Dinoflagellate Life-Cycle Complexities

Total Page:16

File Type:pdf, Size:1020Kb

Dinoflagellate Life-Cycle Complexities J. Phycol. 38, 417–419 (2002) DINOFLAGELLATE LIFE-CYCLE COMPLEXITIES The dinoflagellates are a group of predominately pseudopodial network illustrated by Hofender (1930) marine, alveolate protists whose structural organiza- as an anastomosing feeding structure of Ceratium hi- tion, morphological diversity, and novel behaviors have rundinella is likely an artifact of cell trauma, while the captured the imaginations of phycologists and proto- juxtaposition of a small Protoperidinium within the sul- zoologists for 250 years. The 2000 or so extant species cus of Ceratium lunula, interpreted by Norris (1969) as that comprise the dinoflagellates sort almost equally evidence of feeding, may represent spurious, post- as phototrophs and heterotrophs; however, a growing mortem placement of specimens (Jacobson 1999). awareness that many species are really mixotrophic, Successful cultivation of dinoflagellates was not engaging in some combination of phototrophy and achieved until early in the twentieth century when phagotrophy, is eroding the conventional view of di- Crypthecodinium cohii was first grown on rotting pieces noflagellate nutrition (Stoecker 1999). The intricate of the brown algae Fucus (Taylor 1987). Since then, jigsaw puzzles formed by the thecal plates of armored only a small percentage of dinoflagellate species have species (Fensome et al. 1993, Steidinger and Tangen been successfully brought into culture. Most of these 1996), the complex light-sensing organelles of the War- are neritic, photosynthetic species whose growth re- nowiacids (Gaines and Elbrächter 1987), and unique quirements are tolerant of high cell densities typically feeding structures, including zipper-like “mouths” for achieved in culture. Oceanic forms seem more diffi- swallowing food, peduncles or feeding tubes for “suck- cult to grow, perhaps due to their intolerance of con- ing-up” whole prey or their cytoplasmic contents, and taminants associated with culture glassware (Loeblich feeding veils for encasing and externally digesting 1984), while heterotrophic dinoflagellates often re- large prey (Jacobson and Anderson 1986, Buck et al. quire the availability of appropriate prey or host spe- 1990, Hansen and Calado 1999), are but a few of the cies. Not surprisingly, therefore, early studies of di- remarkable features that make dinoflagellates truly noflagellate autecology were based on observations of exceptional. Equally fascinating are the colors exhib- living or preserved field samples and were thus lim- ited by dinoflagellates, ranging from the opalescent ited by availability of suitable material and the occur- blues, greens, and pinks of heterotrophic forms to yel- rence of ephemeral life-history stages. Linking pre- lows, reds, and browns of photosynthetic species (Ko- sumed life-history stages in the absence of cultures foid and Swezy 1921, Lebour 1925). This amazing ar- often requires assumptions that can lead to inaccurate ray of pigmentations led Kofoid and Swezy (1921) to life cycles and taxonomic confusion. The case of Pyro- comment that dinoflagellates “. are most brilliantly cystis lunula and Dissodinium pseudolunula is a good ex- colored, vying with orchids and butterflies in variety ample. The taxonomic history of these genera is long of color and delicacy of shading.” and varied, dating back to the early observations of The study of dinoflagellates, however, has not been Murray during the voyage of the Challenger Expedi- without its drawbacks. Difficulties encountered when tion (see Elbrächter and Drebes 1978 for details). For examining delicate, sometimes rare specimens are almost a century, life-history stages of P. lunula and D. not only frustrating, but can lead to misinterpretation pseudolunula were mistakenly aggregated into a single and erroneous conclusions. Changes in temperature incomplete life cycle. Only after cultures were estab- and osmotic stress associated with desiccation during lished (Swift and Durbin 1971; Drebes 1978) was it microscopic examination can cause cellular distor- possible to demonstrate the existence of two species, tion, ecdysis, or loss of integrity. Many dinoflagellates, one free-living and one parasitic, and to complete particularly athecate species, are notoriously difficult their life cycles and reveal that the two organisms be- to preserve, with chemical fixatives producing mis- longed to separate orders (Elbrächter and Drebes shapen cells, swollen membranes, and clumping of 1978; Drebes 1978). specimens. Such phenomena may account for some The availability of cultures has also proved impor- of the unusual reports that have failed to be corrobo- tant in demonstrating the relevance of sexuality and rated by subsequent investigators. For example, the encystment in the life cycles and ecology of dino- 417 418 ALGAE • HIGHLIGHTS flagellates (Walker 1984 and references therein). Ex- thors sequenced the small subunit ribosomal RNA cept for Noctiluca, all dinoflagellates examined thus gene and confirmed that it matched sequence data far have haplontic life cycles dominated by asexual re- previously published for P. piscicida (Litaker et al. production of haploid vegetative cells (Pfiester and 1999, Oldach et al. 2000). Life-cycle processes were Anderson 1987). Temporary or pellicle cysts formed examined for cultures fed algal prey (Rhodomonas sp.) in response to