South African Buffalo-Derived Theileria Parva Is Distinct from Other Buffalo and Cattle-Derived T

Total Page:16

File Type:pdf, Size:1020Kb

South African Buffalo-Derived Theileria Parva Is Distinct from Other Buffalo and Cattle-Derived T fgene-12-666096 June 25, 2021 Time: 18:23 # 1 ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fgene.2021.666096 South African Buffalo-Derived Theileria parva Is Distinct From Other Buffalo and Cattle-Derived T. parva Boitumelo B. Maboko1,2*, Kgomotso P. Sibeko-Matjila2, Rian Pierneef3, Wai Y. Chan3, Antoinette Josemans1, Ratselane D. Marumo1, Sikhumbuzo Mbizeni1,4, Abdalla A. Latif5 and Ben J. Mans1,2,6* 1 Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa, 2 Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa, 3 Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa, 4 Department of Agriculture and Animal Health, University of South Africa, Pretoria, South Africa, 5 School of Life Sciences, University of KwaZulu Natal, Durban, South Africa, 6 Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa Theileria parva is a protozoan parasite transmitted by the brown-eared ticks, Edited by: Rhipicephalus appendiculatus and Rhipicephalus zambeziensis. Buffaloes are the Jun-Hu Chen, National Institute of Parasitic parasite’s ancestral host, with cattle being the most recent host. The parasite has two Diseases, China transmission modes namely, cattle–cattle and buffalo–cattle transmission. Cattle–cattle Reviewed by: T. parva transmission causes East Coast fever (ECF) and January disease syndromes. Isaiah Obara, Buffalo to cattle transmission causes Corridor disease. Knowledge on the genetic Freie Universität Berlin, Germany Erik Bongcam-Rudloff, diversity of South African T. parva populations will assist in determining its origin, Swedish University of Agricultural evolution and identify any cattle–cattle transmitted strains. To achieve this, genomic Sciences, Sweden DNA of blood and in vitro culture material infected with South African isolates (8160, *Correspondence: Boitumelo B. Maboko 8301, 8200, 9620, 9656, 9679, Johnston, KNP2, HL3, KNP102, 9574, and 9581) were [email protected] extracted and paired-end whole genome sequencing using Illumina HiSeq 2500 was Ben J. Mans performed. East and southern African sample data (Chitongo Z2, Katete B2, Kiambu [email protected] Z464/C12, Mandali Z22H10, Entebbe, Nyakizu, Katumba, Buffalo LAWR, and Buffalo Specialty section: Z5E5) was also added for comparative purposes. Data was analyzed using BWA This article was submitted to and SAMtools variant calling with the T. parva Muguga genome sequence used as a Evolutionary and Genomic Microbiology, reference. Buffalo-derived strains had higher genetic diversity, with twice the number a section of the journal of variants compared to cattle-derived strains, confirming that buffaloes are ancestral Frontiers in Genetics reservoir hosts of T. parva. Host specific SNPs, however, could not be identified among Received: 09 February 2021 Accepted: 27 May 2021 the selected 74 gene sequences. Phylogenetically, strains tended to cluster by host Published: 25 June 2021 with South African buffalo-derived strains clustering with buffalo-derived strains. Among Citation: the buffalo-derived strains, South African strains were genetically divergent from other Maboko BB, Sibeko-Matjila KP, buffalo-derived strains indicating possible geographic sub-structuring. Geographic sub- Pierneef R, Chan WY, Josemans A, Marumo RD, Mbizeni S, Latif AA and structuring was also observed within South Africa strains. The knowledge generated Mans BJ (2021) South African from this study indicates that to date, ECF is not circulating in buffalo from South Africa. It Buffalo-Derived Theileria parva Is Distinct From Other Buffalo also shows that T. parva has historically been present in buffalo from South Africa before and Cattle-Derived T. parva. the introduction of ECF and was not introduced into buffalo during the ECF epidemic. Front. Genet. 12:666096. doi: 10.3389/fgene.2021.666096 Keywords: Theileria parva, whole genome sequencing, cattle, buffalo, genetic diversity, South Africa Frontiers in Genetics| www.frontiersin.org 1 June 2021| Volume 12| Article 666096 fgene-12-666096 June 25, 2021 Time: 18:23 # 2 Maboko et al. South African Buffalo-Derived Theileria parva INTRODUCTION (Yusufmia et al., 2010) as well as strains with antigenic gene sequences identical to the Muguga isolate (Sibeko et al., 2010, Theileria parva is a protozoan parasite transmitted by brown- 2011) have been reported in KwaZulu-Natal, raising concerns eared ticks, Rhipicephalus appendiculatus and Rhipicephalus of the possible circulation of ECF strains in South Africa. zambeziensis (Blouin and Stoltsz, 1989). Cape buffaloes are The animals, however, lost their parasite load approximately considered the parasite’s ancestral host, with cattle being a 120 days post infection and could not transmit the parasite more recent host (Norval et al., 1991). The parasite has (Mbizeni et al., 2013). two transmission modes namely, cattle–cattle and buffalo– There is genetic evidence that phenotypic differences between cattle transmission. Cattle–cattle T. parva transmission by ticks cattle-derived and buffalo-derived parasite strains have an causes East Coast fever (ECF) and January disease syndromes underlying genetic component. A deletion in the p67 gene (Theiler, 1904; Lawrence, 1979). East Coast fever is endemic in (allele 1) has been associated with strains of cattle origin, different East and southern African countries, notably Kenya, whereas lack of that deletion indicated buffalo origin (allele Rwanda, Tanzania, Uganda, Malawi, Mozambique, and Zambia 2) (Nene et al., 1996). The observation that cattle-derived (Lawrence et al., 1992, 2017). The name East Coast fever T. parva showed genotypes found in buffalo was first observed is derived from the historical origin of the disease in the in South Africa (Sibeko et al., 2010) later confirmed by East Coast of Africa (Theiler, 1904). South Africa had ECF Mukolwe et al.