Precision Guided Munitions. Technology and Operational Aspects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. -
Three Plane Approach for 3D True Proportional Navigation
TURKISH NAVAL ACADEMY NAVAL SCIENCE AND ENGINEERING INSTITUTE DEPARTMENT OF COMPUTER ENGINEERING MASTER OF SCIENCE PROGRAM IN COMPUTER ENGINEERING THREE PLANE APPROACH FOR 3D TRUE PROPORTIONAL NAVIGATION Master Thesis ĐNANÇ MORAN Advisor: Assist. Prof. Deniz Turgay Altılar Đstanbul, 2005 Copyright by Naval Science and Engineering Institute, 2005 CERTIFICATE OF COMMITTEE APPROVAL THREE PLANE APPROACH FOR 3D TRUE PROPORTIONAL NAVIGATION Submitted in partial fulfillment of the requirements for degree of MASTER OF SCIENCE IN COMPUTER ENGINEERING from the TURKISH NAVAL ACADEMY Author : Đnanç Moran Defense Date : 13 / 07 / 2005 Approved by : 13 / 07 / 2005 Assist. Prof. Deniz Turgay Altılar (Advisor) Prof. Ercan Öztemel (Defense Committee Member) Assoc. Prof. Co şkun Sönmez (Defense Committee Member) ABSTRACT (TURKISH) ÜÇ BOYUTLU ORANTISAL SEY ĐR ĐÇĐN ÜÇ DÜZLEM YAKLA ŞIMI Anahtar Kelimeler : Güdümlü Mermiler, Mermi Güdümü, Üç Boyutlu Gerçek Orantısal Seyir. Bu tezde, yeni bir üç boyutlu güdüm yakla şımı geli ştirilmi ş, bu yakla şım geli ştirilen bir benzeşim ortamında görsel olarak sınanmı ştır. Söz konusu yöntem, Gerçek Orantısal Seyir (GOS) temeli üzerine kurulmakla beraber; GOS’ e ait ivmelerin hesaplanması ve üç boyutlu ivme de ğerlerinin kartezyen koordinatlarda uygulanmasındaki farklılıklarla bu kuraldan ayrılmaktadır. Tasarlanan algoritma; x, y, z eksenleri ile tanımlı üç boyutlu uzayı, sırasıyla xy , yz ve xz ile adlandırılan birbirine dik üç düzleme ayırarak; kaçı ş–kovalama problemini analitik olarak bu düzlemlerde çözdükten ve gerekli ivme komutlarını ürettikten sonra, bu sonuçları üç boyutlu uzayda kullanmak üzere tekrar birle ştirerek çalı şmaktadır. Yörünge ve ba şarım çözümlemeleri VEGAS (Visual End-Game Simulation) adı verilen Görsel Son-Safha Simülasyonunda incelenmi ştir. Ba şarım ölçütleri olan kaçırma mesafesi ve kesi şme zamanı bakımından; önerilen yakla şımın ba şarımının, 10-g manevra kapasitesine sahip hava hedefleri için yüksek oldu ğu sonucu elde edilmi ştir. -
A Study of Observability-Enhanced Guidance Systems
ù a3-'-)-- I A Study of O bservability- Enhanced Guidance Systems by George Estandy l{assoun 8.S., M.S. A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy It* lr The LJniversity of Adelaide Faculty of Engineering Department of Electrical and Electronic Engineering October 1995 ERRATUM Page 3,line 6 Replace statement commencing with: "In a two-radnr commnnd guidnnce ..." by: In a two-radar command guidance, oîe radar tracks the target while the other tracks the pursuer, and from this data guidance commands are calculated and communicated to the pursuer. PageS2,line 8 Replace"thestate X(k lk)" by "thestateestimate X(k I fr), whichistheestimatedstate at time k given the measurement at time tj'. Page 82, line 11 Replace "state" by "state estimate" Page L11, equation (5.8) Replace "Xi' by "Ri'. Replace "where X, is the fînal state" by "where R, is the final miss-distance given in terms of the final state vector X/. ". Page L13, equation (5.14) Replace "4' by "Ri'. Page 11E, equation (5.37) Replace "X,.f" by "R"/'. Page 137,line 6 Replace "line-of-sight'' by "line-of-sight rate". Page 148, Table 6.3 Replace the elements of the fourth column t& (ft)l by the corresponding elements of the fourth column of Table 6.5, page 163 To the silenced angel who borrowed from her speaking dags to pay for my unspoken words Contents Abstract lx Declaration x Acknowledgements xl Publications xll Nomenclature xv List of Abbreviations xvl List of Figures xx List of Tables xxl 1 Introduction 1 1.1 Advanced Guidance Systems 4 L.2 Guidance Problem b I.2.I Line-of-Sight Angle Guidance 6 L2.2 Line-of-Sight Rate Guidance tr 1.2.3 Linear Quadratic Guidance 8 1.2.4 Other Guidance Schemes . -
Advances in Inertial Guidance Technology for Aerospace Systems