adverse environmental conditions and and for cultures grown in the presence of fish (40–80 division cysts produced following feeding or growth mm goldfish or tilapia). Conventional light micros- are known to occur within the asexual cycle of several copy, video microscopy, fluorescent nuclear stains, species (von Stosch 1973, Dale 1983, Drebes and and electron microscopy were eloquently combined Schnepf 1988, Skovgaard 1996). A sexual phase has to determine the morphology and nuclear comple- also been documented for many dinoflagellates and ment of life-history stages and to document morpho- involves the fusion of asexually generated gametes to genetic events associated with stage transformations. produce a motile zygote, the planozygote. Planozy- The work required development of a new protocol to gotes may undergo meiosis to reestablish the haploid permeablize cysts for application of nuclear fluoro- phase, or produce a resting cyst (the hypnozygote), chromes. Results demonstrate that the life cycle of P. with cells reentering the asexual cycle upon germina- piscicida is haplontic, including asexual and sexual tion. Polymorphism is pronounced in some dino- phases that resemble patterns previously reported for flagellates, particularly the parasitic species (Cachon other dinoflagellates. Furthermore, life-cycle events were and Cachon 1987), and can result in rather elaborate the same whether cultures were grown on alga prey or life histories. Among the more remarkable dinoflagel- in the presence of fish. The life cycle of P. piscicida as late life cycles are those reported for members of the described by Litaker et al. (2002) differs greatly from Phytodiniales. For example, Cystodinedria inermis appears prior reports (Burkholder and Glasgow 1995, 1997). to have some 35 life-history stages encompassing bi- It has relatively few life-history stages, lacks amoeboid flagellate cells, a variety of lobose and filose amoeboid forms, and does not include spiny, chrysophyte-like forms, and encysted stages (Pfiester and Popovský cysts. 1979, Popovský and Pfiester 1982). Unfortunately, the Litaker et al. (2002) never observed amoeboid life cycle of C. inermis is known only from field collec- forms or flagellate-amoeba transitions in Pfiesteria pis- tions and should be viewed with caution. This is of cicida cultures grown on algal prey. They did, how- particular concern as some stages in the life cycle of ever, recover amoebae from cultures grown in the C. inermis are believed to be identical to Actinophrys sol presence of fish and from fish tanks that contained and other protists that are well documented in the lit- P. piscicida. Amoebae from both sources resembled erature as distinct and valid species (Popovský and amoeboid stages previously reported as part of the life Pfiester 1982). cycle of P. piscicida (Burkholder and Glasgow 1995, The toxic dinoflagellate Pfiesteria piscicida Steidinger 1997). To test the hypothesis that these amoebae were et Burkholder (Steidinger et al. 1996) also has a life-history stages of P. piscicida, Litaker et al. (2002) highly complex life cycle, with the 24 or more life-his- developed a suite of fluorescently labeled peptide nu- tory stages including a number of flagellated cell cleic acid probes for use in in situ hybridization stud- types, smooth walled and spiny, chrysophyte-like cysts, ies. A probe specific for the SSU rRNA of P. piscicida and amoebae with filose and lobose pseudopods failed to react with amoebae associated with P. pisci- (Burkholder and Glasgow 1995, 1997). Stages differ cida and fish, while a group-specific probe for the SSU greatly in size ranging from Ͻ10 ␮m flagellates to 400 rRNA of the amoebae failed to react with P. piscicida. ␮m amoebae. Some of the amoeboid forms are appar- The authors thus concluded that amoebae present in ently identical to species of planktonic and benthic their cultures were not part of the life cycle of P. pisci- amoebae described by earlier researchers (Burk- cida. holder and Glasgow 1997). While P. piscicida can be Results of studies like that of Litaker et al. (2002) maintained in culture with algal prey, induction of are always constrained by the number of
Recommended publications
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Lateral Transfer of Eukaryotic Ribosomal RNA Genes: an Emerging Concern for Molecular Ecology of Microbial Eukaryotes
    The ISME Journal (2014) 8, 1544–1547 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 OPEN www.nature.com/ismej SHORT COMMUNICATION Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes Akinori Yabuki, Takashi Toyofuku and Kiyotaka Takishita Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, Japan Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome- walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein- coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally. The ISME Journal (2014) 8, 1544–1547; doi:10.1038/ismej.2013.252; published online 23 January 2014 Subject Category: Microbial population and community ecology Keywords: 18S rRNA gene; environmental DNA; lateral gene transfer Genes that are involved in transcription, translation Recently, we established a clonal culture of and related processes, and interacted with many Ciliophrys infusionum (deposited as NIES-3355) partner molecules are believed to be less transferable from the sediment of the lagoon ‘Kai-ike’ (Satsuma- between different organisms (Rivera et al., 1998; Jain sendai, Kagoshima, Japan).