(2020) and Mwamuye et al.(2020) using outbreaks in the early 1900s that caused extensive mortalities strains from various countries. Sibeko et al.(2010) found before its eradication in the country in the 1950s (Potgieter both alleles and additional ones in South African strains, et al., 1988; Norval et al., 1992). January disease is only irrespective of host origin indicating that South African reported in Zimbabwe (Lawrence, 1992; Geysen et al., 1999). populations are different from East African populations. Thus, These diseases cause major cattle and financial losses with the p67 gene could not differentiate host-derived T. parva in January disease’s seasonality making it the milder of the two South Africa. On the other hand, 200 random genes selected by diseases due to lesser mortalities (Matson, 1967; Lawrence, 1979; Hayashida et al.(2013) showed phylogenetic differentiation of the Norval et al., 1992). different host strains. Buffalo–cattle transmission causes a disease known as Characterization of T. parva has been extensively done using Corridor disease. The name is derived from an outbreak reported various loci specific molecular tools. Bishop et al.(2001) used between the corridor of the then Hluhluwe and Imfolozi PIM and p104 to identify different cattle-derived T. parva nature reserves (Neitz et al., 1955). Currently, Corridor disease isolates, which was supported by Norling et al.(2015) using is endemic in certain regions of South Africa, Mpumalanga, whole genome sequencing. In addition, Pelle et al.(2011) Limpopo, and KwaZulu-Natal provinces where cattle and game found that a less diverse population subset of T. parva is share grazing land (Potgieter et al., 1988; Stoltsz, 1989; Mbizeni maintained in cattle for cattle–cattle transmission. Microsatellites et al., 2013). It is very lethal to cattle to an extent that parasites have found buffalo-derived strains to be geographically diverse rarely reach the tick-infective piroplasm stage in this host. If and the strains to be distinct from cattle-derived strains. piroplasms are present, they are not regularly transmitted to They have also shown evidence of allele sharing among hosts cattle (Young et al., 1973; Uilenberg, 1999; Morrison, 2015). in different countries (Oura et al., 2011; Elisa et al., 2014; Barnett and Brocklesby(1966) showed that passage of buffalo- Hemmink et al., 2018). derived T. parva in cattle transforms the parasite to become Next generation sequencing (NGS) has opened various cattle–cattle transmitted T. parva (Lawrence, 1992). Conversely, avenues for research into genomic diversity. In T. parva Potgieter et al.(1988) could not reproduce the transformation for example, NGS allowed access to additional markers to of South African buffalo-derived T. parva to resemble ECF characterize the parasite and discriminate ECF and Corridor strains. The latter study suggested that possible selection of disease on a genome-wide scale (Gardner et al., 2005; Hayashida cattle infective strains instead of behavioral change of the et al., 2013; Norling et al., 2015). In spite of the distinction parasite may have been responsible for what was reported as between cattle-derived and buffalo-derived strains, regions “transformation.” responsible for this are yet to be identified. It is thus important Recovery from T. parva infection can result in cattle being to identify genetic loci linked to buffalo-transmitted T. parva immune to specific parasite strains, but remain piroplasm carriers (Corridor disease) only and not cattle–cattle transmitted T. parva that are able to transmit the parasite to other susceptible (January disease
Recommended publications
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: a Review
    pathogens Review Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review Onyinyechukwu Ada Agina 1,2,* , Mohd Rosly Shaari 3, Nur Mahiza Md Isa 1, Mokrish Ajat 4, Mohd Zamri-Saad 5 and Hazilawati Hamzah 1,* 1 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 2 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria 3 Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia; [email protected] 4 Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 5 Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] * Correspondence: [email protected] (O.A.A.); [email protected] (H.H.); Tel.: +60-11-352-01215 (O.A.A.); +60-19-284-6897 (H.H.) Received: 2 May 2020; Accepted: 16 July 2020; Published: 25 August 2020 Abstract: Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia.
