The Rise of Projective Geometry II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
The Fact of Modern Mathematics: Geometry, Logic, and Concept Formation in Kant and Cassirer
THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER by Jeremy Heis B.A., Michigan State University, 1999 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 UNIVERSITY OF PITTSBURGH COLLEGE OF ARTS AND SCIENCES This dissertation was presented by Jeremy Heis It was defended on September 5, 2007 and approved by Jeremy Avigad, Associate Professor, Philosophy, Carnegie Mellon University Stephen Engstrom, Associate Professor, Philosophy, University of Pittsburgh Anil Gupta, Distinguished Professor, Philosophy, University of Pittsburgh Kenneth Manders, Associate Professor, Philosophy, University of Pittsburgh Thomas Ricketts, Professor, Philosophy, University of Pittsburgh Dissertation Advisor: Mark Wilson, Professor, Philosophy, University of Pittsburgh ii Copyright © by Jeremy Heis 2007 iii THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER Jeremy Heis, PhD University of Pittsburgh, 2007 It is now commonly accepted that any adequate history of late nineteenth and early twentieth century philosophy—and thus of the origins of analytic philosophy—must take seriously the role of Neo-Kantianism and Kant interpretation in the period. This dissertation is a contribution to our understanding of this interesting but poorly understood stage in the history of philosophy. Kant’s theory of the concepts, postulates, and proofs of geometry was informed by philosophical reflection on diagram-based geometry in the Greek synthetic tradition. However, even before the widespread acceptance of non-Euclidean geometry, the projective revolution in nineteenth century geometry eliminated diagrams from proofs and introduced “ideal” elements that could not be given a straightforward interpretation in empirical space. -
The Dual Theorem Relative to the Simson's Line
THE DUAL THEOREM RELATIVE TO THE SIMSON’S LINE Prof. Ion Pătrașcu Frații Buzești College, Craiova, Romania Translated by Prof. Florentin Smarandache University of New Mexico, Gallup, NM 87301, USA Abstract In this article we elementarily prove some theorems on the poles and polars theory, we present the transformation using duality and we apply this transformation to obtain the dual theorem relative to the Samson’s line. I. POLE AND POLAR IN RAPPORT TO A CIRCLE Definition 1. Considering the circle COR(,), the point P in its plane PO≠ and uuur uuuur the point P ' such that OP⋅= OP' R2 . It is said about the perpendicular p constructed in the point P ' on the line OP that it is the point’s P polar, and about the point P that it is the line’s p pole. Observations M 1. If the point P belongs to the circle, its polar is the tangent in P to the circle U COR(,). uuur uuuur P' Indeed, the relation OP⋅= OP' R2 gives that PP' = . OP 2. If P is interior to the circle, its polar p is a V line exterior to the circle. 3. If P and Q are two points such that p m(POQ )= 90o , and p,q are their polars, from the definition results that p ⊥ q . Fig. 1 Proposition 1. If the point P is external to the circle COR( , ) , its polar is determined by the contact points with the circle of the tangents constructed from P to the circle Proof Let U and V be the contact points of the tangents constructed from P to the circle COR( , ) (see fig.1). -
Chasles' Bad Relations
Chasles' bad relations Christophe Ritzenthaler September 10, 2004 Michel Chasles (1793-1880) 1 Introduction We give here a very atypical orientation to Chasles' life. In particular we will not deal with the ordinary aspects of his life and work. This can be found in many places (in particular [1]). We mention only that, as a mathemati- cian, he synthesized and generalized the whole geometric knowledge of his time (projective geometry, conic sections, duality and homography) - even if sometimes, (as he didn't speak German), he merely rediscovered some of these results - ([3]). Also, as a historian of mathematics, he wrote a history of geometry ([5] and two controversial essays ( [2],[4]). The following list of honors should convince us of the seriousness of this character : Membre de l'Institut, professeur de Géométrie supérieure à la faculté des Sciences de Paris, membre de la Société royale de Londres, membre