    [Show full text]
  • Redalyc.Protozoan Infections in Farmed Fish from Brazil: Diagnosis
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Laterça Martins, Mauricio; Cardoso, Lucas; Marchiori, Natalia; Benites de Pádua, Santiago Protozoan infections in farmed fish from Brazil: diagnosis and pathogenesis. Revista Brasileira de Parasitologia Veterinária, vol. 24, núm. 1, enero-marzo, 2015, pp. 1- 20 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841495001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Review Article Braz. J. Vet. Parasitol., Jaboticabal, v. 24, n. 1, p. 1-20, jan.-mar. 2015 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612015013 Protozoan infections in farmed fish from Brazil: diagnosis and pathogenesis Infecções por protozoários em peixes cultivados no Brasil: diagnóstico e patogênese Mauricio Laterça Martins1*; Lucas Cardoso1; Natalia Marchiori2; Santiago Benites de Pádua3 1Laboratório de Sanidade de Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brasil 2Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri, Campo Experimental de Piscicultura de Camboriú, Camboriú, SC, Brasil 3Aquivet Saúde Aquática, São José do Rio Preto, SP, Brasil Received January 19, 2015 Accepted February 2, 2015 Abstract The Phylum Protozoa brings together several organisms evolutionarily different that may act as ecto or endoparasites of fishes over the world being responsible for diseases, which, in turn, may lead to economical and social impacts in different countries.
    [Show full text]
  • The Stem Cell Revolution Revealing Protozoan Parasites' Secrets And
    Review The Stem Cell Revolution Revealing Protozoan Parasites’ Secrets and Paving the Way towards Vaccine Development Alena Pance The Wellcome Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, UK; [email protected] Abstract: Protozoan infections are leading causes of morbidity and mortality in humans and some of the most important neglected diseases in the world. Despite relentless efforts devoted to vaccine and drug development, adequate tools to treat and prevent most of these diseases are still lacking. One of the greatest hurdles is the lack of understanding of host–parasite interactions. This gap in our knowledge comes from the fact that these parasites have complex life cycles, during which they infect a variety of specific cell types that are difficult to access or model in vitro. Even in those cases when host cells are readily available, these are generally terminally differentiated and difficult or impossible to manipulate genetically, which prevents assessing the role of human factors in these diseases. The advent of stem cell technology has opened exciting new possibilities to advance our knowledge in this field. The capacity to culture Embryonic Stem Cells, derive Induced Pluripotent Stem Cells from people and the development of protocols for differentiation into an ever-increasing variety of cell types and organoids, together with advances in genome editing, represent a huge resource to finally crack the mysteries protozoan parasites hold and unveil novel targets for prevention and treatment. Keywords: protozoan parasites; stem cells; induced pluripotent stem cells; organoids; vaccines; treatments Citation: Pance, A. The Stem Cell Revolution Revealing Protozoan 1. Introduction Parasites’ Secrets and Paving the Way towards Vaccine Development.
