Compsci 514: Computer Networks Lecture 21-2: from Bittorrent to Bittyrant Problem Statement

Total Page:16

File Type:pdf, Size:1020Kb

Compsci 514: Computer Networks Lecture 21-2: from Bittorrent to Bittyrant Problem Statement CompSci 514: Computer Networks Lecture 21-2: From BitTorrent to BitTyrant Problem Statement ... Server • One-to-many content distribution – Millions of clients downloading from the same server Evolving Solutions • Observation: duplicate copies of data are sent • Solutions – IP multicast – End system multicast – Content distribution networks e.g. Akamai – P2P cooperative content distribution • Bittorrent etc. IP multicast • End systems join a multicast group • Routers set up a multicast tree • Packets are duplicated and forwarded to multiple next hops at routers • Multicast pros and cons End system multicast • End systems rather than routers organize into a tree, forward and duplicate packets • Pros and cons Content distribution networks • Akamai – Works well but expensive, requires infrastructure support Peer-to-Peer Cooperative Content Distribution u Use the client’s uplink bandwidth u New problem: incentives for cooperation or how to motivate clients to upload The Gnutella approach u All nodes are true peers u A peer is the publisher, the uploader and the downloader. u No single point of failure. u Efficiency and scalability issue: u File searches span across a large number of nodes generating lots of traffic. u Integrity, i.e.content pollution issue: u Anyone can claim that he publishes valid content u No guarantee of quality of objects u Incentive issue: u No incentives for cooperation (free-riding in Gnutella) Outline u Problem of Content Distribution u The BitTorrent approach u BitTyrant BitTorrent overview Tracker 1 2 3 Leecher A Seeder Leecher C Leecher B u File is divided into chunks (e.g. 256KB) uShA1 hashes of all the pieces are included in the .torrent file for integrity check uA chunk is divided into sub-pieces to improve efficiency u Seeders have all chunks of the file u Leechers have some or no chunks of the file BitTorrent overview Tracker 1 2 3 Leecher A Seeder Leecher C Leecher B u File is divided into chunks (e.g. 256KB) uShA1 hashes of all the pieces are included in the .torrent file for integrity check u.torrent file has address of a tracker uTracker tracks all downloaders Terminology • Seeder: peer with the entire file – Original Seed: The first seed • Leecher: peer thats downloading the file – Fairer term might have been downloader • Sub-piece: Further subdivision of a piece – The unit for requests is a subpiece – But a peer uploads only after assembling complete piece BitTorrent overview View Tracker Leecher A Seeder Leecher A Leecher B Seeder Leecher C Leecher C Leecher B u Clients (seeders or leechers) contact the tracker u Tracker has complete view of the swarm BitTorrent overview Partial View View Seeder Tracker Leecher A Seeder Leecher B Leecher A Leecher B Seeder Leecher C Leecher C Leecher B u Tracker sends partial view to clients u Clients connect to peers in their partial view BitTorrent overview 1 2 3 Tracker Leecher A Seeder Leecher C Leecher B u Every 10 sec, seeders sample their peers’ download rates u Seeders unchoke 4-10 interested fastest downloaders BitTorrent overview Tracker 3 Leecher A 1 2 Seeder Leecher C Leecher B u A node announces available chunks to their peers u Leechers request chunks from their peers (locally rarest-first) BitTorrent overview Tracker Leecher A 1 Seeder Leecher C Leecher B u Rate-based tit-for-tat Every 30 sec, leechers optimistically unchoke 1-2 peers Optimistic unchoking helps in discover other faster peers and prompt them to reciprocate Bootstrap new peers with no data to upload BitTorrent overview Tracker Leecher A 1 Seeder Leecher C Leecher B u Rate-based tit-for-tat Every 30 sec, leechers optimistically unchoke 1-2 peers Every 10 sec, leechers sample their peers’ upload rates BitTorrent overview Tracker Leecher A 3 2 Seeder Leecher C Leecher B u Rate-based tit-for-tat Every 30 sec, client optimistically unchokes 1-2 peers Every 10 sec, seeder samples its peers’ upload rates Leecher unchokes 4-10 fastest interested uploaders Leercher chokes other peers Q: Why does this algo encourage cooperation? Scheduling: Choosing pieces to request • Rarest-first: Look at all pieces at all peers, and request piece thats owned by fewest peers – Increases diversity in the pieces downloaded • avoids case where a node and each of its peers have exactly the same pieces; increases throughput – Increases likelihood all pieces still available even if original seed leaves before any one node has downloaded entire file Start time scheduling • Random First Piece: – When peer starts to download, request random piece. • So as to assemble first complete piece quickly • Then participate in uploads – When first complete piece assembled, switch to rarest-first Choosing pieces to request • End-game mode: – When