The Synthetic Treatment of Conics at the Present Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Can One Design a Geometry Engine? on the (Un) Decidability of Affine
Noname manuscript No. (will be inserted by the editor) Can one design a geometry engine? On the (un)decidability of certain affine Euclidean geometries Johann A. Makowsky Received: June 4, 2018/ Accepted: date Abstract We survey the status of decidabilty of the consequence relation in various ax- iomatizations of Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler’s theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A) The first order consequence relations for Wu’s orthogonal and metric geometries (Wen- Ts¨un Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991) are undecidable. It was already known that the universal theory of Hilbert planes and Wu’s orthogonal geom- etry is decidable. We show here using elementary model theoretic tools that (B) the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable. The techniques used were all known to experts in mathematical logic and geometry in the past but no detailed proofs are easily accessible for practitioners of symbolic computation or automated theorem proving. Keywords Euclidean Geometry · Automated Theorem Proving · Undecidability arXiv:1712.07474v3 [cs.SC] 1 Jun 2018 J.A. Makowsky Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel E-mail: [email protected] 2 J.A. -
The Dual Theorem Relative to the Simson's Line
THE DUAL THEOREM RELATIVE TO THE SIMSON’S LINE Prof. Ion Pătrașcu Frații Buzești College, Craiova, Romania Translated by Prof. Florentin Smarandache University of New Mexico, Gallup, NM 87301, USA Abstract In this article we elementarily prove some theorems on the poles and polars theory, we present the transformation using duality and we apply this transformation to obtain the dual theorem relative to the Samson’s line. I. POLE AND POLAR IN RAPPORT TO A CIRCLE Definition 1. Considering the circle COR(,), the point P in its plane PO≠ and uuur uuuur the point P ' such that OP⋅= OP' R2 . It is said about the perpendicular p constructed in the point P ' on the line OP that it is the point’s P polar, and about the point P that it is the line’s p pole. Observations M 1. If the point P belongs to the circle, its polar is the tangent in P to the circle U COR(,). uuur uuuur P' Indeed, the relation OP⋅= OP' R2 gives that PP' = . OP 2. If P is interior to the circle, its polar p is a V line exterior to the circle. 3. If P and Q are two points such that p m(POQ )= 90o , and p,q are their polars, from the definition results that p ⊥ q . Fig. 1 Proposition 1. If the point P is external to the circle COR( , ) , its polar is determined by the contact points with the circle of the tangents constructed from P to the circle Proof Let U and V be the contact points of the tangents constructed from P to the circle COR( , ) (see fig.1). -
Finite Projective Geometries 243
FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig. -
Geometry: Euclid and Beyond, by Robin Hartshorne, Springer-Verlag, New York, 2000, Xi+526 Pp., $49.95, ISBN 0-387-98650-2
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 39, Number 4, Pages 563{571 S 0273-0979(02)00949-7 Article electronically published on July 9, 2002 Geometry: Euclid and beyond, by Robin Hartshorne, Springer-Verlag, New York, 2000, xi+526 pp., $49.95, ISBN 0-387-98650-2 1. Introduction The first geometers were men and women who reflected on their experiences while doing such activities as building small shelters and bridges, making pots, weaving cloth, building altars, designing decorations, or gazing into the heavens for portentous signs or navigational aides. Main aspects of geometry emerged from three strands of early human activity that seem to have occurred in most cultures: art/patterns, navigation/stargazing, and building structures. These strands developed more or less independently into varying studies and practices that eventually were woven into what we now call geometry. Art/Patterns: To produce decorations for their weaving, pottery, and other objects, early artists experimented with symmetries and repeating patterns. Later the study of symmetries of patterns led to tilings, group theory, crystallography, finite geometries, and in modern times to security codes and digital picture com- pactifications. Early artists also explored various methods of representing existing objects and living things. These explorations led to the study of perspective and then projective geometry and descriptive geometry, and (in the 20th century) to computer-aided graphics, the study of computer vision in robotics, and computer- generated movies (for example, Toy Story ). Navigation/Stargazing: For astrological, religious, agricultural, and other purposes, ancient humans attempted to understand the movement of heavenly bod- ies (stars, planets, Sun, and Moon) in the apparently hemispherical sky. -
9.-PARABOLA-THEORY.Pdf
