Influence of Coupled Sidesticks on the Pilot Monitoring's Awareness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cockpit Image Recorders: a Picture Is Worth a Thousand Words
Cockpit Image Recorders 1051 t1152111 2005, CCH INCORPORATED. All Rights Reserved. Reprinted with permission from "Issues in Aviation Law and Policy." Cockpit Image Recorders: A Picture Is Worth a Thousand Words by David E. Rapoport and Paul D. Richter May 2005 Everywhere we go our moves are randomly recorded, but sug- gest a video camera be placed in the cockpit of an aircraft, a pilot's workplace, and watch out! The pilot unions immediately switch off the auto-pilot and begin complaining how this would be a clear and abominable violation of their members' privacy rights. Do bankers, gas station attendants, convenience store clerks, jailers, blackjack dealers and doormen colnplain about cameras in their workplaces? Would we listen if they did? For the last four years, the U.S. National Transportation Safety Board's (NTSB) goal of putting video cameras in the cockpits of large commercial jets has been frustrated, in large part, by the efforts of the major pilot unions. This article will review the efforts by the NTSB and others to require video cameras in the cockpits of large transport category aircraft, discuss the arguments for and against this proposal, and conclude the time has coine for the Federal Aviation Administration (FAA) to put safety first and follow the NTSB's five-year-old recommendation that it mandate video cameras in the cockpit. Cockpit Video Image Recorders Are Now on the NTSB's "Most Wanted" List The NTSB, an independent Federal agency, is charged by Congress with investigating every civil aviation accident in the United States.' The NTSB's primary function is to promote safety Issues in Aviation Law and Policy 1052 Aviation Safety/Security it1 tran~portation.~Since inception, the NTSB has investigated more than 124,000 aviation accidents. -
Development and Flight Test Experiences with a Flight-Crucial Digital Control System
NASA Technical Paper 2857 1 1988 Development and Flight Test Experiences With a Flight-Crucial Digital Control System Dale A. Mackall Ames Research Center Dryden Flight Research Facility Edwards, Calgornia I National Aeronautics I and Space Administration I Scientific and Technical Information Division I CONTENTS Page ~ SUMMARY ................................... 1 I 1 INTRODUCTION . 1 2 NOMENCLATURE . 2 3 SYSTEM SPECIFICATION . 5 3.1 Control Laws and Handling Qualities ................. 5 3.2 Reliability and Fault Tolerance ................... 5 4 DESIGN .................................. 6 4.1 System Architecture and Fault Tolerance ............... 6 4.1.1 Digital flight control system architecture .......... 6 4.1.2 Digital flight control system computer hardware ........ 8 4.1.3 Avionics interface ...................... 8 4.1.4 Pilot interface ........................ 9 4.1.5 Actuator interface ...................... 10 4.1.6 Electrical system interface .................. 11 4.1.7 Selector monitor and failure manager ............. 12 4.1.8 Built-in test and memory mode ................. 14 4.2 ControlLaws ............................. 15 4.2.1 Control law development process ................ 15 4.2.2 Control law design ...................... 15 4.3 Digital Flight Control System Software ................ 17 4.3.1 Software development process ................. 18 4.3.2 Software design ........................ 19 5 SYSTEM-SOFTWARE QUALIFICATION AND DESIGN ITERATIONS ............ 19 5.1 Schedule ............................... 20 5.2 Software Verification ........................ 21 5.2.1 Verification test plan .................... 21 5.2.2 Verification support equipment . ................ 22 5.2.3 Verification tests ...................... 22 5.2.4 Reverifying the design iterations ............... 24 5.3 System Validation .......................... 24 5.3.1 Validation test plan . ............... 24 5.3.2 Support equipment ....................... 25 5.3.3 Validation tests ....................... 25 5.3.4 Revalidation of designs ................... -
How a Cockpit Remembers Its Speeds
COGNITIVE SCIENCE 19, 265-288 (1995) How a Cockpit Remembers Its Speeds EDWIN HUTCHINS University of California, San Diego Cognitive science normally takes the individual agent as its unit of analysis. In many human endeavors, however, the outcomes of interest are not determined entirely by the information processing properties of individuals. Nor can they be inferred from the properties of the individual agents, alone, no matter how detailed the knowledge of the properties of those individuals may be. In com- mercial aviation, for example, the successful completion of a flight is produced by a system that typically includes two or more pilots interacting with each other and with a suite of technological devices. This article presents a theoretical framework that tokes a distributed, socio-technical system rather than an indi- vidual mind as its primary unit of analysis. This framework is explicitly cognitive in that it is concerned with how information is represented and how representa- tions are transformed and propagated in the performance of tasks. An analysis of a memory task in the cockpit of a commercial airliner shows how the cognitive properties of such distributed systems can differ radically from the cognitive properties of the individuals who inhabit them. Thirty years of research in cognitive psychology and other areas of cognitive science have given us powerful models of the information processing prop- erties of individual human agents. The cognitive science approach provides a very useful frame for thinking about thinking. When this frame is applied to the individual human agent, one asks a set of questions about the mental An initial analysis of speed bugs as cognitive artifacts was completed in November of 1988. -