requests sent for all sub-pieces, (re)send requests to all peers. – To speed up completion of download – Cancel request for downloaded sub-pieces Outline u Cooperative Content Distribution u The BitTorrent approach u BitTyrant BitTyrant: a strategic BT client • Question: can a strategic peer game BT to significantly improve its download performance for the same level of upload contribution? • Conclusion: incentives do not build robustness. Strategic peers can gain significantly in performance. Key ideas • Observations: – Choked as long as one is among the fastest peer set – High capacity peers equally split its upload rates to active set peers – Altruism comes from unnecessary contributions • Strategies: – Maximize per connection download bandwidth – Maximize the number of reciprocating peers – Do not upload more than needed for reciprocation BitTyrant strategy p … up dp • Rank peers by dp/up • Unchoke in decreasing order of peer ranking until upload capacity is saturated • Assumption: data is always available, download is not limited by data scarcity Challenges • Determining up – Initialized with the expected equal split capacity obtained from measurement – Periodically update it • Increase multiplicatively if peer does not reciprocate • Decrease if peer does • Estimating d_p – Measure from download rate – Estimate from peer announced block available rate U: U/ActiveSize • Sizing the neighborhood – Request as fast as possible Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear in upload capacity, while the reference implementation of BitTorrent suggests active size √rate. Although several ∼ hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request. rocation probability to equal split rate. For each peer p, maintain estimates of expected download Figure 8 is for a single strategic peer and suggests that performance dp and upload required for reciprocation up. strategic high capacity peers can benefit much more by Initialize up and dp assuming the bandwidth manipulating their active set size. Our example peer with distribution in Figure 2. upload capacity 300 KB/s realizes a maximum down- load throughput of roughly 450 KB/s. However, increas- dp is initially the expected equal split capacity of p. ing reciprocation probability via active set sizing is ex- up is initially the rate just above the step in the tremely sensitive—throughput falls off quickly after the reciprocation probability. maximum is reached. Further, it is unclear if active set sizing alone would be sufficient to maximize reciproca- Each round, rank order peers by the ratio dp/up and unchoke tion in an environment with several strategic clients. those of top rank until the upload capacity is reached. These challenges suggest that any a priori active set d d d d d sizing function may not suffice to maximize download 0 , 1 , 2 , 3 , 4 , ... u u u u u rate for strategic clients. Instead, they motivate the dy- 0 1 2 3 4 choose k k u cap namic algorithm used in BitTyrant that adaptively mod- | i=0 i ≤ ifies the size and membership of the active set and the | P{z } At the end of each round for each unchoked peer: upload bandwidth allocated to each peer (see Figure 9). In both BitTorrent and BitTyrant, the set of peers that If peer p does not unchoke us: up (1 + δ)up ← will receive data during the next TFT round is decided by If peer p unchokes us: dp observed rate. the unchoke algorithm once every 10 seconds. BitTyrant ← differs from BitTorrent as it dynamically sizes its active If peer p has unchoked us for the last r rounds: up (1 γ)up set and varies the sending rate per connection. For each ← − peer p, BitTyrant maintains estimates of the upload rate Figure 9: BitTyrant unchoke algorithm required for reciprocation, up, as well as the download throughput, dp, received when p reciprocates. Peers are ranked by the ratio dp/up and unchoked in order until the date operation dynamically estimates these rates and, sum of up terms for unchoked peers exceeds the upload in conjunction with the ranking strategy, optimizes capacity of the BitTyrant peer. download rate over time. The rationale underlying this unchoke algorithm is BitTyrant is designed to tap into the latent altruism in • that the best peers are those that reciprocate most for the most swarms by unchoking the most altruistic peers. least number of bytes contributed to them, given accurate However, it will continue to unchoke peers until it ex- information regarding up and dp. Implicit in the strategy hausts its upload capacity even if the marginal utility are the following assumptions and characteristics: is sub-linear. This potentially opens BitTyrant itself to The strategy attempts to maximize the download rate being cheated, a topic we return to later. • for a given upload budget. The ranking strategy cor- The strategy can be easily generalized to handle con- • responds to the value-density heuristic for the knap- current downloads from multiple swarms.
