Firewire™ Reference Tutorial (An Informational Guide) January 22
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
System Buses EE2222 Computer Interfacing and Microprocessors
System Buses EE2222 Computer Interfacing and Microprocessors Partially based on Computer Organization and Architecture by William Stallings Computer Electronics by Thomas Blum 2020 EE2222 1 Connecting • All the units must be connected • Different type of connection for different type of unit • CPU • Memory • Input/Output 2020 EE2222 2 CPU Connection • Reads instruction and data • Writes out data (after processing) • Sends control signals to other units • Receives (& acts on) interrupts 2020 EE2222 3 Memory Connection • Receives and sends data • Receives addresses (of locations) • Receives control signals • Read • Write • Timing 2020 EE2222 4 Input/Output Connection(1) • Similar to memory from computer’s viewpoint • Output • Receive data from computer • Send data to peripheral • Input • Receive data from peripheral • Send data to computer 2020 EE2222 5 Input/Output Connection(2) • Receive control signals from computer • Send control signals to peripherals • e.g. spin disk • Receive addresses from computer • e.g. port number to identify peripheral • Send interrupt signals (control) 2020 EE2222 6 What is a Bus? • A communication pathway connecting two or more devices • Usually broadcast (all components see signal) • Often grouped • A number of channels in one bus • e.g. 32 bit data bus is 32 separate single bit channels • Power lines may not be shown 2020 EE2222 7 Bus Interconnection Scheme 2020 EE2222 8 Data bus • Carries data • Remember that there is no difference between “data” and “instruction” at this level • Width is a key determinant of performance • 8, 16, 32, 64 bit 2020 EE2222 9 Address bus • Identify the source or destination of data • e.g. CPU needs to read an instruction (data) from a given location in memory • Bus width determines maximum memory capacity of system • e.g. -
Getting Started with Your VXI-1394 Interface for Windows NT/98 And
VXI Getting Started with Your VXI-1394 Interface for Windows NT/98 VXI-1394 Interface for Windows NT/98 November 1999 Edition Part Number 322109D-01 Worldwide Technical Support and Product Information www.ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100 Worldwide Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545 For further support information, see the Technical Support Resources appendix. To comment on the documentation, send e-mail to [email protected] © Copyright 1998, 1999 National Instruments Corporation. All rights reserved. Important Information Warranty The National Instruments VXI-1394 board is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. -
A Technology Comparison Adopting Ultra-Wideband for Memsen’S File Sharing and Wireless Marketing Platform
A Technology Comparison Adopting Ultra-Wideband for Memsen’s file sharing and wireless marketing platform What is Ultra-Wideband Technology? Memsen Corporation 1 of 8 • Ultra-Wideband is a proposed standard for short-range wireless communications that aims to replace Bluetooth technology in near future. • It is an ideal solution for wireless connectivity in the range of 10 to 20 meters between consumer electronics (CE), mobile devices, and PC peripheral devices which provides very high data-rate while consuming very little battery power. It offers the best solution for bandwidth, cost, power consumption, and physical size requirements for next generation consumer electronic devices. • UWB radios can use frequencies from 3.1 GHz to 10.6 GHz, a band more than 7 GHz wide. Each radio channel can have a bandwidth of more than 500 MHz depending upon its center frequency. Due to such a large signal bandwidth, FCC has put severe broadcast power restrictions. By doing so UWB devices can make use of extremely wide frequency band while emitting very less amount of energy to get detected by other narrower band devices. Hence, a UWB device signal can not interfere with other narrower band device signals and because of this reason a UWB device can co-exist with other wireless devices. • UWB is considered as Wireless USB – replacement of standard USB and fire wire (IEEE 1394) solutions due to its higher data-rate compared to USB and fire wire. • UWB signals can co-exists with other short/large range wireless communications signals due to its own nature of being detected as noise to other signals. -
RS-485: Still the Most Robust Communication Table of Contents
TUTORIAL RS-485: Still the Most Robust Communication Table of Contents Abstract...........................................................................................................................1 RS-485 vs. RS-422..............................................................................................................................2 An In-Depth Look at RS-485...........................................................................................................3 Challenges of the Industrial Environment.....................................................................................5 Protecting Systems from Harsh Environments.........................................................................5 Conclusion......................................................................................................................10 References......................................................................................................................10 Abstract Despite the rise in popularity of wireless networks, wired serial networks continue to provide the most robust, reliable communication, especially in harsh environments. These well-engineered networks provide effective communication in industrial and building automation applications, which require immunity from noise, electrostatic discharge and voltage faults, all resulting in increased uptime. This tutorial reviews the RS-485 protocol and discusses why it is widely used in industrial applications and the common problems it solves. www.maximintegrated.com -