    [Show full text]
  • That of a Typical Flagellate. the Flagella May Equally Well Be Called Cilia
    ZOOLOGY; KOFOID AND SWEZY 9 FLAGELLATE AFFINITIES OF TRICHONYMPHA BY CHARLES ATWOOD KOFOID AND OLIVE SWEZY ZOOLOGICAL LABORATORY, UNIVERSITY OF CALIFORNIA Communicated by W. M. Wheeler, November 13, 1918 The methods of division among the Protozoa are of fundamental signifi- cance from an evolutionary standpoint. Unlike the Metazoa which present, as a whole, only minor variations in this process in the different taxonomic groups and in the many different types of cells in the body, the Protozoa have evolved many and widely diverse types of mitotic phenomena, which are Fharacteristic of the groups into which the phylum is divided. Some strik- ing confirmation of the value of this as a clue to relationships has been found in recent work along these lines. The genus Trichonympha has, since its discovery in 1877 by Leidy,1 been placed, on the one hand, in the ciliates and, on the other, in the flagellates, and of late in an intermediate position between these two classes, by different investigators. Certain points in its structure would seem to justify each of these assignments. A more critical study of its morphology and especially of its methods of division, however, definitely place it in the flagellates near the Polymastigina. At first glance Trichonympha would undoubtedly be called a ciliate. The body is covered for about two-thirds of its surface with a thick coating of cilia or flagella of varying lengths, which stream out behind the body. It also has a thick, highly differentiated ectoplasm which contains an alveolar layer as well as a complex system of myonemes.
    [Show full text]
  • Control of Flagellum Number in Naegleria Temperature Shock Induction of Multiflagellate Cells
    jf. Cell Sci. 7) 463-481 (1970) 463 Printed in Great Britain CONTROL OF FLAGELLUM NUMBER IN NAEGLERIA TEMPERATURE SHOCK INDUCTION OF MULTIFLAGELLATE CELLS A. D. DINGLE Department of Biology, McMaster University, Hamilton, Ontario, Canada SUMMARY This paper describes the production of supernumerary flagella by flagellates of Naegleria gniberi exposed to sublethal temperature shocks during the amoeba-to-flagellate transforma- tion. When transformed at any constant temperature below 34 CC, cells of N. gniberi strain NB-i may develop from 1 to 4 flagella, but biflagellate cells predominate and the average number of flagella per cell in these populations is approximately 22. Populations exposed to a 38 °C temperature shock during transformation develop about twice as many flagella as controls (average number of flagella per cell is approximately 4's). The individual response of cells is extremely heterogeneous: some develop no more than the normal 2 flagella, whereas others develop as many as 18. At least half the cells produce 5 or more flagella, as opposed to fewer than 1 % with 5 or more flagella in control populations. Multiflagellate cells and popula- tions are normal in appearance, apart from the excess flagella and resulting disorientation of the normal swimming pattern. The supernumerary flagella, their basal bodies and the rhizoplast (which is also occasionally doubled) are indistinguishable from those of normal cells. Maximal production of flagella occurs over the narrow temperature range from 37-5 to 385 °C and is related to the duration of exposure to a given temperature: optimal flagellum induction is ob- tained following a 45-50 min exposure to a 38-2 °C temperature shock.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Ellobiopsids of the Genus Thalassomyces Are Alveolates
    J. Eukaryot. Microbiol., 51(2), 2004 pp. 246±252 q 2004 by the Society of Protozoologists Ellobiopsids of the Genus Thalassomyces are Alveolates JEFFREY D. SILBERMAN,a,b1 ALLEN G. COLLINS,c,2 LISA-ANN GERSHWIN,d,3 PATRICIA J. JOHNSONa and ANDREW J. ROGERe aDepartment of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, California, USA, and bInstitute of Geophysics and Planetary Physics, University of California at Los Angeles, California, USA, and cEcology, Behavior and Evolution Section, Division of Biology, University of California, La Jolla, California, USA, and dDepartment of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California, USA, and eCanadian Institute for Advanced Research, Program in Evolutionary Biology, Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada ABSTRACT. Ellobiopsids are multinucleate protist parasites of aquatic crustaceans that possess a nutrient absorbing `root' inside the host and reproductive structures that protrude through the carapace. Ellobiopsids have variously been af®liated with fungi, `colorless algae', and dino¯agellates, although no morphological character has been identi®ed that de®nitively allies them with any particular eukaryotic lineage. The arrangement of the trailing and circumferential ¯agella of the rarely observed bi-¯agellated `zoospore' is reminiscent of dino¯agellate ¯agellation, but a well-organized `dinokaryotic nucleus' has never been observed. Using small subunit ribosomal RNA gene sequences from two species of Thalassomyces, phylogenetic analyses robustly place these ellobiopsid species among the alveolates (ciliates, apicomplexans, dino¯agellates and relatives) though without a clear af®liation to any established alveolate lineage. Our trees demonstrate that Thalassomyces fall within a dino¯agellate 1 apicomplexa 1 Perkinsidae 1 ``marine alveolate group 1'' clade, clustering most closely with dino¯agellates.