Recommended publications
  • Replication Strategies for Streaming Media
    “replication-strategies” — 2007/4/24 — 10:56 — page 1 — #1 Research Report No. 2007:03 Replication Strategies for Streaming Media David Erman Department of Telecommunication Systems, School of Engineering, Blekinge Institute of Technology, S–371 79 Karlskrona, Sweden “replication-strategies” — 2007/4/24 — 10:56 — page 2 — #2 °c 2007 by David Erman. All rights reserved. Blekinge Institute of Technology Research Report No. 2007:03 ISSN 1103-1581 Published 2007. Printed by Kaserntryckeriet AB. Karlskrona 2007, Sweden. This publication was typeset using LATEX. “replication-strategies” — 2007/4/24 — 10:56 — page i — #3 Abstract Large-scale, real-time multimedia distribution over the Internet has been the subject of research for a substantial amount of time. A large number of mechanisms, policies, methods and schemes have been proposed for media coding, scheduling and distribution. Internet Protocol (IP) multicast was expected to be the primary transport mechanism for this, though it was never deployed to the expected extent. Recent developments in overlay networks has reactualized the research on multicast, with the consequence that many of the previous mechanisms and schemes are being re-evaluated. This report provides a brief overview of several important techniques for media broad- casting and stream merging, as well as a discussion of traditional IP multicast and overlay multicast. Additionally, we present a proposal for a new distribution system, based on the broadcast and stream merging algorithms in the BitTorrent distribution and repli- cation system. “replication-strategies” — 2007/4/24 — 10:56 — page ii — #4 ii “replication-strategies” — 2007/4/24 — 10:56 — page iii — #5 CONTENTS Contents 1 Introduction 1 1.1 Motivation .
    [Show full text]
  • Bittorrent Files Hace Stopped Downloading
    bittorrent files hace stopped downloading Why Some Torrents Don’t Download? A torrent that doesn’t start downloading or one that suddenly stops can be very frustrating. You check your Internet connection, the cables, and everything looks good. So what can be the reasons for those torrents that don’t seem to work? Some Torrents Don’t Download. The main reason behind a torrent file that doesn’t even start downloading is the lack of seeders and peers. In other words, there is no one seeding that file, meaning there’s no place where you can download it from. That’s why it’s very important that you have a look at the number of seeders and peers every time you start a new download. Seeders are the users who already finished downloading and are only sharing. The peers are the ones like you, the ones who are downloading and uploading at the same time. Some Files Suddenly Stop Downloading. This is another common scenario. We’ve all been there when a torrent stops at some moment, such as 99%. That usually happens when there are only peers, but no seeders . If you think about it, it makes total sense. The peers have many parts of the torrent in common, and they will share those between them. But because there are zero seeders, no one has the entire file , and everyone will share the same parts and stop in the same percentage point. A Dead Torrent. Both of the situations we just saw are what users in the community call a “dead torrent”.
    [Show full text]
  • Improving Fairness in Peer-To-Peer Networks by Separating the Role of Seeders in Network Infrastructures
    Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci (2016) 24: 2255 { 2266 http://journals.tubitak.gov.tr/elektrik/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/elk-1402-304 Improving fairness in peer-to-peer networks by separating the role of seeders in network infrastructures Alireza NAGHIZADEH∗, Reza EBRAHIMI ATANI Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran Received: 27.02.2014 • Accepted/Published Online: 08.07.2014 • Final Version: 15.04.2016 Abstract:Fairness is one of the most important challenges that should be considered as a priority when designing a P2P file-sharing network. An unfair P2P network may attract free-riders, frustrate the majority of users, and consequently shorten the longevity of files. When BitTorrent protocol was first introduced, by suggesting new algorithms like tit-for- tat or rarest-first and combining them with methods like choking and unchoking, it pushed fairness one step forward. However, BitTorrent did not bring a plenary solution and has its own shortcomings. For instance, neither this protocol nor other P2P protocols that we are aware of precisely indicate how seeders should be treated in their networks. Most of the time they dictate that seeders upload as much as possible. With this approach, seeders can easily be abused by free-riders. It gets even worse when we realize that for lack of a good infrastructure a lawful user may become a free-rider unknowingly. The purpose of this paper is to address this problem by suggesting a novel and universal method that can be implemented in current P2P networks.