Mamaoma Writing EISA Bus Device Drivers
DEC OSF/l mamaoma Writing EISA Bus Device Drivers Part Number: AA-QOR6A-TE DEC OSF/1 Writing EISA Bus Device Drivers Order Number: AA-QOR6A-TE February 1994 Product Version: DEC OSF/1 Version 2.0 or higher This guide contains information systems engineers need to write device drivers that operate on the EISA bus. The guide describes EISA bus specific topics, including EISA bus architecture and the data structures that EISA bus drivers use. digital equipment corporation Maynard, Massachusetts Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii). Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor. © Digital Equipment Corporation 1994 All rights reserved. The following are trademarks of Digital Equipment Corporation: ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet, DEC station, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, V AXstation, VMS, XUI, and the DIGITAL logo. UNIX is a registered trademark licensed exclusively by X/Open Company Limited. Open Software Foundation, OSF, OSFIl, OSFlMotif, and Motif are trademarks of the Open Software Foundation, Inc. -
Interconnect Solutions Short Form Catalog
Interconnect Solutions Short Form Catalog How to Search this Catalog This digital catalog provides you with three quick ways to find the products and information you are looking for. Just point and click on the bookmarks to the left, the linked images on the next page or the labeled sections of the table of contents. You can also use the “search” function built into Adobe Acrobat to jump directly to any text reference in this document. Acrobat “Search” function instructions: 1. Press CONTROL + F 2. When the dialog box appears, type in the word or words you are looking for and press ENTER. 3. Depending on your version of Acrobat, it will either take you directly to the first instance found, or display a list of pages where the text can be found. In the latter, click on the link to the pages provided. Interconnect Solutions Short Form Catalog Complete Solutions for the Electronics Industry 3M Electronics offers a comprehensive range of Interconnect Solutions for the electronics industry with a product portfolio that includes connectors, cables, cable assemblies and assembly tooling for a wide variety of applications. 3M is dedicated to innovation, continually developing new products that become an important part of everyday life across many diverse markets. A number of 3M solution categories are based on custom-designed products for specialized applications. 3M Electronics can help you design, modify and customize your product as well as help you to seamlessly integrate our products into your manufacturing process on a global basis. RoHS Compliant Statement “RoHS compliant” means that the product or part does not contain any of the following substances in excess of the following maximum concentration values in any homogeneous material, unless the substance is in an application that is exempt under RoHS: (a) 0.1% (by weight) for lead, mercury, hexavalent chromium, polybrominated biphenyls or polybrominated diphenyl ethers; or (b) 0.01% (by weight) for cadmium. -
Publication Title 1-1962
publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013 -
Opening Plenary March 2021
Opening Plenary March 2021 Glenn Parsons – IEEE 802.1 WG Chair [email protected] 802.1 plenary agenda Monday, March 8th opening Tuesday, March 16th closing • Copyright Policy • Copyright Policy • Call for Patents • Call for Patents • Participant behavior • Participant behavior • Administrative • Membership status • Membership status • Future Sessions • Future Sessions • Sanity check – current projects • 802 EC report • TG reports • Sanity check – current projects • Outgoing Liaisons • Incoming Liaisons • Motions for EC • TG agendas • Motions for 802.1 • Any other business • Any other business 2 INSTRUCTIONS FOR CHAIRS OF STANDARDS DEVELOPMENT ACTIVITIES At the beginning of each standards development meeting the chair or a designee is to: .Show the following slides (or provide them beforehand) .Advise the standards development group participants that: .IEEE SA’s copyright policy is described in Clause 7 of the IEEE SA Standards Board Bylaws and Clause 6.1 of the IEEE SA Standards Board Operations Manual; .Any material submitted during standards development, whether verbal, recorded, or in written form, is a Contribution and shall comply with the IEEE SA Copyright Policy; .Instruct the Secretary to record in the minutes of the relevant meeting: .That the foregoing information was provided and that the copyright slides were shown (or provided beforehand). .Ask participants to register attendance in IMAT: https://imat.ieee.org 3 IEEE SA COPYRIGHT POLICY By participating in this activity, you agree to comply with the IEEE Code of Ethics, all applicable laws, and all IEEE policies and procedures including, but not limited to, the IEEE SA Copyright Policy. .Previously Published material (copyright assertion indicated) shall not be presented/submitted to the Working Group nor incorporated into a Working Group draft unless permission is granted. -
Microprocessors 1 Lecture
