), http:// groups . csail . mit . edu / mac / classes / 6 . 805 / articles / crypto / cypherpunks / may - virtual - comm . html. 7. Ibid. 8. For example, as we wi ll describe in more detail in Chapter 1, the Bitcoin blockchain is currently stored on over 6,000 computers in eighty- nine jurisdictions. See “Global Bitcoin Node Distribution,” Bitnodes, 21 . co, https:// bitnodes . 21 . co / . Another large blockchain- based network, Ethereum, has over 12,000 nodes, also scattered across the globe. See Ethernodes, https:// www . ethernodes . org / network / 1. 9. See note 8. 10. Some blockchains are not publicly accessible (for more on this, see Chapter 1). These blockchains are referred to as “private blockchains” and are not the focus of this book. 11. See Chapter 1. 12. The Eu ro pean Securities and Market Authority, “Discussion Paper: The Dis- tributed Ledger Technology Applied to Securities Markets,” ESMA / 2016 / 773, June 2, 2016: at 17, https:// www . esma . europa . eu / sites / default / files / library / 2016 - 773 _ dp _ dlt . pdf. 213 214 NOTES TO PAGES 5–13 13. The phenomena of order without law also has been described in other con- texts, most notably by Robert Ellickson in his seminal work Order without Law (Cambridge, MA: Harvard University Press, 1994). 14. Joel Reidenberg has used the term “lex informatica” to describe rules imple- mented by centralized operators online. -
Title: P2P Networks for Content Sharing
Title: P2P Networks for Content Sharing Authors: Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya Grid Computing and Distributed Systems Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia (chd, sarana, raj)@cs.mu.oz.au ABSTRACT Peer-to-peer (P2P) technologies have been widely used for content sharing, popularly called “file-swapping” networks. This chapter gives a broad overview of content sharing P2P technologies. It starts with the fundamental concept of P2P computing followed by the analysis of network topologies used in peer-to-peer systems. Next, three milestone peer-to-peer technologies: Napster, Gnutella, and Fasttrack are explored in details, and they are finally concluded with the comparison table in the last section. 1. INTRODUCTION Peer-to-peer (P2P) content sharing has been an astonishingly successful P2P application on the Internet. P2P has gained tremendous public attention from Napster, the system supporting music sharing on the Web. It is a new emerging, interesting research technology and a promising product base. Intel P2P working group gave the definition of P2P as "The sharing of computer resources and services by direct exchange between systems". This thus gives P2P systems two main key characteristics: • Scalability: there is no algorithmic, or technical limitation of the size of the system, e.g. the complexity of the system should be somewhat constant regardless of number of nodes in the system. • Reliability: The malfunction on any given node will not effect the whole system (or maybe even any other nodes). File sharing network like Gnutella is a good example of scalability and reliability.