Jakob Steiner 1796 1863

– p.1/53 Jakob Steiner 1796 1863

ne derange pas mes cercles ! – p.1/53 Jakob Steiner 1796 1863

ne derange pas mes cercles ! – p.1/53 (Photos: Barbara Kummer) born 1796 in Utzenstorf () childhood: work at this farm, no school education

until age of 18 – p.2/53 1814 enters the Pestalozzi school in Yverdon ...

... then as “instituteur”. first as student ... (Documents: Burgerbibliothek Bern) With much energy: “Gefunden Samstag den 10. Christmonat 1814, 3+3+4 St. daran gesucht, des Nachts um 1 Uhr gefunden.” (Steiner, quoted from J.-P.Sydler, L’Enseig. Math. (1965), p. 241.) Life-long admiration for Pestalozzis non-dogmatical teaching ... – p.3/53 Example. Th. Clausen published in Crelle Journal 3, No. 17 the determination of the area of by complicated trigonometry. TC kb E H D T K L ka (Steiner autogr. 1814) B (Steiner, Crelle J. 3, No.19, 1828) A kc F Three pages later (Steiner’s answer): “Diese Aufgabe gehört zu einer Abtheilung von Elementar-Aufgaben, die die Pestalozzische Schule wegen mancherlei pädagogischer Vorzüge sehr in Betracht zog. Nach dieser Elementarübung wird die obige Aufgabe ohne die Hülfe trigonometrischer Functionen gelöset; auch kann sie allgemeiner gestellt werden, ...” – p.4/53 Steiner’s solution: u, v, w ratios of side-lengths;

C Draw EG parall. to AF B; b 1+v ua by Thales EG : EC = AF : AC c 1+u hence EG = ; E C G (1+w)(1+v) H By Eucl. I.41 and Thales vb 1 B : = EH : HB = EG : F B = (1+v)w ; 1+v D C B a 1 T 1+u by Eucl. I.41 we have + = v ; K L C B 1+ ·A w B can compute = 1+w+wv ; wc B ·A A c 1+w cyclic permut. gives other triangles, subtract: 1+w F = (1 u v w ) T − 1+u+uw − 1+v+vu − 1+w+wv ·A (uvw 1)2 = − . (1+u+uw)(1+v+vu)(1+w+wv) ·A Observe: = 0 uvw = 1 (Ceva’s Theorem). T ⇔ Result later forgotten and rediscovered as Dudeney–Steinhaus

theorem or Routh’s theorem. – p.5/53 1821: , short career as teacher for lower maths in Werder Gymnasium, then → “Privatlehrer” and starts writing a huge text on and sphere ...

– p.6/53 1821: Berlin, short career as teacher for lower maths in Werder Gymnasium, then → “Privatlehrer” and starts writing a huge text on circle and sphere geometry ...

... until he became a prolific contributor to the newly founded Crelle Journal . – p.6/53 Steiner’s “Programm” as “Privatlehrer” in Berlin:

(Steiner, Crelle J. 1, p. 161, 1826) Apollonius (Pappus VII); • Malfatti; • Pappus IV.15; • conics. • “Das Bestreben des Verfassers ... den ... gemeinschaftlichen Zusammenhang zu finden”. General Theory of . ⇒ – p.7/53 Steiner’s “Book of Lemmas”: 1. Power of the point E with respect to the circle: “In den Lehrbüchern der Geometrie findet man folgenden Satz bewiesen:” E E (a) (b) (c) E ǫ B B α d t D B α δ r T T α r α O A A r C A

EB EA = ET 2 = ED EC = d2 r2 = t2 (Eucl. III.36). · · − “Dieses Product ... soll ‘Potenz des Punkts in Bezug auf den Kreis’ heissen.”

– p.8/53 2. Line of equal powers for two circles:

E

C e e B 2 1 h 2

C1 d1 d2 D r2 A C1 r1 C2 E

“Die Bedeutung der gemeinschaftlichen Potenz zweier Kreise, wovon schon bei Pappus und Vieta sich Spuren finden, lernte er durch ihre, von ihm gefundene vielseitige Anwendbarkeit erkennen”.