    [Show full text]
  • Bovine Theileriosis
    EAZWV Transmissible Disease Fact Sheet Sheet No. 125 BOVINE THEILERIOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Bovine Tick-borne Lymphoproliferati Yes Parvaquone In houses ve diseases, (Parvexon) Tick control characterized by Buparvaquone fever, leucopenia (Butalex) in zoos and/or anaemia Tick control Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by F. Vercammen, Royal Zoological Society of Antwerp, Belgium D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium Susceptible animal groups Theileria parva: cattle, African Buffalo* (Syncerus caffer) and Waterbuck (Kobus defassa). T.annulata: cattle, yak (Bos gruniens) and waterbuffalo* (Bubalus bubalis). T.mutans: cattle* and buffalo*. T.taurotragi: cattle, sheep, goat and eland (Taurotragus oryx- natural host). T.velifera: cattle* and buffalo*. T.orientalis/buffeli: cattle * = usually benign Causative organism Several species belonging to the phylum of the Apicomplexa, order Piroplasmida, family Theileriidae Pathogenic species are T.parva ( according to the strain: East Coast Fever, Corridor Disease, Buffalo Disease, January Disease, Turning Sickness). T.annulata (Tropical theileriosis, Mediterranean theileriosis). T.taurotragi (Turning Sickness). Other species, i.a. T.mutans, T.orientalis/buffeli, T.velifera are considered to be less or non pathogenic. Zoonotic potential Theileria species of cattle have no zoonotic potential unlike Theileria (Babesia) microti, an American species in rodents which can infect humans Distribution Buffalo and cattle associated T.parva occurs in Eastern and Southern Africa (from S.Sudan to S.Zimbabwe). T.annulata in N.Africa, Sudan, Erithrea, Mediterranean Europe, S. Russia, Near & Middle East, India, China and Central Asia.
    [Show full text]
  • Antigenic Diversity in Theileria Parva Populations from Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing
    fgene-12-684127 July 10, 2021 Time: 13:19 # 1 ORIGINAL RESEARCH published: 15 July 2021 doi: 10.3389/fgene.2021.684127 Antigenic Diversity in Theileria parva Populations From Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing Fiona K. Allan1†, Siddharth Jayaraman1†, Edith Paxton1, Emmanuel Sindoya2, Tito Kibona3, Robert Fyumagwa4, Furaha Mramba5, Stephen J. Torr6, Johanneke D. Hemmink1,7, Philip Toye7, Tiziana Lembo8, Ian Handel1, Harriet K. Auty8, W. Ivan Morrison1 and Liam J. Morrison1* 1 Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom, 2 Ministry of Livestock and Fisheries, Serengeti District Livestock Office, Mugumu, Tanzania, 3 Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 4 Tanzania Wildlife Research Institute, Arusha, Tanzania, 5 Vector Edited by: and Vector-Borne Diseases Research Institute, Tanga, Tanzania, 6 Liverpool School of Tropical Medicine, Liverpool, Matthew Adekunle Adeleke, United Kingdom, 7 International Livestock Research Institute, Nairobi, Kenya, 8 Institute of Biodiversity, Animal Health University of KwaZulu-Natal, and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, South Africa United Kingdom Reviewed by: Stefano D’Amelio, East Coast fever (ECF) in cattle is caused by the Apicomplexan protozoan parasite Sapienza University of Rome, Italy Jun-Hu Chen, Theileria parva, transmitted by the three-host tick Rhipicephalus appendiculatus. The National Institute of Parasitic African buffalo (Syncerus caffer) is the natural host for T. parva but does not suffer Diseases, China disease, whereas ECF is often fatal in cattle. The genetic relationship between T. parva *Correspondence: Liam J. Morrison populations circulating in cattle and buffalo is poorly understood, and has not been [email protected] studied in sympatric buffalo and cattle.
