Searching for Malware in Bittorrent∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Edonkey File-Sharing Network
The eDonkey File-Sharing Network Oliver Heckmann, Axel Bock, Andreas Mauthe, Ralf Steinmetz Multimedia Kommunikation (KOM) Technische Universitat¨ Darmstadt Merckstr. 25, 64293 Darmstadt (heckmann, bock, mauthe, steinmetz)@kom.tu-darmstadt.de Abstract: The eDonkey 2000 file-sharing network is one of the most successful peer- to-peer file-sharing applications, especially in Germany. The network itself is a hybrid peer-to-peer network with client applications running on the end-system that are con- nected to a distributed network of dedicated servers. In this paper we describe the eDonkey protocol and measurement results on network/transport layer and application layer that were made with the client software and with an open-source eDonkey server we extended for these measurements. 1 Motivation and Introduction Most of the traffic in the network of access and backbone Internet service providers (ISPs) is generated by peer-to-peer (P2P) file-sharing applications [San03]. These applications are typically bandwidth greedy and generate more long-lived TCP flows than the WWW traffic that was dominating the Internet traffic before the P2P applications. To understand the influence of these applications and the characteristics of the traffic they produce and their impact on network design, capacity expansion, traffic engineering and shaping, it is important to empirically analyse the dominant file-sharing applications. The eDonkey file-sharing protocol is one of these file-sharing protocols. It is imple- mented by the original eDonkey2000 client [eDonkey] and additionally by some open- source clients like mldonkey [mlDonkey] and eMule [eMule]. According to [San03] it is with 52% of the generated file-sharing traffic the most successful P2P file-sharing net- work in Germany, even more successful than the FastTrack protocol used by the P2P client KaZaa [KaZaa] that comes to 44% of the traffic. -
IPFS and Friends: a Qualitative Comparison of Next Generation Peer-To-Peer Data Networks Erik Daniel and Florian Tschorsch
1 IPFS and Friends: A Qualitative Comparison of Next Generation Peer-to-Peer Data Networks Erik Daniel and Florian Tschorsch Abstract—Decentralized, distributed storage offers a way to types of files [1]. Napster and Gnutella marked the beginning reduce the impact of data silos as often fostered by centralized and were followed by many other P2P networks focusing on cloud storage. While the intentions of this trend are not new, the specialized application areas or novel network structures. For topic gained traction due to technological advancements, most notably blockchain networks. As a consequence, we observe that example, Freenet [2] realizes anonymous storage and retrieval. a new generation of peer-to-peer data networks emerges. In this Chord [3], CAN [4], and Pastry [5] provide protocols to survey paper, we therefore provide a technical overview of the maintain a structured overlay network topology. In particular, next generation data networks. We use select data networks to BitTorrent [6] received a lot of attention from both users and introduce general concepts and to emphasize new developments. the research community. BitTorrent introduced an incentive Specifically, we provide a deeper outline of the Interplanetary File System and a general overview of Swarm, the Hypercore Pro- mechanism to achieve Pareto efficiency, trying to improve tocol, SAFE, Storj, and Arweave. We identify common building network utilization achieving a higher level of robustness. We blocks and provide a qualitative comparison. From the overview, consider networks such as Napster, Gnutella, Freenet, BitTor- we derive future challenges and research goals concerning data rent, and many more as first generation P2P data networks, networks. -
From Sony to SOPA: the Technology-Content Divide
From Sony to SOPA: The Technology-Content Divide The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation John Palfrey, Jonathan Zittrain, Kendra Albert, and Lisa Brem, From Sony to SOPA: The Technology-Content Divide, Harvard Law School Case Studies (2013). Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11029496 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP http://casestudies.law.harvard.edu By John Palfrey, Jonathan Zittrain, Kendra Albert, and Lisa Brem February 23, 2013 From Sony to SOPA: The Technology-Content Divide Background Note Copyright © 2013 Harvard University. No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form or by any means – electronic, mechanical, photocopying, recording, or otherwise – without permission. "There was a time when lawyers were on one side or the other of the technology content divide. Now, the issues are increasingly less black-and-white and more shades of gray. You have competing issues for which good lawyers provide insights on either side." — Laurence Pulgram, partner, Fenwick & Westi Since the invention of the printing press, there has been tension between copyright holders, who seek control over and monetary gain from their creations, and technology builders, who want to invent without worrying how others might use that invention to infringe copyrights. -
United States Court of Appeals for the Ninth Circuit
Case: 10-55946 04/03/2013 ID: 8576455 DktEntry: 66 Page: 1 of 114 Docket No. 10-55946 In the United States Court of Appeals for the Ninth Circuit COLUMBIA PICTURES INDUSTRIES, INC., DISNEY ENTERPRISES, INC., PARAMOUNT PICTURES CORPORATION, TRISTAR PICTURES, INC., TWENTIETH CENTURY FOX FILM CORPORATION, UNIVERSAL CITY STUDIOS LLLP, UNIVERSAL CITY STUDIOS PRODUCTIONS, LLLP and WARNER BROS. ENTERTAINMENT, INC., Plaintiffs-Appellees, v. GARY FUNG and ISOHUNT WEB TECHNOLOGIES, INC., Defendants-Appellants. _______________________________________ Appeal from a Decision of the United States District Court for the Central District of California, No. 06-CV-05578 · Honorable Stephen V. Wilson PETITION FOR PANEL REHEARING AND REHEARING EN BANC BY APPELLANTS GARY FUNG AND ISOHUNT WEB TECHNOLOGIES, INC. IRA P. ROTHKEN, ESQ. ROBERT L. KOVSKY, ESQ. JARED R. SMITH, ESQ. ROTHKEN LAW FIRM 3 Hamilton Landing, Suite 280 Novato, California 94949 (415) 924-4250 Telephone (415) 924-2905 Facsimile Attorneys for Appellants, Gary Fung and isoHunt Web Technologies, Inc. COUNSEL PRESS · (800) 3-APPEAL PRINTED ON RECYCLED PAPER Case: 10-55946 04/03/2013 ID: 8576455 DktEntry: 66 Page: 2 of 114 TABLE OF CONTENTS page Index of Authorities ..….....….....….....….....….....….....….....….....…....…... ii I. The Panel Decision Applies Erroneous Legal Standards to Find ..…... 1 Fung Liable on Disputed Facts and to Deny Him a Trial by Jury II. The Panel Decision and the District Court Opinion Combine to ……... 5 Punish Speech that Should Be Protected by the First Amendment III. The Panel Decision Expands the Grokster Rule in Multiple Ways ….. 7 that Threaten the Future of Technological Innovation A. The “Technological Background” set forth in the Panel ………. -
Scalable Supernode Selection in Peer-To-Peer Overlay Networks∗
Scalable Supernode Selection in Peer-to-Peer Overlay Networks∗ Virginia Lo, Dayi Zhou, Yuhong Liu, Chris GauthierDickey, and Jun Li {lo|dayizhou|liuyh|chrisg|lijun} @cs.uoregon.edu Network Research Group – University of Oregon Abstract ically fulfill additional requirements such as load bal- ance, resources, access, and fault tolerance. We define a problem called the supernode selection The supernode selection problem is highly challeng- problem which has emerged across a variety of peer-to- ing because in the peer-to-peer environment, a large peer applications. Supernode selection involves selec- number of supernodes must be selected from a huge tion of a subset of the peers to serve a special role. The and dynamically changing network in which neither the supernodes must be well-dispersed throughout the peer- node characteristics nor the network topology are known to-peer overlay network, and must fulfill additional re- a priori. Thus, simple strategies such as random selec- quirements such as load balance, resource needs, adapt- tion don’t work. Supernode selection is more complex ability to churn, and heterogeneity. While similar to than classic dominating set and p-centers from graph dominating set and p-centers problems, the supernode theory, known to be NP-hard problems, because it must selection problem must meet the additional challenge respond to dynamic joins and leaves (churn), operate of operating within a huge, unknown and dynamically among potentially malicious nodes, and function in an changing network. We describe three generic super- environment that is highly heterogeneous. node selection protocols we have developed for peer-to- Supernode selection shows up in many peer-to-peer peer environments: a label-based scheme for structured and networking applications. -
A Dissertation Submitted to the Faculty of The
A Framework for Application Specific Knowledge Engines Item Type text; Electronic Dissertation Authors Lai, Guanpi Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 03:58:57 Link to Item http://hdl.handle.net/10150/204290 A FRAMEWORK FOR APPLICATION SPECIFIC KNOWLEDGE ENGINES by Guanpi Lai _____________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF SYSTEMS AND INDUSTRIAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2010 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Guanpi Lai entitled A Framework for Application Specific Knowledge Engines and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/28/2010 Fei-Yue Wang _______________________________________________________________________ Date: 4/28/2010 Ferenc Szidarovszky _______________________________________________________________________ Date: 4/28/2010 Jian Liu Final approval and acceptance of this dissertation is contingent -
CS 552 Peer 2 Peer Networking