st Ass.Lec. Zaid Raad Microprocessors 1 Lecture THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM Computer systems have undergone many changes recently. Machines that once filled large areas have been reduced to small desktop computer systems because of the microprocessor they possess computing power that was only dreamed of a few years ago. Million-dollar mainframe computer systems, developed in the early 1980s, are not as powerful as the Pentium Core2-based computers of today. The below diagram also applies to any computer system, from the early mainframe computers to the latest microprocessor-based systems. The block diagram is composed of three blocks that are interconnected by buses. Bus: is the set of common connections that carry the same type of information. For example, the address bus, which contains 20 or more connections, conveys the memory address to the memory. 1 st Ass.Lec. Zaid Raad Microprocessors 1 Lecture The Memory and I/O System The memory structure of all Intel-based personal computers is similar. This includes the first personal computers based upon the 8088, introduced in 1981 by IBM, to the most powerful high speed versions of today The memory system is divided into three main parts: 1. TPA (transient program area), 2. System area 3. XMS (extended memory system). *The type of microprocessor in your computer determines whether an extended memory system exists. If the computer is based upon a really old 8086 or 8088 (a PC or XT), the TPA and systems area exist, but there is no extended memory area. The PC and XT computers contain 640K bytes of TPA and 384K bytes of system memory for a total memory size of 1M bytes. -
LPT, COM, 1394, USB, USB-C LPT IEEE 1284, LPT (Англ. Line Print Terminal; Также Параллельный Порт, По
LPT, COM, 1394, USB, USB-C LPT IEEE 1284, LPT (англ. Line Print Terminal; также параллельный порт, порт принтера) — международный стандарт параллельного интерфейса для подключения периферийных устройств персонального компьютера. В основном используется для подключения к компьютеру принтера, сканера и других внешних устройств (часто использовался для подключения внешних устройств хранения данных), однако может применяться и для других целей (организация связи между двумя компьютерами, подключение каких-либо механизмов телесигнализации и телеуправления). В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP). Название LPT образовано от наименования стандартного устройства принтера LPT1 (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS. Параллельный порт Centronics — порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован. Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения. Разъемы. Порт на стороне управляющего -
PC 97 Hardware Design Guide
Part 4 — Device Design Guidelines CHAPTER 21 Printers This chapter presents the requirements and recommendations for printers under the Microsoft Windows family of operating systems. Version 1.1 Includes changes to References for Printers Contents Overview for Printers.............................. ............... 312 Basic Printer Features............................. ................ 312 Basic Features for IEEE 1394 Printers. ................. 312 Basic Features for USB Printers . ............... 312 Basic Features for IEEE 1284 Printers. ................. 313 PC 97 Design for Printers .......................... ................ 314 Plug and Play for Printers. ............... 314 Power Management for Print Components . .............. 315 Device Drivers and Installation for Printers . .................... 315 References for Printers ............................ ................ 318 Checklist for Printers ............................. ................ 320 312 PC 97 Design — Part 4 Device Design Guidelines Overview for Printers This section presents the key design issues for printers under Microsoft Windows. Printers and other devices attached to parallel ports should be capable of high- speed, bidirectional data transfers. The design criteria for parallel devices follow those for parallel ports described in the “Serial, Parallel, and Wireless Support” chapter. The PC 97 requirements for printers and parallel ports seek to ensure the following: • Ensure maximum speed for transfer of parallel data between the system and the peripheral. • Ensure a true Plug and Play experience for users. Basic Printer Features This section summarizes the basic hardware requirements for printers for PC 97. Basic Features for IEEE 1394 Printers This section defines requirements for printers that use IEEE 1394. 1. Compliance with PC 97 requirements for IEEE 1394 Required This bus is recommended in PC 97 for support of fast, high-density data transfer. For information about implementing IEEE 1394 for PC 97, see the “IEEE 1394” chapter in Part 3 of this guide. -
IPUG75 2.2 Table of Contents
PCI Express 2.0 x1, x4 Endpoint IP Core User’s Guide October 2014 IPUG75_2.2 Table of Contents Chapter 1. Introduction .......................................................................................................................... 6 Quick Facts ........................................................................................................................................................... 7 Features ................................................................................................................................................................ 7 PHY Layer.................................................................................................................................................... 7 Data Link Layer............................................................................................................................................ 8 Transaction Layer ........................................................................................................................................ 8 Configuration Space Support....................................................................................................................... 8 Top Level IP Support ................................................................................................................................... 8 Chapter 2. Functional Description ...................................................................................................... 10 Overview ............................................................................................................................................................