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • Dinoflagellate Nuclear SSU Rrna Phylogeny Suggests Multiple Plastid Losses and Replacements
    J Mol Evol (2001) 53:204–213 DOI: 10.1007/s002390010210 © Springer-Verlag New York Inc. 2001 Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements Juan F. Saldarriaga,1 F.J.R. Taylor,1,2 Patrick J. Keeling,1 Thomas Cavalier-Smith3 1 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 2 Department of Earth and Ocean Sciences, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 3 Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, UK Received: 25 September 2000 / Accepted: 24 April 2001 Abstract. Dinoflagellates are a trophically diverse Introduction group of protists with photosynthetic and non- photosynthetic members that appears to incorporate and There is now no serious doubt that mitochondria and lose endosymbionts relatively easily. To trace the gain plastids are descendants of free-living prokaryotic cells and loss of plastids in dinoflagellates, we have sequenced (Gray and Spencer 1996). The primary endosymbioses the nuclear small subunit rRNA gene of 28 photosyn- that incorporated these cells into eukaryotic organisms thetic and four non-photosynthetic species, and produced are, however, exceedingly rare events: mitochondria phylogenetic trees with a total of 81 dinoflagellate se- were probably incorporated only once in the history of quences. Patterns of plastid gain, loss, and replacement life (Roger 1999), and the same is probably true for were plotted onto this phylogeny. With the exception of plastids (Delwiche 1999; Cavalier-Smith 2000). Vertical the apparently early-diverging Syndiniales and Noctilu- descendants of plastids obtained through primary endo- cales, all non-photosynthetic dinoflagellates are very symbiosis are now found in many photosynthetic organ- likely to have had photosynthetic ancestors with peridi- isms (glaucophytes, red and green algae, and land nin-containing plastids.
    [Show full text]
  • Genetic Diversity and Habitats of Two Enigmatic Marine Alveolate Lineages
    AQUATIC MICROBIAL ECOLOGY Vol. 42: 277–291, 2006 Published March 29 Aquat Microb Ecol Genetic diversity and habitats of two enigmatic marine alveolate lineages Agnès Groisillier1, Ramon Massana2, Klaus Valentin3, Daniel Vaulot1, Laure Guillou1,* 1Station Biologique, UMR 7144, CNRS, and Université Pierre & Marie Curie, BP74, 29682 Roscoff Cedex, France 2Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CMIMA, CSIC. Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain 3Alfred Wegener Institute for Polar Research, Am Handelshafen 12, 27570 Bremerhaven, Germany ABSTRACT: Systematic sequencing of environmental SSU rDNA genes amplified from different marine ecosystems has uncovered novel eukaryotic lineages, in particular within the alveolate and stramenopile radiations. The ecological and geographic distribution of 2 novel alveolate lineages (called Group I and II in previous papers) is inferred from the analysis of 62 different environmental clone libraries from freshwater and marine habitats. These 2 lineages have been, up to now, retrieved exclusively from marine ecosystems, including oceanic and coastal waters, sediments, hydrothermal vents, and perma- nent anoxic deep waters and usually represent the most abundant eukaryotic lineages in environmen- tal genetic libraries. While Group I is only composed of environmental sequences (118 clones), Group II contains, besides environmental sequences (158 clones), sequences from described genera (8) (Hema- todinium and Amoebophrya) that belong to the Syndiniales, an atypical order of dinoflagellates exclu- sively composed of marine parasites. This suggests that Group II could correspond to Syndiniales, al- though this should be confirmed in the future by examining the morphology of cells from Group II. Group II appears to be abundant in coastal and oceanic ecosystems, whereas permanent anoxic waters and hy- drothermal ecosystems are usually dominated by Group I.
    [Show full text]