– p.9/53 3. Point of equal powers for three circles:

E C3

C1 C2

“Wir wollen diesen Punct p(123) hinfort

‘Punct der gleichen Potenz der drei Kreise M1,M2,M3’ nennen.”

– p.10/53 4. Similarity centers of two circles:

Fermat 1679 Steiner 1826

2r 2 1 r 3a 3a C I C E 2 1 r 4a a 3 a 2a

“Die Franzosen nennen diese Punkte centre de similitude de deux cercles. Wir haben diese Benennung zuerst aus einer Abhandlung von Euler genommen, siehe

L. Euler: de centro similitudinis, 1777”. – p.11/53 5. Common power of two circles with respect to their similarity center.

D Y ′

Y C C X 2 X′ C1

E A′ A B B′ EC = θ EC 2 · 1 C3 EX′ EX = q · 2 EX EY = EX′ EY ′ = θq = EF F · · – p.12/53 1. “Libris antiqua propositio” (“von Pappus überliefert”):

Archimedes’ “Lemma 6”

5 centuries later ...

C r3 C r2 r 1 r2 r4 1 3 m2 r4 m2 r1 C2 h3 m1 h h h2 C2 h4 2 3 h4 r1 h1

m i i 1 h , , , ,... h , , , ,... ri = 0 2 4 6 ri = 1 3 5 7 Pappus IV.16 Pappus IV.18

Steiner: “Den Pappischen Satz kannte ich nur ohne Beweis.”– p.13/53 Steiner’s proof of Pappus’ “antiqua” theorem: (Crelle J. 1, 1826, p. 261-262.) (a) Tang. in B line of equal powers for C1 and C2, 2; A D (b) Sim. center A for m1 and m2 r2 C1 r b same power, on tang. 4,5; 1 m2 ⇒ (c) Thales: P1B : P2B = r1 : r2; m1 C h (d) AB2 = com.pow. m , m 5,1; h 2 1 2 1 (e) Ab2 = AX AY = AB2 5; C2 · (f) BAb Cm2b Dm1b P1 P2 B DbCB∼ aligned;∼ ⇒ h + r h r h h (g) Thales and (c): 1 1 = 2 − 2 or 2 = 1 + 2 . r1 r2 r2 r1 Followed by many generalizations.

– p.14/53 2. “Lösung der Malfattischen Aufgabe...” (Crelle J. 1, 1826, p.178.)

Problem: Given triangle ABC find 3 circles such that ...

Problem appeared 1810/11 in Gergonne J; “les rédacteurs des Annales” received letter from Italy that “M. Malfatti, géomètre italien très-distingué” had solved the problem, but “proof to long for this letter”. Proof was also to long for Malfatti’s own publication (Mem. Soc. It. d. sc., Modena 1803, 10, p.235). – p.15/53 Steiner’s geometric solution of the Malfatti problem: I incenter of ABC; F draw incircles of AIB,BIC,CIA; C D point of contact; E DEF common tang. to other incircles; incircles of ADE and DBF two . ⇒ NO PROOF, NO EXPLANATION. I

A later reconstructions of Steiner’s D proof long and without insight (Carrega 1981). B

Elegant trigonometric solution: K.Schellbach, Crelle 1853. – p.16/53 Immediately following was the “allgemeinere Aufgabe” (Crelle 1, p.180): Given 3 circles, find 3 “Malfatti” circles. and “Aufgaben” for spheres and spherical triangles.