honoraire de la Société royale d'Irlande, de la Société philosophique de Cambridge, de l'Académie impériale des Sciences de Saint-Pétersbourg, associé de l'Académie royale des Sciences de Brux- elles,correspondant de l'académie ponticale des Nuovi Lincei de Rome, membre de lAcadémie royale de Berlin, de l'Académie royale des Sciences de Turin, de l'Académie royale des Sciences de Naples, de l'Académie de Lincei de Rome, de la Société royale danoise des Sciences de Copenhague, de l'Académie royale des Sciences de Stockholm, de l'Académie des Sciences de l'Institut de Bologne, de l'Institut roual lombard de Milan, de la Société italienne des Sciences de Modène, correspondant de l'Académie royale des Sciences de Madrid, de l'Institut vénitien des Sciences, Lettres et Arts, membre honoraire de l'Académie royale des Sciences, Lettres et Arts de Modène, de l'Athénée vénitien des Sciences et Lettres, de l'Université d'Odessa, de l'Académie américaine des Sciences et Arts de Boston, de l'Académie nationale des sciences d'Amérique. -
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe -
The Trigonometry of Hyperbolic Tessellations
Canad. Math. Bull. Vol. 40 (2), 1997 pp. 158±168 THE TRIGONOMETRY OF HYPERBOLIC TESSELLATIONS H. S. M. COXETER ABSTRACT. For positive integers p and q with (p 2)(q 2) Ù 4thereis,inthe hyperbolic plane, a group [p, q] generated by re¯ections in the three sides of a triangle ABC with angles ôÛp, ôÛq, ôÛ2. Hyperbolic trigonometry shows that the side AC has length †,wherecosh†≥cÛs,c≥cos ôÛq, s ≥ sin ôÛp. For a conformal drawing inside the unit circle with centre A, we may take the sides AB and AC to run straight along radii while BC appears as an arc of a circle orthogonal to the unit circle.p The circle containing this arc is found to have radius 1Û sinh †≥sÛz,wherez≥ c2 s2, while its centre is at distance 1Û tanh †≥cÛzfrom A. In the hyperbolic triangle ABC,the altitude from AB to the right-angled vertex C is ê, where sinh ê≥z. 1. Non-Euclidean planes. The real projective plane becomes non-Euclidean when we introduce the concept of orthogonality by specializing one polarity so as to be able to declare two lines to be orthogonal when they are conjugate in this `absolute' polarity. The geometry is elliptic or hyperbolic according to the nature of the polarity. The points and lines of the elliptic plane ([11], x6.9) are conveniently represented, on a sphere of unit radius, by the pairs of antipodal points (or the diameters that join them) and the great circles (or the planes that contain them). The general right-angled triangle ABC, like such a triangle on the sphere, has ®ve `parts': its sides a, b, c and its acute angles A and B. -
Perspectives on Projective Geometry • Jürgen Richter-Gebert
Perspectives on Projective Geometry • Jürgen Richter-Gebert Perspectives on Projective Geometry A Guided Tour Through Real and Complex Geometry 123 Jürgen Richter-Gebert TU München Zentrum Mathematik (M10) LS Geometrie Boltzmannstr. 3 85748 Garching Germany [email protected] ISBN 978-3-642-17285-4 e-ISBN 978-3-642-17286-1 DOI 10.1007/978-3-642-17286-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921702 Mathematics Subject Classification (2010): 51A05, 51A25, 51M05, 51M10 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation,reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) About This Book Let no one ignorant of geometry enter here! Entrance to Plato’s academy Once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice, “without pictures or conversations?” Lewis Carroll, Alice’s Adventures in Wonderland Geometry is the mathematical discipline that deals with the interrelations of objects in the plane, in space, or even in higher dimensions. -
9.-PARABOLA-THEORY.Pdf