Faa Ac 20-186
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Airworthiness and Operational Date: 7/22/16 AC No: 20-186 Approval of Cockpit Voice Recorder Initiated by: AFS-300 Change: Systems 1 GENERAL INFORMATION. 1.1 Purpose. This advisory circular (AC) provides guidance for compliance with applicable regulations for the airworthiness and operational approval for required cockpit voice recorder (CVR) systems. Non-required installations may use this guidance when installing a CVR system as a voluntary safety enhancement. This AC is not mandatory and is not a regulation. This AC describes an acceptable means, but not the only means, to comply with Title 14 of the Code of Federal Regulations (14 CFR). However, if you use the means described in this AC, you must conform to it in totality for required installations. 1.2 Audience. We, the Federal Aviation Administration (FAA), wrote this AC for you, the aircraft manufacturers, CVR system manufacturers, aircraft operators, Maintenance Repair and Overhaul (MRO) Organizations and Supplemental Type Certificate (STC) applicants. 1.3 Cancellation. This AC cancels AC 25.1457-1A, Cockpit Voice Recorder Installations, dated November 3, 1969. 1.4 Related 14 CFR Parts. Sections of 14 CFR parts 23, 25, 27, 29, 91, 121, 125, 129, and 135 detail design substantiation and operational approval requirements directly applicable to the CVR system. See Appendix A, Flowcharts, to determine the applicable regulations for your aircraft and type of operation. Listed below are the specific 14 CFR sections applicable to this AC: • Part 23, § 23.1457, Cockpit Voice Recorders. • Part 23, § 23.1529, Instructions for Continued Airworthiness. -
Basic Principles of Inertial Navigation
Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation • Pilotage, which essentially relies on recognizing landmarks to know where you are. It is older than human kind. • Dead reckoning, which relies on knowing where you started from plus some form of heading information and some estimate of speed. • Celestial navigation, using time and the angles between local vertical and known celestial objects (e.g., sun, moon, or stars). • Radio navigation, which relies on radio‐frequency sources with known locations (including GNSS satellites, LORAN‐C, Omega, Tacan, US Army Position Location and Reporting System…) • Inertial navigation, which relies on knowing your initial position, velocity, and attitude and thereafter measuring your attitude rates and accelerations. The operation of inertial navigation systems (INS) depends upon Newton’s laws of classical mechanics. It is the only form of navigation that does not rely on external references. • These forms of navigation can be used in combination as well. The subject of our seminar is the fifth form of navigation – inertial navigation. 2 A few definitions • Inertia is the property of bodies to maintain constant translational and rotational velocity, unless disturbed by forces or torques, respectively (Newton’s first law of motion). • An inertial reference frame is a coordinate frame in which Newton’s laws of motion are valid. Inertial reference frames are neither rotating nor accelerating. • Inertial sensors measure rotation rate and acceleration, both of which are vector‐ valued variables. • Gyroscopes are sensors for measuring rotation: rate gyroscopes measure rotation rate, and integrating gyroscopes (also called whole‐angle gyroscopes) measure rotation angle. -
FS/OAS A-24, Avionics Operational Test Standards for Contractually
Avionics Operational Test Standards FS/OAS A-24 Revision F September 10, 2018 The following standards apply to all contractually required/offered avionics equipment under US Forest Service contracts and Department of the Interior interagency fire contracts. Abbreviations and Selected Definitions are in Section 7. 1. Communications Systems Interference No squelch breaks or interference with other transceivers with 1 MHz separation. No transmit interlock functions for communications transceivers on fire aircraft. VHF-AM Transceiver Type TSO approved, selectable frequencies in 25 kHz increments, 760 channel minimum, operation from 118.000 to 136.975 MHz, 720 channel acceptable for DOI if contractually permitted Display Visible in direct sunlight Operation To and from service monitor Transmitter System modulation from 50% to 95% and clear, 5 watts minimum output power, frequency within 20 PPM (+2.46 kHz @ 122.925 MHz) (47 CFR 87.133) Receiver Squelch opens when receiving a signal from 50 Nautical Miles or (All Aircraft) greater when no other radios on the aircraft are transmitting. (See FS/OAS A-30 Radio Interference Test Procedures) Receiver Squelch opens when receiving a signal from 24 Nautical Miles or (Fire aircraft approved greater while other radios on the aircraft are transmitting with a for passengers or aircraft spacing of 2 MHz or greater. (See FS/OAS A-30 Radio Interference requiring two pilots) Test Procedures) 1 Aeronautical VHF-FM Transceiver (P25 required for Fire) Type Listed on Approved Radios list, P25 meets FS/AMD A-19 -