– p.17/53 3. Apollonius’ three circle problem. Viète (1595) challenged Adriaan van Roomen with the Problem: Given 3 circles, find circles which touch all 3.

r r2 r1

r r−3

Pappus (Intro.to Book VII): reports on (lost) books of Apollonius On Contacts (11 probl., 21 lemmas, 60 thms !, “propositiones ... esse plures ... sed nos unam posuimus”): Three objects given (“Punctis, et rectis lineis, et circulis”) describe a circle tangent to all three ( “datarum contingat”). – p.18/53 Van Roomen answered: easy ! Find the center of the circle using 2 hyperbolas, (the sets of points with same distance from 2 circles).

Viete:` Remember the requirements of Greek culture ...

– p.19/53 Three Types of Constructions (Pappus, p. 7):

“plane” problems (επ´ιπεδα): with ruler and compass; • “solid” problems (στερεα´): using conics; • “grammical” problems (γραµµικα´): using other curves. • v = u2

u v = z ·

(Ptolemy, Almagest, ed. 1496) u – p.20/53 Franc¸ois Viete` (1600): “clarissime Apolloni Belga”

(Viète, Apollonius Gallus 1600, Opera p. 325) (Viète, Apoll. Gallus 1600, Opera p. 338)

(Viète, Apollonius Gallus 1600, Opera p. 325) the problem is planar, no hyperbolas required !!

Viète solves Pappus’ 10 problems geometr. one after the other.– p.21/53 Surprise: Newton. (Principia, ed.1726, Lemma XVI).

P

F

van Roomen’s solution is planar too !! because both hyperbolas have a common focus; • 1 by using Pappus VII.238: P F = dist. P -directrixi ; • ei · gives additional linear equation. – p.22/53 Descartes. (1643): lettres to Elisabeth, princess of Bohemia. Mathematical problems are best remedy for cultivating the human mind. Three circle is best math. problem.! “Vostre Altesse” did not answer for a while ... Desc.: Problem difficult; even an Angel finds solution only by miracle! (c) B

b

x z e xD G x a y c

A C F E d f Desc: slant lines in above pict. ... terrible calc. ... no result before three months; Desc: intr. orthog. lines below. unknowns x,y,z. ... (birth orth. Cart. coord!) Pythagoras: 3 quadratic eqns; subtract ... linear equs;‘-> “le Probleme est plan”. all these tedious calculations, “trop ennuyeux à Vostre Altesse” (-> Gergonne) – p.23/53 Gergonne’s solution (1813; fig. from Dörrie 1932) (I,II,III = ext. sim. centers) ( 1, 2, 3= poles of similarity axis) (O = point of common power.) Proof by tedious analytic calculations (see Descartes).

– p.24/53 Jakob Steiner:(> 300 pages) Allgemeine Theorie über das Berühren und Schneiden der Kreise und Kugeln, from the years 1825-1826, unpublished unti 1931, > 300 pages; discusses Apollonius 3-circle problem in detail (p.175):

“... ein Muster von Eleganz und Einfachheit” (R.Fueter, F.Gonseth 1930)– p.25/53 complete algorithm (drawn by Dr. F. Züllig, 1930)

Similar to Gergonne, but elegant geom. proof and all 8 sols.– p.26/53 1936, Frederick Soddy, Nobel in chemistry, publ. in Nature:

Understand ? Go back again three centuries... – p.27/53 Descartes. (Nov. 1643): next letter to Elisabeth. Desc: try the simpler case where three given circles of radius a,b,c touch each other.

Descartes’ drawing, 1901 edition of Œuvres, vol. 4, p. 48, BGE Ca1227/4 Here, says Descartes, “Vostre Altesse” would arrive at this equation a2b2c2 + a2b2x2 + a2c2x2 + b2c2x2 = 2 abc2x2 + ab2cx2 + a2bcx2 + ab2c2x + a2bc2x + a2b2cx (without proof !) or, as we write it today  1 1 1 1 1 1 1 1 1 1 2 + 2 + 2 + 2 = 2 + + + + + . a b c x ab ac bc ax bx cx – p.28/53  Steiner’s proof. (Crelle 1, p.273):

pc hc Pappus’ “ancient” thm: = + 2 x c pc 1 2 c or = x + ; C hc  c hc  pa pb pc hc “Known formula” + + = 1 ha hb hc b (Euler) gives a pc 1 1 1 2 2 2 A B 1= x + + + + + ; a b c ha hb hc  2 a + b Insert Eucl. I.41: = and for a,b; hc ∼ A Finally insert Heron’s formula for : A 1 1 1 1 b + c c + a a + b = + + + + + x a b c A A A 1 1 1 2(a + b + c) 1 1 1 1 1 1 = + + + = + + 2 + + . a b c (a + b + c)abc a b c ± rab bc ca Formula becomes simplerp if radii are replaced by inverses (the “bends” of Soddy).– p.29/53 “Apollonian packings” (Lagarias, Mallows and Wilks 2002): Nice discovery: if four consecutive “bends” are integers, then the √... is integer (use formula forwards and backwards), then all bends remain integer.

687843 927 763 Examples. 965 845 615 886 788 680 726 423547 483 629 533 367 582 848 488 968 931 315 847 404 454 267 691 365 632 619 223 293 922 342 810 183 810 536 260 912 487 762 147 427 741 741 246 618 939 893 200 368 855 980 588 522 754 115 522775 173 699 490 319 296 677 860 271 166 453 87 943 559 378 909 581 125 834 514 742 989 951 787 644 814 495 867 869 715 104 548 787598435298187 298 336 336 812 282 63 610102 954 176 711 413 919 379 704 984 583 835 990 990 151 861 861 549 322 523 574 967 341 658 466 571 380 237 883 202 768557 128 708 68 768 682 943 682 773 43 279 507 415 512 358 850 934 405 893 702 702 308 727 742 447 828 573 624 235 382 367 987 987 53 989 778 655 391 511 895 774 54 91 221 138 138 138 903 389728 643306754 474 908 869 156 682195 862 847 677 823 451846 930262 933 456 456 442 178 339 426 910 283 426 480 480 485 783 27 370 523 773 630 630 478 478 958 747 984 984 984 874 874 317 723 173 581 159 247718 463291946 675 498 67 927 667 703 536 284692 562 454738 188 357 238 869 583 605 605 210 643 427 90 917 944 567 540 718 596 771 872 452 558 56 543 778 924 533 29 355 523 187 955 224 822 93 93 699 413 701 189 477893 669317 586 318 318 586 660 780 396 780 660 207 982 967 965 276800 677 483 483 485 658 816 140 682 749 390 763 915 293 908 163 780 693 631 462 462 307 597 197 907 447 501812 867 941 234 99 823 234799 264 264 427 730 235 678 642 15 677 826 717 341 987 850306 663 101 619 858 567 800 413 644 427 171 428 783 525 525 547 594 835 387 907 632 632 603 990 990 213 213 749 747 375 778 82 178310 682922 838610 262 778 308 478 418 142 58 538 118 876 876 22 967 799 608 511 391 981 584 507 654 762 715 10 979 653 20 199546 363 365 366 727366127 402 903 583 934 831294 331 850 850 333 930 930 694222 687222 956 908 557 763 343 550 944 789 490 678 149 663946 663 886 430 356 247 862 862 653 573 139 75 461 835114706 643 682223 773 327 426 327 451 933 595 958115 622 759 943 859 751 509 274 838 727 869 572 192 31 502 615 943 250 117252437 672957 837 357 77 798 798 798 318 32 607 728 442 603 307 523 528 12 619 288788 894 303 894 894 533 941 451 982190 989 972488 852 168 898 867 691 582 582 535 797 501 334 103 920293 399 951 859 464 452 893 154 283 645992 645 645 742286 874 742 872 367 372 187 955 670 559 670 173 437 438 570 922 570 