CS 552 Peer 2 Peer Networking R. Martin Credit slides from B. Richardson, I. Stoica, M. Cuenca Peer to Peer • Outline • Overview • Systems: – Gnutella – Freenet – Chord – PlanetP Why Study P2P • Huge fraction of traffic on networks today – >=50%! • Exciting new applications • Next level of resource sharing – Vs. timesharing, client-server, P2P – E.g. Access 10’s-100’s of TB at low cost. P2P usage • CMU network (external to world), 2003 • 47% of all traffic was easily classifiable as P2P • 18% of traffic was HTTP • Other traffic: 35% – Believe ~28% is port- hopping P2P • Other sites have a similar distribution Big Picture • Gnutella – Focus is simple sharing – Using simple flooding • Bit torrent – Designed for high bandwidth • PlanetP – Focus on search and retrieval – Creates global index on each node via controlled, randomized flooding • Cord – Focus on building a distributed hash table (DHT) – Finger tables Other P2P systems • Freenet: – Focus privacy and anonymity – Builds internal routing tables • KaaZa • eDonkey • Napster – Success started the whole craze Key issues for P2P systems • Join/leave – How do nodes join/leave? Who is allowed? • Search and retrieval – How to find content? – How are metadata indexes built, stored, distributed? • Content Distribution – Where is content stored? How is it downloaded and retrieved? Search and Retrieval • Basic strategies: – Flooding the query – Flooding the index – Routing the query • Different tradeoffs depending on application – Robustness, scalability, legal issues Flooding the Query (Gnutella) N3 Lookup(“title”) N1 N2 N4 N5 Key=title N8 N6 Value=mp3 N7 Pros: highly robust. Cons: Huge network traffic Flooding the Index (PlanetP) Key1=title1 N3 N1 Key2=title2 N2 N4 N5 Lookup(“title4”) Key1=title3 N8 N6 Key2=title4 N7 Pros: Robust. -
Free Riding on Gnutella
Free Riding on Gnutella Eytan Adar and Bernardo A. Huberman Internet Ecologies Area Xerox Palo Alto Research Center Palo Alto, CA 94304 Abstract An extensive analysis of user traffic on Gnutella shows a significant amount of free riding in the system. By sampling messages on the Gnutella network over a 24-hour period, we established that nearly 70% of Gnutella users share no files, and nearly 50% of all responses are returned by the top 1% of sharing hosts. Furthermore, we found out that free riding is distributed evenly between domains, so that no one group contributes significantly more than others, and that peers that volunteer to share files are not necessarily those who have desirable ones. We argue that free riding leads to degradation of the system performance and adds vulnerability to the system. If this trend continues copyright issues might become moot compared to the possible collapse of such systems. 1 1. Introduction The sudden appearance of new forms of network applications such as Gnutella [Gn00a] and FreeNet [Fr00], holds promise for the emergence of fully distributed information sharing systems. These systems, inspired by Napster [Na00], will allow users worldwide access and provision of information while enjoying a level of privacy not possible in the present client-server architecture of the web. While a lot of attention has been focused on the issue of free access to music and the violation of copyright laws through these systems, there remains an additional problem of securing enough cooperation in such large and anonymous systems so they become truly useful. Since users are not monitored as to who makes their files available to the rest of the network (produce) or downloads remote files (consume), nor are statistics maintained, the possibility exist that as the user community in such networks gets large, users will stop producing and only consume. -
Title: P2P Networks for Content Sharing
Title: P2P Networks for Content Sharing Authors: Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya Grid Computing and Distributed Systems Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia (chd, sarana, raj)@cs.mu.oz.au ABSTRACT Peer-to-peer (P2P) technologies have been widely used for content sharing, popularly called “file-swapping” networks. This chapter gives a broad overview of content sharing P2P technologies. It starts with the fundamental concept of P2P computing followed by the analysis of network topologies used in peer-to-peer systems. Next, three milestone peer-to-peer technologies: Napster, Gnutella, and Fasttrack are explored in details, and they are finally concluded with the comparison table in the last section. 1. INTRODUCTION Peer-to-peer (P2P) content sharing has been an astonishingly successful P2P application on the Internet. P2P has gained tremendous public attention from Napster, the system supporting music sharing on the Web. It is a new emerging, interesting research technology and a promising product base. Intel P2P working group gave the definition of P2P as "The sharing of computer resources and services by direct exchange between systems". This thus gives P2P systems two main key characteristics: • Scalability: there is no algorithmic, or technical limitation of the size of the system, e.g. the complexity of the system should be somewhat constant regardless of number of nodes in the system. • Reliability: The malfunction on any given node will not effect the whole system (or maybe even any other nodes). File sharing network like Gnutella is a good example of scalability and reliability. -