10. PARABOLA 1. INTRODUCTION TO CONIC SECTIONS 1.1 Geometrical Interpretation Conic section, or conic is the locus of a point which moves in a plane such that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line. (a) The fixed point is called the Focus. (b) The fixed straight line is called the Directrix. (c) The constant ratio is called the Eccentricity denoted by e. (d) The line passing through the focus and perpendicular to the directrix is called the Axis. (e) The point of intersection of a conic with its axis is called the Vertex. Sections on right circular cone by different planes (a) Section of a right circular cone by a plane passing through its vertex is a pair of straight lines passing through the vertex as shown in the figure. (b) Section of a right circular cone by a plane parallel to its base is a circle. (c) Section of a right circular cone by a plane parallel to a generator of the cone is a parabola. (d) Section of a right circular cone by a plane neither parallel to a side of the cone nor perpendicular to the axis of the cone is an ellipse. (e) Section of a right circular cone by a plane parallel to the axis of the cone is an ellipse or a hyperbola. 3D View: Circle Ellipse Parabola Hyperbola Figure 10.1 1.2 Conic Section as a Locus of a Point If a point moves in a plane such that its distances from a fixed point and from a fixed line always bear a constant ratio 'e' then the locus of the point is a conic section of the eccentricity e (focus-directrix property). -
Chapter 9 the Geometrical Calculus
Chapter 9 The Geometrical Calculus 1. At the beginning of the piece Erdmann entitled On the Universal Science or Philosophical Calculus, Leibniz, in the course of summing up his views on the importance of a good characteristic, indicates that algebra is not the true characteristic for geometry, and alludes to a “more profound analysis” that belongs to geometry alone, samples of which he claims to possess.1 What is this properly geometrical analysis, completely different from algebra? How can we represent geometrical facts directly, without the mediation of numbers? What, finally, are the samples of this new method that Leibniz has left us? The present chapter will attempt to answer these questions.2 An essay concerning this geometrical analysis is found attached to a letter to Huygens of 8 September 1679, which it accompanied. In this letter, Leibniz enumerates his various investigations of quadratures, the inverse method of tangents, the irrational roots of equations, and Diophantine arithmetical problems.3 He boasts of having perfected algebra with his discoveries—the principal of which was the infinitesimal calculus.4 He then adds: “But after all the progress I have made in these matters, I am no longer content with algebra, insofar as it gives neither the shortest nor the most elegant constructions in geometry. That is why... I think we still need another, properly geometrical linear analysis that will directly express for us situation, just as algebra expresses magnitude. I believe I have a method of doing this, and that we can represent figures and even 1 “Progress in the art of rational discovery depends for the most part on the completeness of the characteristic art. -
PROJECTIVE GEOMETRY Contents 1. Basic Definitions 1 2. Axioms Of
PROJECTIVE GEOMETRY KRISTIN DEAN Abstract. This paper investigates the nature of finite geometries. It will focus on the finite geometries known as projective planes and conclude with the example of the Fano plane. Contents 1. Basic Definitions 1 2. Axioms of Projective Geometry 2 3. Linear Algebra with Geometries 3 4. Quotient Geometries 4 5. Finite Projective Spaces 5 6. The Fano Plane 7 References 8 1. Basic Definitions First, we must begin with a few basic definitions relating to geometries. A geometry can be thought of as a set of objects and a relation on those elements. Definition 1.1. A geometry is denoted G = (Ω,I), where Ω is a set and I a relation which is both symmetric and reflexive. The relation on a geometry is called an incidence relation. For example, consider the tradional Euclidean geometry. In this geometry, the objects of the set Ω are points and lines. A point is incident to a line if it lies on that line, and two lines are incident if they have all points in common - only when they are the same line. There is often this same natural division of the elements of Ω into different kinds such as the points and lines. Definition 1.2. Suppose G = (Ω,I) is a geometry. Then a flag of G is a set of elements of Ω which are mutually incident. If there is no element outside of the flag, F, which can be added and also be a flag, then F is called maximal. Definition 1.3. A geometry G = (Ω,I) has rank r if it can be partitioned into sets Ω1,..., Ωr such that every maximal flag contains exactly one element of each set. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics.