An Optional Apu for Passenger Aircraft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Pilot – Small Unmanned Aircraft Systems Study Guide
F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................ -
Easy Access Rules for Auxiliary Power Units (CS-APU)
APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document. -
Cranfield University Xue Longxian Actuation
CRANFIELD UNIVERSITY XUE LONGXIAN ACTUATION TECHNOLOGY FOR FLIGHT CONTROL SYSTEM ON CIVIL AIRCRAFT SCHOOL OF ENGINEERING MSc by Research THESIS CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING MSc by Research THESIS Academic Year 2008-2009 XUE LONGXIAN Actuation Technology for Flight Control System on Civil Aircraft Supervisor: Dr. C. P. Lawson Prof. J. P. Fielding January 2009 This thesis is submitted in fulfilment of the requirements for the degree of Master of Science © Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ABSTRACT This report addresses the author’s Group Design Project (GDP) and Individual Research Project (IRP). The IRP is discussed primarily herein, presenting the actuation technology for the Flight Control System (FCS) on civil aircraft. Actuation technology is one of the key technologies for next generation More Electric Aircraft (MEA) and All Electric Aircraft (AEA); it is also an important input for the preliminary design of the Flying Crane, the aircraft designed in the author’s GDP. Information regarding actuation technologies is investigated firstly. After initial comparison and engineering consideration, Electrohydrostatic Actuation (EHA) and variable area actuation are selected for further research. The tail unit of the Flying Crane is selected as the case study flight control surfaces and is analysed for the requirements. Based on these requirements, an EHA system and a variable area actuation system powered by localised hydraulic systems are designed and sized in terms of power, mass and Thermal Management System (TMS), and thereafter the reliability of each system is estimated and the safety is analysed. -
Development and Flight Test Experiences with a Flight-Crucial Digital Control System
NASA Technical Paper 2857 1 1988 Development and Flight Test Experiences With a Flight-Crucial Digital Control System Dale A. Mackall Ames Research Center Dryden Flight Research Facility Edwards, Calgornia I National Aeronautics I and Space Administration I Scientific and Technical Information Division I CONTENTS Page ~ SUMMARY ................................... 1 I 1 INTRODUCTION . 1 2 NOMENCLATURE . 2 3 SYSTEM SPECIFICATION . 5 3.1 Control Laws and Handling Qualities ................. 5 3.2 Reliability and Fault Tolerance ................... 5 4 DESIGN .................................. 6 4.1 System Architecture and Fault Tolerance ............... 6 4.1.1 Digital flight control system architecture .......... 6 4.1.2 Digital flight control system computer hardware ........ 8 4.1.3 Avionics interface ...................... 8 4.1.4 Pilot interface ........................ 9 4.1.5 Actuator interface ...................... 10 4.1.6 Electrical system interface .................. 11 4.1.7 Selector monitor and failure manager ............. 12 4.1.8 Built-in test and memory mode ................. 14 4.2 ControlLaws ............................. 15 4.2.1 Control law development process ................ 15 4.2.2 Control law design ...................... 15 4.3 Digital Flight Control System Software ................ 17 4.3.1 Software development process ................. 18 4.3.2 Software design ........................ 19 5 SYSTEM-SOFTWARE QUALIFICATION AND DESIGN ITERATIONS ............ 19 5.1 Schedule ............................... 20 5.2 Software Verification ........................ 21 5.2.1 Verification test plan .................... 21 5.2.2 Verification support equipment . ................ 22 5.2.3 Verification tests ...................... 22 5.2.4 Reverifying the design iterations ............... 24 5.3 System Validation .......................... 24 5.3.1 Validation test plan . ............... 24 5.3.2 Support equipment ....................... 25 5.3.3 Validation tests ....................... 25 5.3.4 Revalidation of designs ................... -
Air Force Airframe and Powerplant (A&P) Certification Program
Air Force Airframe and Powerplant (A&P) Certification Program Introduction: Most military aircraft maintenance technicians are eligible to pursue the Federal Aviation Administration (FAA) Airframe & Powerplant (A&P) certification based on documented evidence of 30 months practical aircraft maintenance experience in airframe and powerplant systems per Title 14, Code of Federal Regulations (CFR), Part 65- Certification: Airmen Other Than Flight Crew Members; Subpart D-Mechanics. Air Force education, training and experience and FAA eligibility requirements per Title 14, CFR Part 65.77. This FAA-approved program is a voluntary program which benefits the technician and the Air Force, with consideration to professional development, recruitment, retention, and transition. Completing this program, outlined in the program Qualification Training Package (QTP), will assist technicians in meeting FAA eligibility requirements and being better-prepared for the FAA exams. Three-Tier Program: The program is a three-tier training and experience program. These elements are required for program completion and are important for individual development, knowledge assessment, meeting FAA certification eligibility, and preparation for the FAA exams: Three Online Courses (02AF1-General, 02AF2-Airframe, & 02AF3-Powerplant). On the Job Training (OJT) Qualification Training Package(QTP). Documented evidence of 30 months practical experience in airframe and powerplant systems. Program Eligibility: Active duty, guard and reserve technicians who possess at least a 5-skill level in one of the following aircraft maintenance AFSCs are eligible to enroll: 2A0X1, 2A090, 2A2X1, 2A2X2, 2A2X3, 2A3X3, 2A3X4, 2A3X5, 2A3X7, 2A3X8, 2A390, 2A300, 2A5X1, 2A5X2, 2A5X3, 2A5X4, 2A590, 2A500, 2A6X1, 2A6X3, 2A6X4, 2A6X5, 2A6X6, 2A690, 2A691, 2A600 (except AGE), 2A7X1, 2A7X2, 2A7X3, 2A7X5, 2A790, 2A8X1, 2A8X2, 2A9X1, 2A9X2, and 2A9X3. -
Faa Ac 20-186
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Airworthiness and Operational Date: 7/22/16 AC No: 20-186 Approval of Cockpit Voice Recorder Initiated by: AFS-300 Change: Systems 1 GENERAL INFORMATION. 1.1 Purpose. This advisory circular (AC) provides guidance for compliance with applicable regulations for the airworthiness and operational approval for required cockpit voice recorder (CVR) systems. Non-required installations may use this guidance when installing a CVR system as a voluntary safety enhancement. This AC is not mandatory and is not a regulation. This AC describes an acceptable means, but not the only means, to comply with Title 14 of the Code of Federal Regulations (14 CFR). However, if you use the means described in this AC, you must conform to it in totality for required installations. 1.2 Audience. We, the Federal Aviation Administration (FAA), wrote this AC for you, the aircraft manufacturers, CVR system manufacturers, aircraft operators, Maintenance Repair and Overhaul (MRO) Organizations and Supplemental Type Certificate (STC) applicants. 1.3 Cancellation. This AC cancels AC 25.1457-1A, Cockpit Voice Recorder Installations, dated November 3, 1969. 1.4 Related 14 CFR Parts. Sections of 14 CFR parts 23, 25, 27, 29, 91, 121, 125, 129, and 135 detail design substantiation and operational approval requirements directly applicable to the CVR system. See Appendix A, Flowcharts, to determine the applicable regulations for your aircraft and type of operation. Listed below are the specific 14 CFR sections applicable to this AC: • Part 23, § 23.1457, Cockpit Voice Recorders. • Part 23, § 23.1529, Instructions for Continued Airworthiness. -
Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering Mcgil
Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering McGill University, Montreal August 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof. Michael Kokkolaras, for his support and guidance throughout my time as his student. I am honored to have worked along a supervisor that always helped me in my work and even my personal life. I am grateful to members of Bombardier’s Advanced Product Development department for their insights on aircraft design and optimization. Special acknowledgment is given to the Thermodynamics department at Bombardier Product Development Engineering, namely Sebastien Beaulac, Hongzhi Wang, Jean-Francois Reis, and Emmanuel Germaine, who provided expertise that greatly assisted this research. I would also like to thank Jean Brousseau for sharing his knowledge on air systems design. I am very grateful to John Ferneley, Susan Liscouët-Hanke, Pat Piperni, and Fassi Kafyeke who were supportive of my career goals and provided me the means to pursue these goals. Finally, I am grateful to my friends and family for their constant support and encouragement throughout the ups and downs of my studies. ABSTRACT The strong interactions between aircraft and air systems necessitate the integration of the latter to multidisciplinary design optimization (MDO) considerations of the former. This research presents such a methodology considering environmental control and ice protection systems. These systems consume pressurized bleed air from the aircraft’s engines to perform their respective functions. We first describe the models used to predict the behavior of these systems and then propose different approaches to their integration into an existing aircraft MDO environment. -
Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges
Paper ID #11232 Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges Prof. Mohammad Sadraey, Daniel Webster College Mohammad H. Sadraey is an Associate Professor in the Engineering School at the Daniel Webster Col- lege, Nashua, New Hampshire, USA. Dr. Sadraey’s main research interests are in aircraft design tech- niques, and design and automatic control of unmanned aircraft. He received his MSc. in Aerospace Engineering in 1995 from RMIT, Melbourne, Australia, and his Ph.D. in Aerospace Engineering from the University of Kansas, Kansas, USA. Dr. Sadraey is a senior member of the American Institute of Aeronautics and Astronautics (AIAA), and a member of American Society for Engineering Education (ASEE). Prof. Nicholas Bertozzi, Daniel Webster College Nick Bertozzi is a Professor of Engineering at Daniel Webster College (DWC) and Dean of the School of Engineering and Computer Science (SECS). His major interest over the past 18 years has been the concurrent engineering design process, an interest that was fanned into flame by attending an NSF faculty development workshop in 1996 led by Ron Barr and Davor Juricic. Nick has a particular interest in help- ing engineering students develop good communications skills and has made this a SECS priority. Over the past ten years he and other engineering and humanities faculty colleagues have mentored a number of undergraduate student teams who have co-authored and presented papers and posters at Engineering Design Graphics Division (EDGD) and other ASEE, CDIO (www.cdio.org), and American Institute of Aeronautics and Astronautics (AIAA) meetings as well. Nick was delighted to serve as the EDGD pro- gram chair for the 2008 ASEE Summer Conference and as program co-chair with Kathy Holliday-Darr for the 68th EDGD Midyear meeting at WPI in October 2013. -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System
Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System Multiple Launch Rocket System (MLRS) APU KEY FEATURES: − 8.5 kW 28 VDC Power Output − 18,500 BTU Net Cooling Capacity ECU Condenser GENERAL PRODUCT DESCRIPTION: The MLS Auxiliary Power Unit brushless, permanent magnet conditions. /Environmental Control Unit generator. The generator system (APU/ECU) has been designed to output and Engine power is The APU gross weight is under provide electrical power and controlled by a variable speed 330 pounds with the ECU cooling to the MLRS tracked governor which, depending on weighing 150 lbs. The System vehicle. Both systems can operate system load, optimizes the engine provides 18,500 Btu/hr cooling independently of one another. The operating speed. The vapor cycle capacity and 8.5 kW at 28-vDC ECU is completely electrically air conditioning system is power output (with voltage ripple driven and can be operated from designed to be in compliance with independent of the engine speed the main engine alternators or the the current environmental or load at less than 100 mV APU. regulations using R-134a RMS). refrigerant and is capable of The power plant is a Hatz 2G-40 operating in severe desert air-cooled diesel engine with a conditions. Its power draw is 150 shaft mounted three-phase amps at 28-vDC at full load APU/ECU FOR MILITARY APPLICATIONS Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System Condenser Assembly APU Evaporator Assembly Overall APU/ECU Specifications: Exterior Dimensions (L x W x H)........................................…........... -
Basic Principles of Inertial Navigation
Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation • Pilotage, which essentially relies on recognizing landmarks to know where you are. It is older than human kind. • Dead reckoning, which relies on knowing where you started from plus some form of heading information and some estimate of speed. • Celestial navigation, using time and the angles between local vertical and known celestial objects (e.g., sun, moon, or stars). • Radio navigation, which relies on radio‐frequency sources with known locations (including GNSS satellites, LORAN‐C, Omega, Tacan, US Army Position Location and Reporting System…) • Inertial navigation, which relies on knowing your initial position, velocity, and attitude and thereafter measuring your attitude rates and accelerations. The operation of inertial navigation systems (INS) depends upon Newton’s laws of classical mechanics. It is the only form of navigation that does not rely on external references. • These forms of navigation can be used in combination as well. The subject of our seminar is the fifth form of navigation – inertial navigation. 2 A few definitions • Inertia is the property of bodies to maintain constant translational and rotational velocity, unless disturbed by forces or torques, respectively (Newton’s first law of motion). • An inertial reference frame is a coordinate frame in which Newton’s laws of motion are valid. Inertial reference frames are neither rotating nor accelerating. • Inertial sensors measure rotation rate and acceleration, both of which are vector‐ valued variables. • Gyroscopes are sensors for measuring rotation: rate gyroscopes measure rotation rate, and integrating gyroscopes (also called whole‐angle gyroscopes) measure rotation angle. -
Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft