Exobasidium Leaf and Fruit Spot of Blueberry in the Southeastern United States W.O. Cline , M.T. Brewer , P.M. Brannen , H. Sche

Total Page:16

File Type:pdf, Size:1020Kb

Exobasidium Leaf and Fruit Spot of Blueberry in the Southeastern United States W.O. Cline , M.T. Brewer , P.M. Brannen , H. Sche Exobasidium leaf and fruit spot of blueberry in the southeastern United States W.O. Cline1, M.T. Brewer2, P.M. Brannen2, H. Scherm2 1Department of Plant Pathology, North Carolina State University, Raleigh 27695 2Department of Plant Pathology, University of Georgia, Athens 30602 Subject category: Fungal Pests of Blueberry Abstract First identified in 1997, Exobasidium leaf and fruit spot has emerged as an important disease of both rabbiteye and highbush blueberry in the southeastern US. Yield losses up to 60% have been recorded on ‘Premier’ rabbiteye blueberry. The pathogen, recently described as Exobasidium maculosum M. T. Brewer, is a species unique to the region. The life cycle of the pathogen is currently not known. Infection of leaves and fruit appear to occur simultaneously or in close sequence in early spring, with leaf symptoms appearing in spring and berry symptoms most obvious when fruit ripens. Berry infections appear as green unripe spots on otherwise ripe, blue fruit. Leaf infection produces round, pale-green spots averaging 7-8 mm in diameter that are white when viewed from below. Symptoms do not occur on later leaves, suggesting a springtime, mono- or oligocyclic disease cycle. Disease intensity appears to be highest in wet fields with dense growth and poor air circulation. Fungicides applied beginning at bud break are effective in reducing disease intensity, but there is evidence of resistance to some fungicides. Single, delayed-dormant applications of lime-sulfur have provided significant control in initial trials in Georgia. Index words: plant disease, fungus, plant pathology, small fruit, Ericaceae Introduction Exobasidium leaf and fruit spot caused by Exobasidium maculosum is a once-rare problem that is now common in the southeastern US. Initially thought to be stinkbug injury, the cause was first identified as a plant-parasitic fungus in North Carolina (Cline, 1998) and at that time was identified as E. vaccinii sensu lato. More recent work using phylogenetic analysis led to identification as E. maculosum, a new species (Brewer et al., 2014). The life cycle of the pathogen is currently not known. It produces both sexual basidiospores and asexual conidia, the latter of which are yeast-like and possibly serve as the oversummering and overwintering stages of the pathogen. Infection of leaves and fruit appear to occur simultaneously or in close sequence in early spring, with leaf symptoms appearing in the spring (Fig. 1) and berry symptoms becoming most obvious when fruit ripens (Fig. 2). Berry infections appear as green unripe spots on otherwise ripe, blue fruit. Leaf infection produces round, pale-green spots averaging 7-8 mm in diameter that are slightly raised and white when viewed from below (Fig 3). During mid- summer, leaf spots become necrotic and develop a shothole-like appearance (Fig. 4). Symptoms do not occur on later leaves, suggesting a springtime, mono- or oligocyclic disease cycle, and a pathogen that is epiphytic rather than systemic in the host. Disease incidence appears to be highest in wet fields with dense growth and poor air circulation. Leaf infection is most severe in the lower part of the plant, whereas fruit infection is most severe in the interior of the bush, compared with fruit on more exposed shoots. The disease is increasing in frequency and severity, but fungicides show promise for control (Ingram and Braswell, 2008; Brannen et al., 2014; Scherm et al., 2014; Cline and Bloodworth, 2014). Figure 1. Exobasidium symptoms on blueberry leaves (upper surface) May 24th in North Carolina. Figure 2. Infected ripe berries with highly visible green spots, cultivar Legacy. Figure 3. White fungal growth visible on the underside of leaf lesions. Figure 4. Old lesions become necrotic and may fall out, leaving holes in leaves Other Exobasidium species Many Exobasidium species are reported as parasites of the Ericaceae and related families. They are usually specialized to single or closely related species, with common signs including the production of a white hymenium over the infected area. This thin layer of fungal growth produces characteristic basidia and basidiospores that can be used to identify the genus. Symptoms on various hosts include leaf and stem galls, red shoots, and spots. Infections may be either local or systemic. A frequent symptom of Exobasidium infection is swelling, distortion and enlargement of the infected plant part (hypertrophy and hyperplasia) and this too is often diagnostic. The taxonomy of this species is largely unexplored. There are at least 11 species reported in the US, but host ranges may overlap and descriptions are often antiquated. Exobasidium vaccinii alone is reported on 21 host species (source: Index Fungorum). Previous reports on blueberry Previously described Exobasidium diseases of blueberry include red leaf, a systemic disease of lowbush and northern highbush blueberries (Caruso and Ramsdell, 1995) often referred to as being caused by E. vaccinii, but likely a different species. Red leaf is not known to occur in the Southeast, and is not closely related to the E. maculosum species reported herein as causing spots in Georgia, Mississippi and North Carolina. There is also a report of Exobasidium leaf spot of lowbush blueberry, and in this case the symptoms are very similar to those of E. maculosum in the Southeast. It was first described in Nova Scotia in 1997 (Nickerson and Vander Kloet). The species causing the leaf spot on lowbush blueberry is closely related, but not identical, to E. maculosum (Brewer et al. 2014). Defining Exobasidium maculosum The unique characteristics shown in the images above suggested a previously undescribed species. Other evidence supporting species status comes from the study by Brewer et al. (2014), whereby isolates were collected from symptomatic plant tissue in several states and from highbush, rabbiteye and hybrid blueberry cultivars, for comparison with each other and with known isolates of Exobasidium species from other blueberry, cranberry and related hosts in other parts of the US. The isolates from the southeastern US sites were unique, different from those collected in other regions and from those on other Vaccinium host species. A full description of the fungus including consensus tree phylogenetic analysis, and images including scanning electron micrographs of basidia and basidiospores, was published earlier this year (Brewer et al., 2014). Fungicide trials in 2012-2013 Fungicides were evaluated for control of Exobasidium leaf and fruit spot control both in Georgia and North Carolina. For a complete description of materials and methods, see Brannen et al., 2014; Scherm et al., 2014; Cline and Bloodworth, 2014. All trials were conducted on rabbiteye (Vaccinium virgatum) cultivars. Georgia -- Fungicide trials were conducted in Bacon County on two grower sites with different cultivars (Premier and Tifblue). Treatment factors included application timing and fungicide. Application timing included early-, mid-, and full-season blocks, factored across the fungicides Captan, Indar, Pristine, and an untreated check. The early-season block corresponded to pre- bloom and bloom applications, whereas the mid-season block included petal fall and cover sprays. A commercial airblast sprayer was used at 40 gallons per acre. There was also a lime sulfur application at delayed dormant, and this was applied once in 50 gallons per acre of water, as a stand-alone treatment in early February. North Carolina – A grower site in Bladen County, cultivar Premier, was selected due to a history of severe Exobasidium symptoms and little or no previous fungicide use. The