10. PARABOLA 1. INTRODUCTION TO CONIC SECTIONS 1.1 Geometrical Interpretation Conic section, or conic is the locus of a point which moves in a plane such that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line. (a) The fixed point is called the Focus. (b) The fixed straight line is called the Directrix. (c) The constant ratio is called the Eccentricity denoted by e. (d) The line passing through the focus and perpendicular to the directrix is called the Axis. (e) The point of intersection of a conic with its axis is called the Vertex. Sections on right circular cone by different planes (a) Section of a right circular cone by a plane passing through its vertex is a pair of straight lines passing through the vertex as shown in the figure. (b) Section of a right circular cone by a plane parallel to its base is a circle. (c) Section of a right circular cone by a plane parallel to a generator of the cone is a parabola. (d) Section of a right circular cone by a plane neither parallel to a side of the cone nor perpendicular to the axis of the cone is an ellipse. (e) Section of a right circular cone by a plane parallel to the axis of the cone is an ellipse or a hyperbola. 3D View: Circle Ellipse Parabola Hyperbola Figure 10.1 1.2 Conic Section as a Locus of a Point If a point moves in a plane such that its distances from a fixed point and from a fixed line always bear a constant ratio 'e' then the locus of the point is a conic section of the eccentricity e (focus-directrix property). -
Relativistic Spacetime Structure
Relativistic Spacetime Structure Samuel C. Fletcher∗ Department of Philosophy University of Minnesota, Twin Cities & Munich Center for Mathematical Philosophy Ludwig Maximilian University of Munich August 12, 2019 Abstract I survey from a modern perspective what spacetime structure there is according to the general theory of relativity, and what of it determines what else. I describe in some detail both the “standard” and various alternative answers to these questions. Besides bringing many underexplored topics to the attention of philosophers of physics and of science, metaphysicians of science, and foundationally minded physicists, I also aim to cast other, more familiar ones in a new light. 1 Introduction and Scope In the broadest sense, spacetime structure consists in the totality of relations between events and processes described in a spacetime theory, including distance, duration, motion, and (more gener- ally) change. A spacetime theory can attribute more or less such structure, and some parts of that structure may determine other parts. The nature of these structures and their relations of determi- nation bear on the interpretation of the theory—what the world would be like if the theory were true (North, 2009). For example, the structures of spacetime might be taken as its ontological or conceptual posits, and the determination relations might indicate which of these structures is more fundamental (North, 2018). Different perspectives on these questions might also reveal structural similarities with other spacetime theories, providing the resources to articulate how the picture of the world that that theory provides is different (if at all) from what came before, and might be different from what is yet to come.1 ∗Juliusz Doboszewski, Laurenz Hudetz, Eleanor Knox, J. -
Read to the Infinite and Back Again
TO THE INFINITE AND BACK AGAIN Part I Henrike Holdrege A Workbook in Projective Geometry To the Infinite and Back Again A Workbook in Projective Geometry Part I HENRIKE HOLDREGE EVOLVING SCIENCE ASSOCIATION ————————————————— A collaboration of The Nature Institute and The Myrin Institute 2019 Copyright 2019 Henrike Holdrege All rights reserved. Second printing, 2019 Published by the Evolving Science Association, a collaboration of The Nature Institute and The Myrin Institute The Nature Institute: 20 May Hill Road, Ghent, NY 12075 natureinstitute.org The Myrin Institute: 187 Main Street, Great Barrington, MA 01230 myrin.org ISBN 978-0-9744906-5-6 Cover painting by Angelo Andes, Desargues 10 Lines 10 Points This book, and other Nature Institute publications, can be purchased from The Nature Institute’s online bookstore: natureinstitute.org/store or contact The Nature Institute: [email protected] or 518-672-0116. Table of Contents INTRODUCTION 1 PREPARATIONS 4 TEN BASIC ENTITIES 6 PRELUDE Form and Forming 7 CHAPTER 1 The Harmonic Net and the Harmonic Four Points 11 INTERLUDE The Infinitely Distant Point of a Line 23 CHAPTER 2 The Theorem of Pappus 27 INTERLUDE A Triangle Transformation 36 CHAPTER 3 Sections of the Point Field 38 INTERLUDE The Projective versus the Euclidean Point Field 47 CHAPTER 4 The Theorem of Desargues 49 INTERLUDE The Line at Infinity 61 CHAPTER 5 Desargues’ Theorem in Three-dimensional Space 64 CHAPTER 6 Shadows, Projections, and Linear Perspective 78 CHAPTER 7 Homologies 89 INTERLUDE The Plane at Infinity 96 CLOSING 99 ACKNOWLEDGMENTS 101 BIBLIOGRAPHY 103 I n t r o d u c t i o n My intent in this book is to allow you, the reader, to engage with the fundamental concepts of projective geometry. -
Synthetic Geometry
Chapter 2 4 Synthetic Geometry Synthetic geometry is that kind of geometry which deals purely with geometric objects directly endowed with geometrical properties by abstract axioms. This is in contrast with a procedure which constructs geometric objects from other things; as, for example, analytic geometry which, with the artifice of a coordinate system, models points by n-tuples of numbers. Synthetic geometry is the kind of geometry for which Euclid is famous and that we all learned in high school. Modern synthetic geometry, however, has a more logically complete and consistent foundation. In this chapter the pattern of this foundation will be adapted, informed by the previous physical considerations, to develop a synthetic system of axioms which do not entail such things as uniformity or isotropy. This geometry is a global one but it is hoped that its elaboration, like that of Euclidean geometry, will be instructive for the development of a similar, but more general, local theory. 2.1 Incidence Geometry The most basic of geometrical notions are introduced by the concept of an incidence geometry. Assuming basic ideas from set theory, it is abstractly defined in terms of a set P whose elements will be called points and a collection of subsets L of P called lines satisfying three axioms. Axiom 1: Every line contains at least two points. Axiom 2: There are three points which are not all contained in one line. Axiom 3: There is a unique line containing any two points. The points referred to in these axioms are, of course, all distinct. Generally, points will be denoted by capital letters from beginning or middle of the alphabet and lines will be denoted by small letters from the middle of the alphabet. -