AIAA 2013-5123 August 19-22, 2013, Boston, MA AIAA Guidance, Navigation, and Control (GNC) Conference Advances in Inertial Guidance Technology for Aerospace Systems Robert D. Braun1, Zachary R. Putnam2, Bradley A. Steinfeldt3, Georgia Institute of Technology, Atlanta, GA, 30332 and Michael J. Grant4 Purdue University, West Lafayette, IN,47907 The origin, evolution, and outlook of guidance as a path and trajectory manager for aerospace systems is addressed. A survey of theoretical developments in the field is presented demonstrating the advances in guidance system functionality built upon inertial navigation technology. Open-loop and closed-loop approaches for short-range systems, long-range systems and entry systems are described for both civilian and military applications. Over time, guidance system development has transitioned from passive and open-loop systems to active, closed-loop systems. Significant advances in onboard processing power have improved guidance system capabilities, shifting the algorithmic computational burden to onboard systems and setting the stage for autonomous aerospace systems. Seminal advances in aerospace guidance are described, highlighting the advancements in guidance and resulting performance improvements in aerospace systems. Nomenclature aT = Thrust acceleration vector D = Drag f1 = Proportional gain f2 = Derivative gain f4 = Integral gain g = Acceleration due to gravity H = Altitude m = Mass v = Velocity vg = Velocity-to-be-gained vector Q = Gain matrix Downloaded by PURDUE UNIVERSITY on January 13, 2014 | http://arc.aiaa.org DOI: 10.2514/6.2013-5123 R = Slant range T = Thrust magnitude ( )0 = Reference value I. Introduction HE objective of guidance is to modify the trajectory of a vehicle in order to reach a target1. -
Tactical and Strategic Missile Guidance Third Edition
Tactical and Strategic Missile Guidance Third Edition Paul Zarchan Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts Volume 176 PROGRESS IN ASTRONAUTICS AND AERONAUTICS A Volume in the AIAA Tactical Missile Series Paul Zarchan, Editor-in-Chief Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts Published by the American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344 Table of Contents Acknowledgments xv Preface to the Third Edition xvii Introduction xix Chapter 1. Numerical Techniques 1 Introduction 1 Laplace Transforms and Differential Equations 1 Numerical Integration of Differential Equations 3 Z Transforms and Difference Equations 6 References 10 Chapter 2. Fundamentals of Tactical Missile Guidance 11 Introduction 11 What Is Proportional Navigation? 12 Simulation of Proportional Navigation in Two Dimensions 12 Two-Dimensional Engagement Simulation 15 Linearization 20 Linearized Engagement Simulation 22 Important Closed-Form Solutions 24 Proportional Navigation and Zero Effort Miss 27 Summary 28 References 28 Chapter 3. Method of Adjoints and the Homing Loop .. 31 Introduction _. 31 Homing Loop 31 Single Time Constant Guidance System 32 How to Construct an Adjoint 34 Adjoint Mathematics 37 Adjoints for Deterministic Systems 38 Deterministic Adjoint Example 40 Adjoint Closed-Form Solutions 43 Normalization 48 Summary 50 References , 50 Chapter 4. Noise Analysis 51 Introduction 51 Basic Definitions 51 IX Gaussian Noise Example 54 Computational Issues 58 More Basic Definitions 60 Response of Linear System to White Noise 61 Low-Pass-Filter Example 61 Adjoints for Noise-Driven Systems 65 Shaping Filters and Random Processes 66 Example of a Stochastic Adjoint 70 Closed-Form Solution for Random Target Maneuver 75 Summary 76 References 77 Chapter 5. -
The Talos Guidance System
JOSEPH GULICK, W. COLEMAN HYATT, and OSCAR M. MARTIN, JR. THE TALOS GUIDANCE SYSTEM The Talos guidance system evolved from a series of development efforts within the Bumblebee and Talos programs - specifically, the first beamriding system and the first semiactive interferom eter homing system. The guidance system that evolved was virtually unjammable, and it provided the missile with capabilities against manned aircraft, antis hip missiles, surface ships and boats, and radar targets. INTRODUCTION Nutation angle = 0.85° When the Bumblebee Program was conceived, missile guidance technology was in its infancy. The early guidance development work was based on pulse radar technology since pulse radars were well devel Guidance beam oped by 1945. The first guidance concept was that a radar beam, following the target, could be used to guide the missile to the target. It was determined early, however, that the maximum allowable miss distance could not be achieved by such a "beamrid Desired missile course is ing" system at ranges beyond approximately 10 naut along nutation axis ical miles. When the target intercept range for the missile was increased, the guidance concept was Figure 1 - The guidance beam for the beam rider missile revised to use beamriding for the midcourse phase was conically scanned at 30 hertz with a clockwise rota with semiactive homing for the terminal phase. This tion, as viewed from behind the radar antenna. The radar resulted in a guidance system that produced very pulse rate, nominally 900 pulses per second, was varied by small miss distances, essentially independent of inter ±50 pulses per second in synchronism with the conical scan. -
Orbit Selection and EKV Guidance for Space-Based ICBM Intercept
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-09 Orbit selection and EKV guidance for space-based ICBM intercept Aydin, Ahmet Tarik Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/2018 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS ORBIT SELECTION AND EKV GUIDANCE FOR SPACE- BASED ICBM INTERCEPT by Ahmet Tarik Aydin September 2005 Thesis Advisor: Phillip E. Pace Co–Advisor: Murali Tummala Approved for public release; distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2005 Master’s Thesis 4. TITLE AND SUBTITLE: Orbit Selection and EKV Guidance for Space- 5. FUNDING NUMBERS based ICBM Intercept 6. AUTHOR(S) Ahmet Tarik Aydin 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Center for Joint Services Electronic Warfare ORGANIZATION REPORT Naval Postgraduate School NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. -
Generated with Expertpdf Html to Pdf Converter
CLOSE To all our readers in the UK, How often would you like to donate? We will get straight to the point: This Tuesday we ask you to help Wikipedia. To maintain our Just Once Give Monthly independence, we will never run ads. We depend on donations averaging about £10. Only a tiny portion of our readers give. Select an amount (GBP) If everyone reading this donated £2, we could keep Wikipedia thriving for years to come. The price of your Tuesday coffee is all we need. It's a little awkward to be asking this on a Tuesday as I'm sure you £2 £5 £10 £20 are busy and I don't want to interrupt you. But there's never an easy time to remind people that giving to Wikipedia not only supports a service you frequently use, but it helps keep a neutral internet alive and £30 £50 £100 Other thriving. I can't afford to feel embarrassed, asking you to make a donation, just like you shouldn't be embarrassed Select a payment method when you're caught redhanded, checking Wikipedia. We do it in the pursuit of open knowledge that's always adfree, never tracks your data, and is never sold off to corporate bigwigs. That's nothing to be embarrassed about, if you ask me. When I made Wikipedia a nonprofit, people warned me I’d regret it. Over a decade later, it’s the only top ten site run by a nonprofit and a community of volunteers. Most people ignore my messages. -
Analytical Study of CLOS Guidance Law Against Head-On High-Speed Maneuvering Targets
Trans. Japan Soc. Aero. Space Sci. Vol. 50, No. 168, pp. 88–96, 2007 Analytical Study of CLOS Guidance Law against Head-on High-Speed Maneuvering Targets By Chia-Chi CHAO,1Þ Sou-Chen LEE2Þ and Chen-Yaw SOONG3Þ 1ÞDepartment of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, R.O.C. 2ÞCollege of Humanities and Sciences, Lunghwa University of Science and Technology, Taoyuan, Taiwan, R.O.C. 3ÞDepartment of Electronics, China Institute of Technology, Taipei, Taiwan, R.O.C. (Received November 28th, 2005) A command to line-of-sight (CLOS) guidance law is developed against head-on high-speed maneuvering targets. Preliminary studies have shown that the aspect angle of the interceptor at lock-on near 180 deg is a fundamental