    [Show full text]
  • P2P File Sharing P2P File Sharing
    P2P File Sharing P2P file sharing Alice chooses one of the peers, Bob. File is copied from Bob’s PC to Example Alice’s notebook: HTTP Alice runs P2P client While Alice downloads, other application on her notebook users uploading from Alice. computer Alice’s peer is both a Web client Intermittently connects to and a transient Web server. Internet; gets new IP address All peers are servers = highly for each connection scalable! Asks for “Hey Jude” Application displays other peers that have copy of Hey Jude. P2P: centralized directory (Napster’s Approach) Bob centralized directory server original “Napster” design 1 1) when peer connects, it peers 1 informs central server: IP address 1 3 content 2 1 2) Alice queries for “Hey Jude” 3) Alice requests file from Alice Bob P2P: problems with centralized directory file transfer is Single point of failure decentralized, but locating content is Performance highly decentralized bottleneck Copyright infringement Query flooding: Gnutella overlay network: graph edge between peer X fully distributed and Y if there’s a TCP no central server connection public domain all active peers and protocol edges is overlay net many Gnutella clients Edge is not a physical implementing protocol link Given peer will typically be connected with < 10 overlay neighbors Gnutella: protocol Ì File transfer: Query message HTTP sent over existing TCP connections Query Ì peers forward QueryHit Query message Ì QueryHit sent over reverse Query path QueryHit Scalability: limited scope flooding Gnutella: Peer joining 1. Joining peer X must find some other peer in Gnutella network: use list of candidate peers 2.
    [Show full text]
  • Exploiting Bittorrent for Fun (But Not Profit)
    Exploiting BitTorrent For Fun (But Not Profit) Nikitas Liogkas, Robert Nelson, Eddie Kohler, and Lixia Zhang University of California, Los Angeles fnikitas, rlnelson, kohler, [email protected] ABSTRACT the file can be downloaded from different peers. A meta- This paper assesses BitTorrent’s robustness against selfish peers, data file is associated with every download. This file con- who try to download more than their fair share by abusing existing tains information necessary for the download process, in- protocol mechanisms. We design and implement three selfish-peer cluding the number of pieces and hashes for all the pieces; exploits and evaluate their effectiveness on public and private tor- the hashes are used by peers to verify that a piece has been rents. In practice, BitTorrent appears quite robust against this kind received correctly. This metadata file is typically created by of exploit: selfish peers can sometimes obtain more bandwidth, and the content provider, who must also launch at least one client honest peers’ download rates suffer slightly in consequence, but we offering the entire file for download. In order to join the observe no considerable degradation of the system’s quality of ser- download process, a client retrieves the metadata file out of vice. We identify private-torrent scenarios in which a selfish peer band, usually either from a well-known website or by email. could benefit more significantly at the expense of honest peers, and It then contacts the tracker, a centralized component that discuss the BitTorrent protocol mechanisms that lead to robustness by rendering these scenarios infeasible. keeps track of all the peers participating in the download.
    [Show full text]
  • Peer-To-Peer Networking
    Peer-to-Peer Networking Case Study: BitTorrent Lecture Content BitTorrent (protocol version 1.0) File transfer protocol Novel techniques for distributing content P2P system studied further The original design Later enchantments are not discussed here BitTorrent (BT) BT is a file transfer protocol for content distribution Protocol specifications v1.0 studied here A centralised P2P system (compare to Napster) A tracker server managing users© downloads BitTorrent concentrates on efficient file transfer Searching content is not provided by the protocol specification, but out-of-band methods Addresses the free riding problem in P2P file sharing BT Terminology (1/3) Torrent Set of peers cooperating to download the same content using BT protocol Tracker Centralised server keeping track of current participants. Does not involve to data transfers, but collect statistics Pieces and blocks File is cut into fixed size pieces (typically 256 KB) and pieces are further cut into blocks (transfer unit, 16 KB) BT Terminology (2/3) Metainfo file, or .torrent file Contains information about the file, its length, name and the address and port of the tracker Hashes for pieces of files for verification Interested and Choked A is marked as interested in peer B when B has pieces that A wants, and vice versa. Also, A is choked, when B decides not to upload data when A is interested. When B is willing to upload again, A is unchoked. BT Terminology (3/3) Peer set or a swarm The group of machines that are collectively connected for a particular file, i.e. a list of open TCP connections Leecher and seed Leecher is a peer that is still downloading the pieces.
    [Show full text]
  • Peer-To-Peer Networks – Protocols, Cooperation and Competition
    Peer-to-Peer Networks – Protocols, Cooperation and Competition Hyunggon Park Signal Processing Laboratory (LTS4), Institute of Electrical Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland Rafit Izhak Ratzin Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, USA Mihaela van der Schaar Multimedia Communications and Systems Laboratory, Electrical Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, USA 1. INTRODUCTION Peer-to-peer (P2P) networks connect many end-hosts (also referred to as peers) in an ad-hoc manner. P2P networks have been typically used for file sharing applications, which enable peers to share digitized content such as general documents, audio, video, electronic books, etc. Recently, more advanced applications such as real-time conferences, online gaming, and media streaming have also been deployed over such networks. Unlike traditional client-server networks, where servers only provide content, and clients only consume content, in P2P networks, each peer is both a client and a server. It has been observed that P2P file sharing applications dominate Internet traffic usage. In fact, a wide range of measurements, which were performed in 8 different geographic regions during the years of 2008-2009, show that P2P networks generated most of the traffic in all monitored regions, ranging from 43% in Northern Africa to 70% in Eastern Europe (http://www.ipoque.com/). The same study also identified that BitTorrent (Cohen, 2003) is the most popular protocol on the Internet, generating most of the traffic in 7 out of 8 regions ranging from 32% in South Africa to 57% in Eastern Europe. The details of the BitTorrent protocol will be discussed in Section 3.
    [Show full text]
  • Libswift P2p Protocol: an Analysis and Extension
    Master Thesis - TRITA-ICT-EX-2012-262 LIBSWIFT P2P PROTOCOL: AN ANALYSIS AND EXTENSION Fu Tang Design and Implementation of ICT products and systems Royal Institute of Technology (KTH) [email protected] October 30th, 2012 Supervisor: Flutra Osmani Examiner: Bj¨ornKnutsson Department: ICT School, NSLab Royal Institute of Technology (KTH) 1 Abstract More and more end-users are using P2P protocols for content sharing, on-demand and live streaming, contributing considerably to overall Internet traffic. A novel P2P streaming protocol named libswift was developed to enable people experience a better service by consuming less resources and transferring less unnecessary functions and metadata. This master thesis studies the inner functioning of libswift and analyzes some of the vulnerabilities that directly impact performance of the protocol, namely download speed and response delay. By investigating the behavior of libswift in scenarios with multiple peers, we found that the lack of a peer selection mechanism inside the protocol affects download efficiency and response time. We also discovered that libswift's internal piece picking algorithm raises competition among peers, thus not fully utilizing connected peers. In addition, we found that current libswift implementation does not follow the specification for PEX peer discovery, thus we modified PEX algorithm to support another message that is used to proactively request new peers from the currently connected. Having made these observations, we designed and implemented a peer selection extension interface that allows for third-party peer selection mechanisms to be used with libswift protocol. Apropos, we tested the interface (or adapter) with an example peer selection mechanism that groups peers according to properties such as latency and locality.
    [Show full text]
  • Velocizzare Emule Abc.Txt” È Una Stronzata (+ Raccolta Di Guide Serie Alla Configurazione E Al Corretto Uso Di Emule E a Come Ottimizzarne Le Prestazioni)
    Ecco perchè il contenuto del file “velocizzare emule abc.txt” è una stronzata (+ raccolta di guide serie alla configurazione e al corretto uso di eMule e a come ottimizzarne le prestazioni) Qualche persona dall'intelligenza discutibile ha diffuso su emule un file dal nome “velocizzare emule ABC.txt”. Il contenuto di questo files è un misto di stronzate e di cose parzialente vere ma se si seguono alla lettera le istruzioni si peggiorano le prestazioni di eMule e si fanno una serie di azioni dannose per la rete stessa che vengono considerate spam. Questo è il contenuto del sudetto file: ci sono solo 7 semplici passi per velocizzare emule il più possibile. 1- innanzi tutto dovete avere parecchi file condivisi, per fare questo andate in opzioni > cartelle e selezionate le cartelle che volete condividere ad esempio quelle che cintengono la musica. per avere una buona velocità dovreste avere almeno 500 file condivisi, si avete capito bene, 500. 2- ora che i vostri file condivisi sono tanti, selezionateli tutti e con il tasto destro scegliete priorità > *release*, così facendo darete la possibilità agli altri di scaricare più velocemente e il vostro punteggio aumenterà permettendovi di connettervi più velocemente ai server, e di scalare le code 3- togliete i limiti di download e di upload in opzioni > connessione, prima di fare questo assicuratevi di fare il wizard della vostra connessione cliccando su wizard e selezionate il vostro tipo di connessione 4- in opzioni > opzioni avanzate, attivate trova automaticamente limite di upload in upload dinamico e , più in basso, allungate la vostra coda a 6000 punti.