International Intellectual Property Alliance®
I NTERNATIONAL I NTELLECTUAL P ROPERTY A LLIANCE® 1818 N STREET, NW, 8TH FLOOR · WASHINGTON, DC 20036 · TEL (202) 355-7924 · FAX (202) 355-7899 · WWW.IIPA.COM · EMAIL: [email protected] September 14, 2012 Filed via www.regulations.gov, Docket No. USTR–2012–0011 Stanford K. McCoy, Esq. Assistant U.S. Trade Representative for Intellectual Property and Innovation Office of the U.S. Trade Representative Washington, DC 20508 Re: IIPA Written Submission Re: 2012 Special 301 Out-of-Cycle Review of Notorious Markets: Request for Public Comments, 77 Fed. Reg. 48583 (August 14, 2012) Dear Mr. McCoy: In response to the August 14, 2012 Federal Register notice referenced above, the International Intellectual Property Alliance (IIPA)1 provides the Special 301 Subcommittee with the following written comments to provide examples of Internet and physical “notorious markets” – those “where counterfeit or pirated products are prevalent to such a degree that the market exemplifies the problem of marketplaces that deal in infringing goods and help sustain global piracy and counterfeiting.” We hope our filing will assist the Office of the United States Trade Representative (USTR) in “identifying potential Internet and physical notorious markets that exist outside the United States and that may be included in the 2012 Notorious Markets List.” We express appreciation to USTR for publishing a notorious markets list as an “Out of Cycle Review” separately from the annual Special 301 Report. This list has successfully identified key online and physical marketplaces that are involved in intellectual property rights infringements, and has led to some positive developments. These include closures of some Internet websites whose businesses were built on illegal conduct, greater cooperation from some previously identified “notorious” and other suspect sites, and the facilitation of licensing agreements for legitimate distribution of creative materials. -
Piratebrowser Artifacts
PirateBrowser Artifacts Written by Chris Antonovich Researched by Olivia Hatalsky 175 Lakeside Ave, Room 300A Phone: 802/865-5744 Fax: 802/865-6446 http://www.lcdi.champlin.edu Published Date Patrick Leahy Center for Digital Investigation (LCDI) Disclaimer: This document contains information based on research that has been gathered by employee(s) of The Senator Patrick Leahy Center for Digital Investigation (LCDI). The data contained in this project is submitted voluntarily and is unaudited. Every effort has been made by LCDI to assure the accuracy and reliability of the data contained in this report. However, LCDI nor any of our employees make no representation, warranty or guarantee in connection with this report and hereby expressly disclaims any liability or responsibility for loss or damage resulting from use of this data. Information in this report can be downloaded and redistributed by any person or persons. Any redistribution must maintain the LCDI logo and any references from this report must be properly annotated. Contents Introduction ............................................................................................................................................................................. 2 Background: ........................................................................................................................................................................ 2 Purpose and Scope: ............................................................................................................................................................ -
List of Search Engines
A blog network is a group of blogs that are connected to each other in a network. A blog network can either be a group of loosely connected blogs, or a group of blogs that are owned by the same company. The purpose of such a network is usually to promote the other blogs in the same network and therefore increase the advertising revenue generated from online advertising on the blogs.[1] List of search engines From Wikipedia, the free encyclopedia For knowing popular web search engines see, see Most popular Internet search engines. This is a list of search engines, including web search engines, selection-based search engines, metasearch engines, desktop search tools, and web portals and vertical market websites that have a search facility for online databases. Contents 1 By content/topic o 1.1 General o 1.2 P2P search engines o 1.3 Metasearch engines o 1.4 Geographically limited scope o 1.5 Semantic o 1.6 Accountancy o 1.7 Business o 1.8 Computers o 1.9 Enterprise o 1.10 Fashion o 1.11 Food/Recipes o 1.12 Genealogy o 1.13 Mobile/Handheld o 1.14 Job o 1.15 Legal o 1.16 Medical o 1.17 News o 1.18 People o 1.19 Real estate / property o 1.20 Television o 1.21 Video Games 2 By information type o 2.1 Forum o 2.2 Blog o 2.3 Multimedia o 2.4 Source code o 2.5 BitTorrent o 2.6 Email o 2.7 Maps o 2.8 Price o 2.9 Question and answer .