795 42 42 42 355 979 221 627 420 836 831283 958 524 677 111 269 703346 957 48 773 957 726 910 595 824 824 766 895538 811 391766 690214 439 138 701 271 843 797404 907 202 351 788 694 588 522 879 522 717 573 141 478 286 727 776 94 917 392 773 870 531 966 528 389 485 243 486 738 55 738 245 245 567 519 656 392 392 166859 588 752 982 765 763 562 309 68 132 309 258 847258 728 941 607 957 663 370 368 502 951 981 307 70 654 236 930 720 720 804 714 826 826 714 333 837 558 511 955 703 792 53 322 342 342 884 716 754 92 173 822 413 572 87 207 968 357 379 483178 603 692 605 879 934 666 917 519 948 862 437 348 394 919 893 999 7 871 843 703 106 978 106 120 120 120917 459 790 418 533 622 330931 514 670 826267 677 380 474 474 19 502 668 413 788 346 762 66 811 557 876 127 139 175 547 787 415835 919475 213 238 238759 334543 363 802 726 152 562 775 514 999 669 894691 370 475978 834 150 150 994 332 703 693 643 462271 630 477 658 463 795 130994 694 188 946 486811 560 243 766979 821 175 895 648 648 77 747 579 331 411 711 838 922 418 845 845 762 507 82 258678 538 283 622 756 701 919 39 261 202 618202 228 228 859 174 759 989 874 598 691 495 549 461 535 918 941 231 231 814 658 776 979 91 475 272 994 454 262 754 226 751 670 320 255 559 295 687 499 67 372 330 823 330 795 367 751 428 717 34 354 406 742 859 488 381 893 447 447 787 103 552 813 552 490 675 471 490 226 690 620 620 535 235 514 44 582 582 692 293 453 917 909 631 606 147 768 149 768 682 682 420 706 848 821 735 312 312956 790 932 8 847 79 199 533 744 906 906 906 812 365 967 442 930 930 960 451 259 197621 116 653 327 612 142 725 730 739 403 487 821 224 223 579 933 679 317632 632 368 322 787 108932 439 903 797 389 548 574 917 764 727 308 898 557 204 608 653 869 332 989 596 492 980 684 908 221357525725957 837 621437285165 117 908 684 980 492 77 989 596 332869 608 45 653 557 898 204 764 727 308917 574 797 389 548 439 932 903 632 632 787 317 933 368 322 679 579 821 21 223 487 108 730 739 725 224 403 612 653 327 621 142 960 451 197 967 442 930 930259 812 744 906 906 906 365 847 932 533 956 116 790 848 199 312 312 821 735 706 768 420 768 682 682 917 692 453 909 631 606 293 582 582 79 620 620 149 147 535 690235 514 552 813 552 490 675 471 490 226 787 488 381 893 447 447 406 742 859 428 717 354103 751 367 795 372 330 823 330 499 6 687 295 559 320 751 255670 44 754 262 454 776 994 226 979 475 272 941 814 658 67 461 231 231 535 918 549 874 989 598 691 495 859 759 756 701 34 919 618 261 202 91 174 202 228845 845 228 762 507258678 538 283 622 711 838 922 418 747 579 895 821 648 648 766 331 411 946 811 979 560 486 994 243 694 175 795 477 658 463 82 630 188 643 693 994703462271 834130 332 978 475 894 669 691 999 150 775150 370 562 514 802 77 363 759 543 726 547 787 835 919 334 876 238 238 415 475 39 213 152557 668 811 788 762 175 413 346 502 677 127474 474 139 380 622 514 670 826 533 931 267 790 418 917 459 978 330 999 843 871 703 893 5 919 66 120437 120 120 106394 106 948 862 348 917 692 934 519 605 879 666 968 483 603 