    [Show full text]
  • Whole-Genome Sequencing of Theileria Parva Strains Provides Insight Into Parasite Migration and Diversification in the African Continent
    DNA RESEARCH 20, 209–220, (2013) doi:10.1093/dnares/dst003 Advance Access publication on 12 February 2013 Whole-Genome Sequencing of Theileria parva Strains Provides Insight into Parasite Migration and Diversification in the African Continent KYOKO Hayashida1,TAKASHI Abe2,WILLIAM Weir3,RYO Nakao1,4,KIMIHITO Ito4,KIICHI Kajino1,YUTAKA Suzuki5, FRANS Jongejan6,7,DIRK Geysen8, and CHIHIRO Sugimoto1,* Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo-shi, Hokkaido 001-0020, Japan1; Information Engineering, Niigata University, Niigata-shi, Niigata 950-2181, Japan2; Institute of Comparative Medicine, Glasgow University Veterinary School, Glasgow G61 1QH, UK3; Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo-shi, Hokkaido 001-0020, Japan4; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-8568, Japan5; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht Centre for Tick-borne Diseases (UCTD), Utrecht University, Yalelaan 1, Utrecht 3584CL, The Netherlands6; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa7 and Department of Animal Health, Institute of Tropical Medicine, Nationalestraat 155, Antwerp 2000, Belgium8 *To whom correspondence should be addressed. Tel. þ81 11-706-5297. Fax. þ81 11-706-7370. Email: [email protected] Edited by Dr Takao Sekiya (Received 1 October 2012; accepted 21 January 2013) Abstract The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa.
    [Show full text]
  • Capture-Based Enrichment of Theileria Parva DNA
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037309; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo- derived strain and reveals exceptional intra-specific genetic diversity Nicholas C Palmateer1, Kyle Tretina1, Joshua Orvis1, Olukemi O Ifeonu1, Jonathan Crabtree1, Elliott Drabék1, Roger Pelle2, Elias Awino3, Hanzel T Gotia1, James B Munro1, Luke Tallon1, W Ivan Morrison4, Claudia A Daubenberger5,6, Vish Nene3, Donald P Knowles7, Richard P Bishop7, Joana C Silva1,8§ 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA 2Biosciences eastern and central Africa-International Livestock Research Institute, Nairobi, Kenya 3International Livestock Research Institute, Nairobi, Kenya 4The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK 5Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland 6University of Basel, Basel, Switzerland 7Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA 8Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA §Corresponding author: [email protected] Running title: “Apicomplexan Theileria parva is exceptionally polymorphic” Keywords: Theileria parva, lawrencei, DNA enrichment, genome assembly, polymorphism 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037309; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Molecular Detection of Theileria and Babesia Infections in Cattle§ Kursat Altay, M
    Available online at www.sciencedirect.com Veterinary Parasitology 158 (2008) 295–301 www.elsevier.com/locate/vetpar Molecular detection of Theileria and Babesia infections in cattle§ Kursat Altay, M. Fatih Aydin, Nazir Dumanli, Munir Aktas * Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119 Elazig, Turkey Received 31 May 2008; received in revised form 27 August 2008; accepted 15 September 2008 Abstract This study was carried out to determine the presence and distribution of tick-borne haemoprotozoan parasites (Theileria and Babesia) in apparently healthy cattle in the East Black Sea Region of Turkey. A total of 389 blood samples were collected from the animals of various ages in six provinces in the region. Prevalence of infection was determined by reverse line blot (RLB) assay. The hypervariable V4 region of the 18S ribosomal RNA (rRNA) gene was amplified with a set of primers for members of the genera Theileria and Babesia. Amplified PCR products were hybridized onto a membrane to which generic- and species-specific oligonucleotide probes were covalently linked. RLB hybridization identified infection in 16.19% of the samples. Blood smears were also examined microscopically for Theileria and/or Babesia spp. and 5.14% were positive. All samples shown to be positive by microscopy also tested positive with RLB assay. Two Theileria (T. annulata and T. buffeli/orientalis) and three Babesia (B. bigemina, B. major and Babesia sp.) species or genotypes were identified in the region. Babesia sp. genotype shared 99% similarity with the previously reported sequences of Babesia sp. Kashi 1, Babesia sp. Kashi 2 and Babesia sp.