A Gallery of Conics by Five Elements
Forum Geometricorum Volume 14 (2014) 295–348. FORUM GEOM ISSN 1534-1178 A Gallery of Conics by Five Elements Paris Pamfilos Abstract. This paper is a review on conics defined by five elements, i.e., either lines to which the conic is tangent or points through which the conic passes. The gallery contains all cases combining a number (n) of points and a number (5 − n) of lines and also allowing coincidences of some points with some lines. Points and/or lines at infinity are handled as particular cases. 1. Introduction In the following we review the construction of conics by five elements: points and lines, briefly denoted by (αP βT ), with α + β =5. In these it is required to construct a conic passing through α given points and tangent to β given lines. The six constructions, resulting by giving α, β the values 0 to 5 and considering the data to be in general position, are considered the most important ([18, p. 387]), and are to be found almost on every book about conics. It seems that constructions for which some coincidences are allowed have attracted less attention, though they are related to many interesting theorems of the geometry of conics. Adding to the six main cases those with the projectively different possible coincidences we land to 12 main constructions figuring on the first column of the classifying table below. The six added cases can be considered as limiting cases of the others, in which a point tends to coincide with another or with a line. The twelve main cases are the projectively inequivalent to which every other case can be reduced by means of a projectivity of the plane. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. -
Pencils of Conics
Chaos\ Solitons + Fractals Vol[ 8\ No[ 6\ pp[ 0960Ð0975\ 0887 Þ 0887 Elsevier Science Ltd[ All rights reserved Pergamon Printed in Great Britain \ 9859Ð9668:87 ,08[99 ¦ 9[99 PII] S9859!9668"86#99978!0 Pencils of Conics] a Means Towards a Deeper Understanding of the Arrow of Time< METOD SANIGA Astronomical Institute\ Slovak Academy of Sciences\ SK!948 59 Tatranska Lomnica\ The Slovak Republic "Accepted 7 April 0886# Abstract*The paper aims at giving a su.ciently complex description of the theory of pencil!generated temporal dimensions in a projective plane over reals[ The exposition starts with a succinct outline of the mathematical formalism and goes on with introducing the de_nitions of pencil!time and pencil!space\ both at the abstract "projective# and concrete "a.ne# levels[ The structural properties of all possible types of temporal arrows are analyzed and\ based on symmetry principles\ the uniqueness of that mimicking best the reality is justi_ed[ A profound connection between the character of di}erent {ordinary| arrows and the number of spatial dimensions is revealed[ Þ 0887 Elsevier Science Ltd[ All rights reserved 0[ INTRODUCTION The depth of our penetration into the problem is measured not by the state of things on the frontier\ but rather how far away the frontier lies[ One of the most pronounced examples of such a situation concerns\ beyond any doubt\ the nature of time[ What we have precisely in mind here is a {{puzzling discrepancy between our perception of time and what modern physical theory tells us to believe|| ð0Ł\ see -
THE HESSE PENCIL of PLANE CUBIC CURVES 1. Introduction In
THE HESSE PENCIL OF PLANE CUBIC CURVES MICHELA ARTEBANI AND IGOR DOLGACHEV Abstract. This is a survey of the classical geometry of the Hesse configuration of 12 lines in the projective plane related to inflection points of a plane cubic curve. We also study two K3surfaceswithPicardnumber20whicharise naturally in connection with the configuration. 1. Introduction In this paper we discuss some old and new results about the widely known Hesse configuration of 9 points and 12 lines in the projective plane P2(k): each point lies on 4 lines and each line contains 3 points, giving an abstract configuration (123, 94). Through most of the paper we will assume that k is the field of complex numbers C although the configuration can be defined over any field containing three cubic roots of unity. The Hesse configuration can be realized by the 9 inflection points of a nonsingular projective plane curve of degree 3. This discovery is attributed to Colin Maclaurin (1698-1746) (see [46], p. 384), however the configuration is named after Otto Hesse who was the first to study its properties in [24], [25]1. In particular, he proved that the nine inflection points of a plane cubic curve form one orbit with respect to the projective group of the plane and can be taken as common inflection points of a pencil of cubic curves generated by the curve and its Hessian curve. In appropriate projective coordinates the Hesse pencil is given by the equation (1) λ(x3 + y3 + z3)+µxyz =0. The pencil was classically known as the syzygetic pencil 2 of cubic curves (see [9], p.