357 572 379 413 822 178 207 716 754 884 792 173 322 342 342 87 955 703 837 558 511 333 826 826 720 720 804 714 930 714 92 981 654 951 307 502 957 236 368 663 607 370 728 941 3 309 309 258 847258 765 763 562982 70 859 588 752 656 53 392 392 519 132 567 738 166 738 19 245528 245 389 870 486 966 917 392 773 776 485 243 531 717 478 727 573 879 788 588 522 694 286 522 68 907 797 404 701 843 351 141824 824 202439 538271 766 895 811 94 766 690 595 391 957 957 910 214 773 55 726 138 703 677 524 836 831 958 346 627 420 269 283 979 795 355 922 221 438 570 670 570 670 111 437 559 872 955 367 874 372 645992 645 645 187 742 742 464 173 893 286 452 951 859 283 797 920 399 501 334 535 293 691 154 582898 582 852 867 989 972 533 488 941 451 982 788 894 103894 894 303190 619 48 288 728 528 168 442 603 523 957 42 798 798607 798307 42 42 672 837 572 615 869 437 357 502 943318 8 838 250727 252 751 509 943 859 933 192 274 622 759 595 958 773 426 327 835 706 643327 682 451 653 461 117 573 862 862 223 356 886 247430663946 663 115 490 678 944 789 139 114763 550 956 908 343 77 930 930 694 557 687 333 831 903 850583 934 850 149 294 331 727 222 222 75 366 366 402 981 365 654 546 715 653 584 507 762 363 979 608 199 511 967 799 391 876 876 778 478682922 838610418 127 538 778 749 310 262 747 375 308 603 213 213632 632 178 835142 387990 990 907 525 525 31 547 594118 783 800 644 427 428 619 82 413 858 567 717 987 850 663 341 678 306 826171 677 642 58 32 427 730 941 823 235 799 264 501812 264 234 867 234 597 907 447 101780 693 631 462 462 908 763 915 307 749 197 816 99 682 390 293 485 658 163 965 800 677 483 483 660 780 780 660 586 982 967 586 701 396 893 276 477 669 207 318 318 699 413 317 822 140 955 533 189 355 523 224 924 7 778 872 543 187558 452 771 596 540 718 567 93 917 93 944 22427 605 605 643 869 583210 357 238 536 692 562 90 454738 927 703 284 675 667 188 463 946 498 581 291 718 723 247 984 984 984 874 874 56 958 317 159 478 478 747 173 773 630 630 20 485 910 783 523 480 480 370 933 426 426 677 456 456 823 442 283 451846 930 339 67 862 847 908 869 682 643 262 728 178 754 474 389 306 903 774 511 195 391 895 989 778 655 221 156 987138 138987 138 828 573 624 382 742 893 727 367 447 235 702 702 29 308 934 405 15 91 512 358 415 850 773 507 768 708 768 682 943 682 557 12 883 279 380 658 466 54 571 237 202 967 341 835 523 861 861 549 322 990 990 574 984 704128 919 583 711 610 954 379 413 812 151 548 787598 10 435 715 27 869 53 282 336 336 867 298 814 298 644 176989 951187 787 495 742 909 581 68 102834 514 559 453 943378 677 860 43 699271 980 588 522 754 490 522775 296104 893 855 319 741 741 618 63 166939 125368 427 912 810487246 87 762 810 173 922 536 200632 619 115 260 147 342691 848 454 847 365 293968 931 223 183582 488629 533404 726 267 788965 845680 315423547 615483367 886 -3 687843 927 763 -2 – p.30/53 Towards Steiner’s Porism. What happens with the “Shoemaker’s knife” if the two circles are no longer tangent ? Then the line of common power is no longer tangent:

C2

C1

Steiner 1826, Crelle Journal 1, p.288

Long search for an interesting theorem also in this case ...

– p.31/53 Steiner’s Porism (Crelle 1, 1826, p.254, Art.22) “... nachstehende merkwürdige Folgerungen ziehen.”

C1 Γ Γ1 9 Γ1 Γ 9 Γ2 Γ2 Γ C2 C2 Γ3 8 Γ3 Γ4 Γ4 Γ8 Γ5 Γ5 Γ7 Γ6 Γ6 Γ7 C1

If the space between two fixed circles C1 and C2 is filled with circles Γ1, Γ2, ... all touching each other and the circles, and if for some n Γn+1 =Γ1, then the same holds for any initial position of Γ1. Exists simple proof with inversion map; known to Steiner ??? – p.32/53 Excursion: Stereographic projection. N α1 S2 R2 N O α2 A α3 α4 A′ N B

A Proj. from pole to equator plane: γ maps circles to circles (Ptolemy) E • (rediscovered Miquel 1838) B γ′ A′ preserves angles (Halley 1696) F •

– p.33/53 Inversion Map P P : N 3 7→ 4 D composition stereogr. map S P3 D with stereogr. map N D →P → → → 4 x4 preserves circles and angles ! x3 ⇒ 2 P1 1 O P3 P2 P OP3 OP4 = R , P1P2P3P4 harm. 4 ⇒ · P4

S

P3

O P3 P4

– p.34/53 SteinerPorism becometriviality and Kissing Circles after inversion !

D ′ ′ A B C ′ B A O C D′

O O

– p.35/53 Another Excursion: V J.-V. Poncelet 1812 (Russia) – 1822 (publ): B Given triangle OP Q A given “unit” point U, ′ find central projection B transforming OPQU A′ to orthonormal grid ↓

R Q P

U U ′ O O′ – p.36/53 is possible: place QRP horizontally and determine C by Eucl. III.20: Q Q R R P C ◦ 45 45◦ D P C

U

Q′ ′ O U ′ R O′

P ′

– p.37/53 transforms circles to conics and vice-versa: Q

C

P

O O′

– p.38/53 Pappus VII.143 and Desargues’ theorem becomes triviality: A′ B′ C′ ′ ′ B A C′ N N M L M L d a 1 1 C 1 1 b B c C B A L ′ N M A C C′ A′ L B′ ′ M C A

A ′ B B N C A F B F – p.39/53 ... as well as Pascal’s theorem (“hexagramma mysticum” Eucl.III.21) : ⇒ KM L P2

P P3 2 γ P1 P3 P1

P4 P4 P6 γ P6 P P5 5

– p.40/53 The Cross Ratio: Remember the def. of harmonic mean :

(Pappus, Book III, p. 12 of ed. 1660) P1 P3 P2 P4 x1 x3 x2 x4 q e d h p q p x x x x h = harm.m. of p, q = 3 − 1 = 4 − 1 . ⇔ e d ⇔ − x3 x2 x4 x2 or if the cross-ratio − − x x x x XR (P , P , P , P )= 3 − 1 : 4 − 1 = 1 . 1 2 3 4 x x x x − 3 − 2 4 − 2 The four points P , P , P , P are then called harmonic. 1 2 3 4 – p.41/53 J.Steiner, “Systematische Entwickelung ...” (240 pages, 1832): Theorem (Pappus VII.129). The cross-ratio of four points P P P P x x x x XR (P , P , P , P )= 1 3 : 1 4 = 3 − 1 : 4 − 1 1 2 3 4 P P P P x x x x 2 3 2 4 3 − 2 4 − 2 is invariant under projective transformations. Steiner’s Proof: C sine rule: P P sin a a sin β P ′ 1 3 = 1 3 , 4 P2P3 sin a2a3 · sin α ′ P2 ′ P1P4 sin a1a4 sin β ′ P3 = . P1 P2P4 sin a2a4 · sin α sin a a sin a a XR = 1 3 : 1 4 . P1 α P2 β P3 P4 ⇒ sin a2a3 sin a2a4 a1 a2 a3 a4 XR depends only on angles at C, XR (a , a , a , a ). ⇒ 1 2 3 4 – p.42/53 Example: The Butterfly. 4 points U, A, B′,U ′ on circle; (Eucl. III.2: α = α, β = β,γ = γ and Thm. Steiner) ⇒ XR (UB,AB,B′B,U ′B)= XR (UA′,AA′, B′A′,U ′A′) 1 1 1 1 XR (U,F,C,U ′)= XR (U, C, F ′,U ′) or + = + . ⇒ m q p n A

B′ same is true n q p m for any conic U U ′ (after projection) F C F ′ α “Steiner’s Theorem” β γ B γ α β

A′ – p.43/53 The Triangle. Steiner’s view of the Euler line.

R 2 a 1 a 3 3 r M O N G r 4 H 3 a

a a ′ A 2a C F C′ A B O B H′ =O O′ =N G G B′ ′ ′ A B H A′ H D K E C L C ABC A′B′C′ = medial red., side bisectors altitudes, circumcircle→ R nine point circle r = R, → → 2 G inner, H outer sim. center aligned, GO = 2HG,NO = HN– p.44/53. ⇒ The Simson Line. (F.-J. Servois 1813): Géométrie pratique: “le théorème suivant, qui est, je crois, de Simson” (it was not!!): P on circumcircle; D,E,F orth,proj.to three sides aligned. ⇒ A A R R F α F B B D D C C δ E E δ (a) (b) P P Proof (Servois): draw circles with diam. PA,PB,PC.; Thales circles: •D,E,F lie on them; • Eucl. III.22: δ = δ (opposite to α); • grey angles at P equal; Eucl.III.21: grey angles at D equal.– p.45/53 • Steiner Deltoid. (Crelle-Borchardt 1857, “... schon beim geradlinigen Dreieck ...”) A

H R N R′ O F

′ B D F C ′ Q Q G E

P P ′ – p.46/53 rot. on circumcirc., rot. on nine-point circ, ang. ′ 1 ang. ′ what happens? A

Q Q τ C t R N P

B

– p.47/53 1 either created by point P on rolling circle r = 3

D S C V t Q 2t t t/2 t P S U A

S

or by diameter of rolling circle 2 VU r = 3 – p.48/53 Our last challenge of Steiner for his readers. (Crelle 1846) A

r C

B O r

D r radius of oscul. circ. of ellipse, r “nach aussen verlängert...”, ----- circle of radius √a2 + b2; show that ABCD are harmonic!

Steiner: no proof, no hint! – p.49/53 Our last challenge of Steiner for his readers. (Crelle 1846) A A

′ r r A C r′ C′ B B O r′ r O ρ S r h

F D′ D r radius of oscul. circ. of ellipse, D r “nach aussen verlängert...”, Proof. D′OBC′A′ diam. of Monge circle, b2 a2 ----- circle of radius √a2 + b2; coord. F =(c3(a ), s3(b )) − a − b show that ABCD are harmonic! and B =(ca, sb) known since Newton, ′ 2 2 Steiner: no proof, no hint! have to show ρ(ρ + r ) = a + b . – p.49/53 ... and a very last ... Crelle (1846b): Given point D on ellipse (other than a vertex). Then exist three points A, B, C on the same ellipse, whose osculatory circle passes through D. Moreover, A, B, C, D are cocyclic.

B

A

D

C

– p.50/53 ... and a very last ... Crelle (1846b): Given point D on ellipse (other than a vertex). Then exist three points A, B, C on the same ellipse, whose osculatory circle passes through D. Moreover, A, B, C, D are cocyclic. Hint for solution:

B B A A ◦ 120 α ◦ 3α 120

D D C C

– p.50/53 Little autobiographic note of the speaker: When playing around, at the age of 17, with a stone attached to a rope, he discovered that N A

α 3α angle BON = 3 angle NOA O B

which he verified analytically. He now knows that this is nearly the same as above result of Steiner :-)

– p.51/53 Postscriptum (“Schlussbemerkung”): “In den Abhandlungen ... [Steiners] ... findet sich eine solche Ueberfülle ohne Beweis ausgesprochener Sätze, dass ... auf eine eingehende Prüfung ihrer Richtigkeit verzichtet werden musste.” W[eierstrass].

– p.52/53 Towards the end of his life, Steiner (unmarried professor in Berlin) became rich. In his last will, he gave one third of his fortune to the village of Utzenstorf, so that these children would get a better school education than he had.

– p.53/53