    [Show full text]
  • Rhipicephalus Appendiculatus Ticks Transmit Theileria Parva From
    Olds et al. Parasites & Vectors (2018) 11:126 https://doi.org/10.1186/s13071-018-2727-6 RESEARCH Open Access Rhipicephalus appendiculatus ticks transmit Theileria parva from persistently infected cattle in the absence of detectable parasitemia: implications for East Coast fever epidemiology Cassandra L. Olds1,3, Kathleen L. Mason2 and Glen A. Scoles2* Abstract Background: East Coast fever (ECF) is a devastating disease of cattle and a significant constraint to improvement of livestock production in sub-Saharan Africa. The protozoan parasite causing ECF, Theileria parva, undergoes obligate sexual stage development in its tick vector Rhipicephalus appendiculatus. Tick-borne acquisition and transmission occurs transstadially; larval and nymphal ticks acquire infection while feeding and transmit to cattle when they feed after molting to the next stage. Much of the current knowledge relating to tick-borne acquisition and transmission of T. parva has been derived from studies performed during acute infections where parasitemia is high. In contrast, tick-borne transmission during the low-level persistent infections characteristic of endemic transmission cycles is rarely studied. Methods: Cattle were infected with one of two stocks of T. parva (Muguga or Marikebuni). Four months post- infection when parasites were no longer detectable in peripheral blood by PCR, 500 R. appendiculatus nymphs were fed to repletion on each of the cattle. After they molted to the adult stage, 20 or 200 ticks, respectively, were fed on two naïve cattle for each of the parasite stocks. After adult ticks fed to repletion, cattle were tested for T. parva infection by nested PCR and dot blot hybridization. Results: Once they had molted to adults the ticks that had fed as nymphs on Muguga and Marikebuni infected cattle successfully transmitted Theileria parva to all naïve cattle, even though T.
    [Show full text]
  • Identification of Novel Theileria Parva Candidate Vaccine Antigens and Discovery of New Therapeutic Drugs for the Control of East Coast Fever
    Identification of novel Theileria parva candidate vaccine antigens and discovery of new therapeutic drugs for the control of East Coast fever James J. Nyagwange Thesis committee Promotors Prof. Dr H.F.J. Savelkoul Professor of Cell Biology and Immunology Wageningen University & Research Prof. Dr V. Nene Director and co-leader, Animal and Human Health program International Livestock Research Institute, Nairobi, Kenya Co-promotors Dr E.J. Tijhaar Assistant professor, Cell Biology and Immunology Wageningen University & Research Dr Roger Pelle Principal scientist, Biosciences Eastern and Central Africa International Livestock Research Institute, Nairobi, Kenya Other members Prof. Dr V.P.M.G. Rutten, Utrecht University Prof. Dr M.M. van Oers, Wageningen University & Research Prof. Dr G.F. Wiegertjes, Wageningen University & Research Dr H.K. Parmentier, Wageningen University & Research This research was conducted under the auspices of the Graduate School Wageningen Institute of Animal Sciences Identification of novel Theileria parva candidate vaccine antigens and discovery of new therapeutic drugs for the control of East Coast fever James J. Nyagwange Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 May 2019 at 1:30 p.m. in the Aula. James Jimmy Nyagwange Identification of novel Theileria parva candidate vaccine antigens and discovery of new therapeutic drugs for the control of East Coast fever 154 pages PhD thesis, Wageningen University, Wageningen, the Netherlands (2019) With references, with summary in English ISBN 978-94-6343-578-9 DOI https://doi.org/10.18174/467903 Contents CHAPTER 1: General Introduction ..................................................................................................
    [Show full text]
  • The Biology of Theileria Parva and Control of East Coast Fever – Current
    Ticks and Tick-borne Diseases 7 (2016) 549–564 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases j ournal homepage: www.elsevier.com/locate/ttbdis Review Article The biology of Theileria parva and control of East Coast fever – Current status and future trends a,b,∗ a a a a Vishvanath Nene , Henry Kiara , Anna Lacasta , Roger Pelle , Nicholas Svitek , a Lucilla Steinaa a International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi 00100, Kenya b Adjunct Faculty, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, United States a r t i c l e i n f o a b s t r a c t Article history: Tremendous progress has been made over the last ten years on East Coast fever (ECF) research. Publi- Received 16 September 2015 cation of a reference genome sequence of Theileria parva, the causative agent of ECF, has led to a more Received in revised form 1 February 2016 thorough characterization of the genotypic and antigenic diversity of the pathogen. It also facilitated Accepted 2 February 2016 identification of antigens that are targets of bovine major histocompatibility complex class I restricted Available online 26 February 2016 cytotoxic T-lymphocytes (CTLs), induced by a live parasite-based infection and treatment method (ITM) vaccine. This has led to improved knowledge of epitope-specific T-cell responses to ITM that most likely Keywords: contribute to the phenomenon of strain-specific immunity. The Muguga cocktail ITM vaccine, which pro- Theileria parva vides broad-spectrum immunity to ECF is now a registered product in three countries in eastern Africa.
    [Show full text]
  • Unique Mitochondrial Single Nucleotide Polymorphisms Demonstrate Resolution Potential to Discriminate Theileria Parva Vaccine and Buffalo-Derived Strains
    life Article Unique Mitochondrial Single Nucleotide Polymorphisms Demonstrate Resolution Potential to Discriminate Theileria parva Vaccine and Buffalo-Derived Strains Micky M. Mwamuye 1,* , Isaiah Obara 1, Khawla Elati 1, David Odongo 2 , Mohammed A. Bakheit 3, Frans Jongejan 4 and Ard M. Nijhof 1,* 1 Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; [email protected] (I.O.); [email protected] (K.E.) 2 School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya; [email protected] 3 Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 321-11115 Khartoum, Sudan; [email protected] 4 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa; [email protected] * Correspondence: [email protected] (M.M.M.); [email protected] (A.M.N.); Tel.: +49-30-838-62326 (A.M.N.) Received: 16 November 2020; Accepted: 8 December 2020; Published: 8 December 2020 Abstract: Distinct pathogenic and epidemiological features underlie different Theileria parva strains resulting in different clinical manifestations of East Coast Fever and Corridor Disease in susceptible cattle. Unclear delineation of these strains limits the control of these diseases in endemic areas. Hence, an accurate characterization of strains can improve the treatment and prevention approaches as well as investigate their origin. Here, we describe a set of single nucleotide polymorphisms (SNPs) based on 13 near-complete mitogenomes of T.
    [Show full text]
  • Occurrence of Theileria Parva Infection in Cattle on a Farm in Kwazulu-Natal, South Africa by Bronwen Eleanor Thompson
    Occurrence of Theileria parva infection in cattle on a farm in KwaZulu-Natal, South Africa by Bronwen Eleanor Thompson Submitted in partial fulfilment of the requirements for the degree Master of Science in the Faculty of Veterinary Science, University of Pretoria 8th January 2007 Occurrence of Theileria parva infection in cattle on a farm in KwaZulu-Natal, South Africa Table of Contents Acknowledgements Page 3 List of Tables and Figures Pages 4-5 Summary Page 6 1. Introduction Pages 7-23 1.1 General Introduction Page 7 1.2 Literature Review Pages 8-20 1.3 Recent Outbreaks and Mr A. Green‟s Farm Pages 20-23 2. Materials and Methods Pages 24-36 2.1 Survey of Cattle on Mr A. Green‟s Farms Pages 24-30 2.2 Attempted transmission of T. parva from Mr A. Green‟s cattle to susceptible cattle Pages 30-34 2.3 Tick transmission of T. parva from buffaloes to susceptible cattle Pages 34-36 3. Results Pages 37-54 3.1 Survey of cattle on Mr A. Green‟s farm Pages 37-43 3.2 Attempted transmission of T. parva from Mr A. Green‟s cattle to susceptible cattle Pages 43-46 3.3 Tick transmission of T. parva from buffaloes to susceptible cattle Pages 46-54 4. Discussion Pages 55-62 4.1 The survey on Mr A. Green‟s farm and the significance of the results Pages 55-57 4.2 Transmission experiments from infected cattle on Mr Green‟s farm to susceptible cattle Pages 57-58 4.3 Transmission experiments from buffaloes to susceptible cattle Pages 58-59 4.4 Conclusions Pages 59-62 5.
    [Show full text]