require- ment for achieving small miss distance against a very high-speed incoming target. The solutions of missile trajectory obtained before under this guidance scheme seemed tedious and incomplete. Now, in this study, exact and complete solutions which are more general and comprehensive than those obtained before are derived for head-on high-speed maneuvering targets. Some related important characteristics such as lateral acceleration demand and normalized missile acceleration are investigated and discussed. Additionally, illustrated examples of target maneuvering are introduced to easily describe the trajectory of the target. The results obtained in this study are very significant and practical, and will be useful in actual application. Key Words: Guidance Law, CLOS, Analytical Solution 1. Introduction 2. Equations of Motion In a CLOS trajectory, the pursuer always lies on the line An important assumption for successful engagement is between the target tracker and target. -
Bursting the Bubble? Russian A2/AD in the Baltic Sea Region
Bursting the Bubble Russian A2/AD in the Baltic Sea Region: Capabilities, Countermeasures, and Implications Robert Dalsjö, Christofer Berglund, Michael Jonsson FOI-R--4651--SE March 2019 Robert Dalsjö, Christofer Berglund, Michael Jonsson Bursting the Bubble Russian A2/AD in the Baltic Sea Region: Capabilities, Countermeasures, and Implications Bild/Cover: Shutterstock FOI-R--4651--SE Titel Bursting the Bubble. Russian A2/AD in the Baltic Sea Region: Capabilities, Countermeasures, and Implications Title Att spräcka bubblan. Rysslands avreglingsförmåga i Östersjöregionen, möjliga motåtgärder och implikationer. Report no FOI-R--4651--SE Month March Year 2019 Pages 114 ISSN 1650-1942 Customer Regeringskansliet Forskningsområde 8. Säkerhetspolitik FoT-område Ej FoT Project no A19106 Approved by Lars Höstbeck Ansvarig avdelning Försvarsanalys Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI. 2 FOI-R--4651--SE Sammanfattning Stater som har förmågan att använda en kombination av sensorer och långdistans- robotar för att hindra antagonister från att operera inom en exkluderingszon, eller “bubbla”, i anslutning till sitt territorium sägs besitta avreglingsförmåga (eng. anti- access/area denial, A2/AD). -
Winning the Salvo Competition Rebalancing America’S Air and Missile Defenses
WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK 2016 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2016 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review. Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, a Master of Public Administration from Central Michigan University, and a B.S. in chemistry from the United States Air Force Academy. -
University Microfilms International 300 N
8100112 Ba tes , C arlto n Ja m es OPTIMAL AND SUBOPTIMAL TERMINAL GUIDANCE LAWS WITH PRACTICAL CONSIDERATIONS FOR A SHORT-RANGE MISSILE AGAINST AN ACCELERATING TARGET The Ohio State University Ph.D. 1980 University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed 1n the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark v ' ' . 1. Glossy photographs ______ 2. Colored Illustrations ______ 3. Photographs with dark background__ _____ 4. Illustrations are poor copy ______ 5. °rint shows through as there 1s text on bothsides of page ______ 6. Indistinct, broken or small print on several pages ______ 7. Tightly bound copy with print lost in spine ______ 8. Computer printout pages with indistinct print _ 9. Page(s) ____ lacking when material received, and not available from school or author 10. Page(s) ______ seem to be missing in numbering only as text follows 11. Poor carbon copy ______ 12. Not original copy, several pages with blurred type ___ 13. Appendix pages are poor copy ______ 14. Original copy with light type ______ 15. Curling and wrinkled pages ______ 16. Other University MicixSilms Intenvitional 300 N ZEES RD.. ANN ARSOR Ml .18106 '313) 761-4700 OPTIMAL AND SUBOPTIMAL TERMINAL GUIDANCE LAWS WITH PRACTICAL CONSIDERATIONS FOR A SHORT RANGE MISSILE AGAINST AN ACCELERATING TARGET DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Carlton James Bates, B.S., M.S.