    [Show full text]
  • Architecture and Download Behavior of Xunlei:A Measurement-Based Study
    Architecture and Download Behavior of Xunlei:A Measurement-Based Study Min ZHANG Wolfgang JOHN Changjia CHEN Beijing Jiaotong University Chalmers University of Technology Beijing Jiaotong University Beijing, China, 100044 Goteborg, Sweden Beijing, China, 100044 [email protected] [email protected] [email protected] Abstract—this paper presents a measurement-based study of companies such as Google, Geyuan Ventures and IDGVC. Xunlei, a young but increasingly popular P2P application Although Xunlei does not provide an official English currently mainly used in China. Due to its proprietary version (yet) and only runs on Windows machines, it gained protocols and data encryption, packet-level data was analyzed significant popularity in regions outside China as well, in order to infer the network architecture and the superior mainly due to Chinese migrants [1]. Furthermore, translated download behavior, Xunlei's main key to success. We identify and ported versions are likely to be available soon, Xunlei's core-server layer with a clear division of tasks. We eventually allowing Xunlei to spread worldwide. found that Xunlei increases download speeds by applying Besides regional limitations, we consider that Xunlei's multi-source technology in an effective way, which includes proprietary nature and use of data encryption are the main (inappropriate) direct linking. Finally, we reveal that Xunlei utilizes UDP as main transport protocol both for bulk file cause for the very limited attention of the scientific transfer and IPTV streaming. As the first comprehensive community. In this paper, we seek to fill this gap by study on Xunlei, this paper provides new insights for continuing an earlier study [3] in order to provide a more researchers and application designers, and contributes to a detailed study on Xunlei.
    [Show full text]
  • Free Riding in Bittorrent Is Cheap
    Free Riding in BitTorrent is Cheap Thomas Locher1, Patrick Moor2, Stefan Schmid1, Roger Wattenhofer1 1 Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland {lochert, schmiste, wattenhofer}@tik.ee.ethz.ch 2 Google Inc., Mountain View, CA 94043, USA [email protected] ABSTRACT while seeders (“altruistic peers”) clearly offer the oppor- tunity to freeload, we are even able to download content While it is well-known that BitTorrent is vulnerable to self- quickly if we ignore seeders and download solely from ish behavior, this paper demonstrates that even entire files other peers that do not possess all pieces of the desired can be downloaded without reciprocating at all in BitTor- content (leechers). This implies that the basic piece ex- rent. To this end, we present BitThief, a free riding client change mechanism does not effectively restrain peers from that never contributes any real data. First, we show that freeloading. simple tricks suffice in order to achieve high download Sharing communities are also investigated in this paper. rates, even in the absence of seeders. We also illustrate By banning users with constantly low sharing ratios or by how peers in a swarm react to various sophisticated at- denying them access to the newest torrents available, such tacks. Moreover, our analysis reveals that sharing com- communities encourage users to upload more than they munities—communities originally intended to offer down- download, i.e., to keep their sharing ratio above 1. We will loads of good quality and to promote cooperation among show that sharing communities are particularly appealing peers—provide many incentives to cheat.
    [Show full text]
  • Peer-To-Peer Networking with Bittorrent
    Peer-to-peer networking with BitTorrent Jahn Arne Johnsen Lars Erik Karlsen Sebjørn Sæther Birkeland [email protected] [email protected] [email protected] Department of Telematics, NTNU - December 2005. Abstract Peer-to-peer networking has in recent years received a lot of attention due to the ongoing battle with the music and movie industry. Despite many beliefs it is not a new concept but, in its simplest form, has existed for over four decades and can be traced back to the original implementation of the Internet. BitTorrent is a distributed peer-to-peer system which, it is stated, has the potential to change the landscape of broadcast media and file distribution. It uses a symmetric (tit-for-tat) transferring model in an attempt to reach Pareto efficiency. Its protocol employs various mechanisms and algorithms in a continuous effort to try to ensure that there are no other variations in the network arrangement which will make every downloader at least as well off and at least one downloader strictly better off. In its original implementation, BitTorrent base its operation around the concept of a torrent file, a centralized tracker and an associated swarm of peers. The centralized tracker provides the different entities with an address list over available peers. Later improvements tries to eave the weakness of a single point of failure (the tracker), by implementing a new distributed tracker solution. Amongst BitTorrent’s most prominent future uses are applications which combine BitTorrent and RSS (Really Simple Syndication), with the powerful ability to transform the Internet into the world’s largest TiVo.
    [Show full text]