Radar Altimeter True Altitude
RADAR ALTIMETER TRUE ALTITUDE. TRUE SAFETY. ROBUST AND RELIABLE IN RADARDEMANDING ENVIRONMENTS. Building on systems engineering and integration know-how, FreeFlight Systems effectively implements comprehensive, high-integrity avionics solutions. We are focused on the practical application of NextGen technology to real-world operational needs — OEM, retrofit, platform or infrastructure. FreeFlight Systems is a community of respected innovators in technologies of positioning, state-sensing, air traffic management datalinks — including rule-compliant ADS-B systems, data and flight management. An international brand, FreeFlight Systems is a trusted partner as well as a direct-source provider through an established network of relationships. 3 GENERATIONS OF EXPERIENCE BEHIND NEXTGEN AVIONICS NEXTGEN LEADER. INDUSTRY EXPERT. TRUSTED PARTNER. SHAPE THE SKIES. RADAR ALTIMETERS FreeFlight Systems’ certified radar altimeters work consistently in the harshest environments including rotorcraft low altitude hover and terrain transitions. RADAROur radar altimeter systems integrate with popular compatible glass displays. AL RA-4000/4500 & FreeFlight Systems modern radar altimeters are backed by more than 50 years of experience, and FRA-5500 RADAR ALTIMETERS have a proven track record as a reliable solution in Model RA-4000 RA-4500 FRA-5500 the most challenging and critical segments of flight. The TSO and ETSO-approved systems are extensively TSO-C87 l l l deployed worldwide in helicopter fleets, including ETSO-2C87 l l l some of the largest HEMS operations worldwide. DO-160E l l l DO-178 Level B l Designed for helicopter and seaplane operations, our DO-178B Level C l l radar altimeters provide precise AGL information from 2,500 feet to ground level. -
Cockpit Human Factors Research Requirements
© U.S. Department of Transportation Federal Aviation Administration COCKPIT HUMAN FACTORS RESEARCH REQUIREMENTS COCKPIT HUMAN FACTORS RESEARCH REQUIREMENTS prepared by: U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Cambridge, MA02142 for U.S. Department of Transportation Federal Aviation Administration Washington, DC 20591 APRIL, 1989 Table Of Contents SECTION _ PAGE EXECUTIVE SUMMARY 1 1.0 INTRODUCTION 4 1.1 HISTORY 4 1.2 BACKGROUND 5 1.3 CIVIL AVIATION HUMAN FACTORS ACTIVITIES OUTSIDE THE FAA 5 1.4 SPECIFIC APPLICATION AREAS 6 1.4.1 Aircraft Automation 6 1.4.2 Right Deck Certification 7 1.4.3 Warning and Alerting Systems 7 1.4.4 Operator Errors andAccident Analysis 8 1.4.5 Displays 9 1.4.6 Controls 10 1.4.7 Right Crew Training 10 2.0 OVERVIEW 13 2.1 PROGRAM RATIONALE 13 2.2 OBJECTIVES OF THIS DOCUMENT 14 2.3 PROGRAM OPERATIONS 14 2.4 PROGRAM DESCRIPTION 15 3.0 RESEARCH REQUIREMENTS 17 3.1 COCKPIT AUTOMATION 19 3.1.1 Pilot Intervention andControl (Manual Reversion) 20 3.1.2 Pilot Proficiency and Automated Systems 21 SECTION PAGE 3.2 DISPLAYS AND CONTROLS 23 3.2.1 Information Transfer (Right Deck Information Requirements) 24 3.2.2 InformationTransfer (DisplayDesign) 26 3.2.3 Standardization of Right Deck Displays, Controls, and Procedures 28 3.2.4 Human Performance Criteria for Terminal Procedures 29 3.2.5 Human Performance Criteria for Instrument Procedure Charts 30 3.2.6 Weather Information Collection and Dissemination 32 3.2.7 RotorcraftDisplay and Control-IFR Requirements -
Digital Fly-By-Wire
TF-2001-02 DFRC Digital Fly-By-Wire "The All-Electric Airplane" Skies around the world are being filled with a new generation of military and commercial aircraft, and the majority of them are beneficiaries of one of the most significant and successful research programs conducted by NASA's Dryden Flight Research Center -- the Digital Fly-By-Wire flight control system. The Dryden DFBW program has changed the way commercial and military aircraft are designed and flown. Aircraft with fly-by- wire systems are safer, more reliable, easier to fly, more NASA F-8 modified to test a digital fly-by-wire flight control system. maneuverable and fuel NASA Photo ECN 3276 efficient, and maintenance costs are reduced. Flight control systems link pilots in their cockpits with moveable control surfaces out on the wings and tails. These control surfaces give aircraft directional movement to climb, bank, turn, and descend. Since the beginning of controlled flight in the early 1900s, wires, cables, bellcranks, and pushrods were the traditional means of connecting the control surfaces to the control sticks and rudder pedals in the cockpits. As aircraft grew in weight and size, hydraulic mechanisms were added as boosters because more power was needed to move the controls. The Digital Fly-By-Wire (DFBW) program, flown from 1972 to 1985, proved that an electronic flight control system, teamed with a digital computer, could successfully replace mechanical control systems. 1 Electric wires are the linkage between the cockpit automatically compensates -- as many as 40 and control surfaces on a DFBW aircraft. Command commands a second -- to keep the aircraft in a stable signals from the cockpit are processed by the digital environment. -
Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator
NASA/TM-2003-212042 Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator Jann Mayer and Timothy H. Cox NASA Dryden Flight Research Center Edwards, California December 2003 The NASA STI Program Office…in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, seminars, Information (STI) Program Office plays a key or other meetings sponsored or cosponsored part in helping NASA maintain this by NASA. important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and mission, NASA’s scientific and technical information. often concerned with subjects having The NASA STI Program Office provides access substantial public interest. to the NASA STI Database, the largest collection of aeronautical and space science STI in the • TECHNICAL TRANSLATION. English- world. The Program Office is also NASA’s language translations of foreign scientific institutional mechanism for disseminating the and technical material pertinent to results of its research and development activities. NASA’s mission. These results are published by NASA in the NASA STI Report Series, which includes the Specialized services that complement the STI following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research • TECHNICAL PUBLICATION. Reports of results…even providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data Program Office, see the following: or theoretical analysis. -
Fly-By-Wire: Getting Started on the Right Foot and Staying There…
Fly-by-Wire: Getting started on the right foot and staying there… Imagine yourself getting into the cockpit of an aircraft, finishing your preflight checks, and taxiing out to the runway ready for takeoff. You begin the takeoff roll and start to rotate. As you lift off, you discover your side stick controller is not responding correctly to your commands. Panic sets in, and you feel that you’ve lost total control of the aircraft. Thanks to quick action from your second in command, he takes over and stabilizes the aircraft so that you both can plan to return to the airport under reversionary mode. This situation could have been a catastrophe. This happened in August of 2001. A Lufthansa Airbus A320 came within less than two feet and a few seconds of crashing during takeoff on a planned flight from Frankfurt to Paris. Preliminary reports indicated that maintenance was performed on the captain’s sidestick controller immediately before the incident. This had inadvertently created a situation in which control inputs were reversed. The case reveals that at least two "filters," or safety defenses, were breached, leading to a near-crash shortly after rotation at Frankfurt’s Runway 18. Quick action by the first officer prevented a catastrophe. Lufthansa Technik personnel found a damaged pin on one segment of the four connector segments (with 140 pins on each) at the "rack side," as it were, of the avionics mount. This incident prompted an article to be published in the 2003 November-December issue of the Flight Safety Mechanics Bulletin. The report detailed all that transpired during the maintenance and subsequent release of the aircraft. -
Roll-On/Roll-Off
Roll-On/ Roll-Off (RO/RO) Full-Mission Simulator Overview Determining if a RO/RO system with a collimated visual display. The instructor station includes an electrical Historically, different aircraft types, and solution is the answer instructor seat with two seat-mounted even different cockpit configurations Simulation-based training offers a forward-facing touch-screen displays to of the same aircraft type, required compelling value proposition because of control the simulator. The non-simulated separate training devices, thus resulting its inherent advantages related to cost, area (NSA) can also include a first-observer in significantly increased investments safety and training effectiveness. However, seat. required for a high quality, simulation- when customers have smaller fleet sizes based training program. CAE’s roll-on/ or differing configurations of the same CAE 3000 Series RO/RO FMS roll-off (RO/RO) full-mission simulator (FMS) platform, it can be difficult to justify a high- addresses this challenge by delivering a fidelity training solution. CAE offers training The CAE 3000 Series RO/RO FMS is designed cost-effective and flexible training solution needs analysis services to help customers for Level-D helicopter training needs. This that allows training on multiple aircraft define their training requirements and simulator features an electric motion configurations. architect a training solution to meet these system, vibration platform, and direct- requirements. projection visual system with a continuous CAE pioneered the development of a full- field-of-view covering the chin windows. mission simulator with a revolutionary Our RO/RO offerings There are two CAE 3000 Series RO/RO roll-on/roll-off (RO/RO) cockpit design, mothership types, one with a 10-foot dome CAE offers RO/RO full-mission simulators which enables cockpits representing display and the other with a 12-foot dome for both rotary-wing and fixed-wing aircraft.