trial compared the fungicides Indar, Pristine, Captan and Elevate with an untreated check. Five sprays of each fungicide treatment were applied, at bud swell (28 Feb), bud break (13 Mar), pink tip (27 Mar), early bloom (3 Apr) and late bloom (10 Apr). A backpack sprayer was used at 25 gallons per acre. Leaf spots were evaluated on 14 May, and fruit infection at harvest on 20 Jun. Results Georgia – The full Captan schedule performed best (8 applications), although lime sulfur (1 application) and Captan (5 early applications) gave statistically equivalent control of both leaf and fruit spots (Figs. 5 and 6). Indar was also effective in the full schedule, giving acceptable control under this regimen. Pristine was not effective in the ‘Tifblue’ trial (data not shown) and was also less effective than other fungicides in the ‘Premier’ trial. North Carolina -- All standard fungicides were significantly better than the untreated control (Tables 1 and 2) and were not different from each other statistically. Pristine performed well in NC in this previously untreated field. Early sprays beginning in late February were targeted based on earlier data from GA, and again the early sprays appear to be critical for successful control. Based on lime-sulfur data from GA, a single delayed-dormant application of lime-sulfur was tested in NC in the spring of 2014, and has performed quite well (data not shown). 0.6 0.5 a a 0.4 0.3 b b b 0.2 bc cd 0.1 cd cd cd d Incidenceof symptomatic leaves 0.0 IndarL IndarF IndarE CaptanL CaptanF CaptanE PristineL PristineF PristineE Untreated Lime sulfur Early Mid-season Full Figure 5. Incidence of symptomatic leaves on ‘Premier’, Bacon Co. GA, 2013. 0.4 a a 0.3 0.2 b b bc bcd bc 0.1 cde cde de e Incidence ofsymptomatic fruit 0.0 IndarL IndarF IndarE CaptanL CaptanF CaptanE PristineL PristineF PristineE Untreated Lime sulfur Early Mid-season Full Figure 6. Incidence of symptomatic fruit on ‘Premier’, Bacon Co. GA, 2013. Table 1. Efficacy of fungicides in reducing incidence and severity of Exobasidium on blueberry leaves of rabbiteye blueberry cultivar Premier in NC (Bladen County) in 2013. Leaf Symptoms Treatment and Rate/A % leaves with one Average no. of spots or more spots per leaf Untreated check 89.8 a* 7.81 a Indar 2F 6 fl oz 3.8 b 0.03 b Pristine 38 WG 23 oz 5.2 b 0.06 b Captan 80WDG 3.12 lb 1.8 b 0.01 b Elevate 50WDG 1.5 lb 4.0 b 0.04 b *Means within a column followed by the same letter are not significantly different, LSD, (α=0.05).
Recommended publications
  • Exobasidium Darwinii, a New Hawaiian Species Infecting Endemic Vaccinium Reticulatum in Haleakala National Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mycol Progress (2012) 11:361–371 DOI 10.1007/s11557-011-0751-4 ORIGINAL ARTICLE Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park Marcin Piątek & Matthias Lutz & Patti Welton Received: 4 November 2010 /Revised: 26 February 2011 /Accepted: 2 March 2011 /Published online: 8 April 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Hawaii is one of the most isolated archipelagos Exobasidium darwinii is proposed for this novel taxon. This in the world, situated about 4,000 km from the nearest species is characterized among others by the production of continent, and never connected with continental land peculiar witches’ brooms with bright red leaves on the masses. Two Hawaiian endemic blueberries, Vaccinium infected branches of Vaccinium reticulatum. Relevant char- calycinum and V. reticulatum, are infected by Exobasidium acters of Exobasidium darwinii are described and illustrated, species previously recognized as Exobasidium vaccinii. additionally phylogenetic relationships of the new species are However, because of the high host-specificity of Exobasidium, discussed. it seems unlikely that the species infecting Vaccinium calycinum and V. reticulatum belongs to Exobasidium Keywords Exobasidiomycetes . ITS . LSU . vaccinii, which in the current circumscription is restricted to Molecular phylogeny. Ustilaginomycotina
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Introduction to Neotropical Entomology and Phytopathology - A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. VI - Introduction to Neotropical Entomology and Phytopathology - A. Bonet and G. Carrión INTRODUCTION TO NEOTROPICAL ENTOMOLOGY AND PHYTOPATHOLOGY A. Bonet Department of Entomology, Instituto de Ecología A.C., Mexico G. Carrión Department of Biodiversity and Systematic, Instituto de Ecología A.C., Mexico Keywords: Biodiversity loss, biological control, evolution, hotspot regions, insect biodiversity, insect pests, multitrophic interactions, parasite-host relationship, pathogens, pollination, rust fungi Contents 1. Introduction 2. History 2.1. Phytopathology 2.1.1. Evolution of the Parasite-Host Relationship 2.1.2. The Evolution of Phytopathogenic Fungi and Their Host Plants 2.1.3. Flor’s Gene-For-Gene Theory 2.1.4. Pathogenetic Mechanisms in Plant Parasitic Fungi and Hyperparasites 2.2. Entomology 2.2.1. Entomology in Asia and the Middle East 2.2.2. Entomology in Ancient Greece and Rome 2.2.3. New World Prehispanic Cultures 3. Insect evolution 4. Biodiversity 4.1. Biodiversity Loss and Insect Conservation 5. Ecosystem services and the use of biodiversity 5.1. Pollination in Tropical Ecosystems 5.2. Biological Control of Fungi and Insects 6. The future of Entomology and phytopathology 7. Entomology and phytopathology section’s content 8. ConclusionUNESCO – EOLSS Acknowledgements Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Insects are among the most abundant and diverse organisms in terrestrial ecosystems, making up more than half of the earth’s biodiversity. To date, 1.5 million species of organisms have been recorded, although around 85% of potential species (some 10 million) have not yet been identified. In the case of the Neotropics, although insects are clearly a vital element, there are many families of organisms and regions that are yet to be well researched.
    [Show full text]
  • Canadian Plant Disease Survey Vol. 44, No. 3, Pp. 146-225, Sept. 1964
    ' ' . CANADIAN PLANT DISEASE '' '· Volume 1964 September 1964 Number 3 CONTENTS PLANT DISEASES OF SOUTHERN BRITISH COLUMBIA A HOST INDEr° H.N.W. Toms Part 1: Cultivated Crop and Ornamental Plants ••••••••••• 146 Part 2: Some Native Plants, Native Weeds and Adventive Weeds•••••••••••••••••••••••••••• 186 Index of Common Names of Hosts ••••••••••••••••••••••••••• 215 1 contribution No. 67 from the Research Station, Research Branch, Canada Department or Agriculture, 6660 N.W. Marine Drive, Vancouver 8, B.c. r I of 146 Vol. 44, No. 3, Can. Plant Dia. Survey September, 1964 PART 1 Cultivated Crop and Ornamental PlantJ 1 � 12almatum 'I_'hunb. var. •atro12urpureum - Japanese Maple. Verticillium: sp. - Wilt, Die-back. Coast. Wind Scorch { Physiol. ) Coast. Aesculus hippoc�stan'll!ll L. - Horse Ch estnut. Nectria cinnabarina {Toda ex Fr.) Fr. - Coral Spot. Victoria. Polvoorus versicolor L. ex Fr. - Trunk Rot. DAVFP Victoria. stereum 12uroureum (Pers. ex Fr.) Fr.· - Shelf Fungus. Coast. Agaricus camn,§;stris Fr. - Mushroom. Dacty.,.,liUIJ! dendro� Fr. - Cobweb. Surrey. Mycelio.nhthora � Cost. - Verdigris. Sur1•ey. PSJ)ulaspora byssin1 Hotson - Brown Plaster Mold. Lulu Id. Agropyro� cristatum. (L.) Gaertn. - Crested Wheatgrass. plavicep� gurpurea (Fr.) Tul. - Ergot. IFV. Puccinia striiformis West. - stripe Rust. Coast. Agropyro� dasystach.YHD! (Hook.) Scribn. - Thickspike Wheatgrass. Sclerotini& borealia Bub. & Vleug. - Snow Mold. Prince George. Agropyron desertorum (Fisch.) Schult. - Desert Wheatgrass. Sclerotinia borealis Bub. & Vleug. - Snow Mold. Prince George. Agrow;ron intermedium (Host.) Beauv. - Intermediate Wheatgrass. Sclerotinia borealis Bub. & Vleug. - Snow Mold. Prince George. Agropyron sibiricum (Willd.) Beauv. - Siberian Wheatgrass. Sclerotinia �� Bub.. & Vleug. - Snow Mold. Prince George. Agrostis alba L. - Red Top, Bent Grass. Pu.ccinia graminif! Pers. - Stem Rust.
    [Show full text]
  • Collecting and Recording Fungi
    British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire.
    [Show full text]
  • Basidiomicates De Costa Rica. Nuevas Especies De Exobasidium
    Rev. Biol. Trop. 46(4): 1081-1093, 1998 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Basidiomicetes de Costa Rica. Nuevas especies de Exobasidium (Exobasidiaceae) y registros de Cryptobasidiales Luis D. Gómez p'1 y Liuba Kisimova- Horovitz2 1 Academia Nacional de Ciencias, Apartado 676-2050, Costa Rica, [email protected] 2 Spezielle Botanik Mykologie, Universittit Tübingen, Alemania. Recibido 19-1-1998. Corregido 24-VIII-1998. Aceptado 17-IX-1998. Abstract: Six new species in thy genus Exobasidium are described: E. aequatorianum n. sp., parasitic on Vaccinium crenatum (Don) Sleumer from Ecuador where it is widely distributed; E. arctostaphyli Harkn., found on Arctostaphylos arbutoides (Lindl.) Hemsl., and on Comarostaphylos costaricensis Small in Costa Rica is redescribed; E.jamaicense n. sp., on Lyonia jamaicensis (Swartz) D. Don from Jamaica and possibly through­ out the Caribbean range of the host genus; E. disterigmicola n.sp., on Disterigma humboldtii (KI.) Nied., from the Talamanca Range, Costa Rica and possibly, throughout the range of its host, E. sphyrospermii n. sp.,on Sphyrospermum cordifolium Bentham in Costa Rica, E. poasanum n. sp., on Cavendishia bracteata (R. & P, ex J. St.-Hil.) Hoer., from the Poás massif in Costa Rica. Exobasidium escalloniae Gómez & Kisimova, descrit¡ed from Costa Rica, is now known to occur in Ecuador on the same host, Escallonia myrtilloides L.f Exobasidium vaccinii (Fkl.) Wor. is here reported from Vacciniumj10ribundum H.B.K. from various Ecuadorean 10caliÍies, and E. pernettyae n. sp. is described as a parasite of Pernettya prostrata (Cav.) DC in Costa Rica. With the exception of Escallonia, of saxifragaceous affinities, all hosts belong in the Ericaceae.
    [Show full text]
  • <I>Exobasidium</I>
    MYCOTAXON Volume 107, pp. 215–220 January–March 2009 Three new species of Exobasidium (Exobasidiales) from China Zhenying Li1,2 & Lin Guo1* [email protected] *[email protected] 1Key Laboratory of Systematic Mycology and Lichenology Institute of Microbiology, Chinese Academy of Sciences Beijing 100101, China 2Graduate University of Chinese Academy of Sciences Beijing 100049, China Abstract—Three new species, Exobasidium kunmingense on Lyonia ovalifolia, Exobasidium lushanense on Rhododendron simsii and Exobasidium rhododendri- russati on R. russatum, are reported from Yunnan and Jiangxi Provinces. Exobasidium kunmingense and E. lushanense cause leaf spots on leaves and E. rhododendri-russati causes small galls on leaves and stems. Key words—Ustilaginomycetes, symptoms, taxonomy According to Nannfeldt (1981), the number and size of sterigmata, the size of basidiospores and the germination form are used for the identification species of Exobasidium. The first new species was collected from Yunnan Province in 2007. It is parasitic on Lyonia ovalifolia, causing leaf spots, concave on the lower surface. The leaf spot is red and about 4.5–15 mm in diam. There are one or more diseased parts on each leaf. The host plant belongs to the subfamily Andromedoideae of Ericaceae. Transverse sections of the diseased leaf show neither hypertrophy nor hyperplasia of plant cells. Hyphae protrude between epidermal cells, forming a continuous thick layer on the lower surfaces of the leaves at maturity. It is described as: Exobasidium kunmingense Zhen Ying Li & L. Guo, sp. nov. Figs. 1, 4-5 MycoBank MB 512325 Hymenium hypophyllum. Basidia cylindrica, 4–6 μm lata, hyalina, terminaliter 3–6 sterigmatibus 3–4 × 1–1.2(–1.8) μm praedita.
    [Show full text]
  • The Dispersal Pattern of Thekopsora Minima in Wild Blueberry Determined by a Molecular Detection Method Nghi Nguyen [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-23-2019 The dispersal pattern of Thekopsora minima in wild blueberry determined by a molecular detection method Nghi Nguyen [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Agricultural Science Commons, Botany Commons, Molecular Genetics Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Nguyen, Nghi, "The dispersal pattern of Thekopsora minima in wild blueberry determined by a molecular detection method" (2019). Electronic Theses and Dissertations. 3065. https://digitalcommons.library.umaine.edu/etd/3065 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE DISPERSAL PATTERN OF THEKOPSORA MINIMA IN WILD BLUEBERRY DETERMINED BY A MOLECULAR DETECTION METHOD Nghi S. Nguyen B.S University of North Texas, 2013 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Botany and Plant Pathology) The Graduate School The University of Maine August 2019 Advisory Committee: Seanna Annis, Ph.D., Associate Professor of Mycology, Advisor, School of Biology and Ecology, Advisor David Yarborough, Ph.D., Wild Blueberry Specialist, Professor of Horticulture, School of Food and Agriculture Jianjun (Jay) Hao, Ph. D, Associate Professor of Plant Pathology, School of Food and Agriculture Ek Han Tan, Ph. D, Assistant Professor of Plant Genetics, School of Biology and Ecology © 2019 NGHI S.
    [Show full text]
  • MYCOTAXON Volume 105, Pp
    MYCOTAXON Volume 105, pp. 331–336 July–September 2008 Two new species and a new Chinese record of Exobasidium (Exobasidiales) from China Zhenying Li1,2 & Lin Guo1* [email protected] *[email protected] 1Key Laboratory of Systematic Mycology and Lichenology Institute of Microbiology, Chinese Academy of Sciences Beijing 100101, China 2Graduate University of Chinese Academy of Sciences Beijing 100049, China Abstract—Two new species, Exobasidium rhododendri-nivalis on Rhododendron nivale and E. pyroloides on Gaultheria pyroloides, are reported. They were collected from Yunnan and Sichuan Provinces. Exobasidium rhododendri-nivalis causes small galls on leaves, stems and shoots, while E. pyroloides causes red leaf spots. Exobasidium cylindrosporum on Rhododendron sp., collected from Jiangxi Province, is reported as new to China. Key words—Ustilaginomycetes, symptoms, taxonomy Two new species of Exobasidium, collected from southwestern China, are described and illustrated. The first new species was collected in 2007 from Yunnan and Sichuan Provinces at altitudes of 4300 m and 4650 m. It is parasitic on Rhododendron nivale (subfamily Rhododendroideae of Ericaceae), causing small galls measuring 1–4 mm in diam. on leaves, stems and shoots. On leaves there are 1–5 (or more) galls on the lower surface. Diseased leaves are convex on the upper surface. The galls are red when fresh and become pale yellowish brown to black when old. Basidiospores with short germ tubes were observed in some microscopical slides of fresh material. The new species is described as: Exobasidium rhododendri-nivalis ZhenYing Li & L. Guo, sp. nov. Figs. 1, 4-7 MycoBank MB 511910 Hymenium album.
    [Show full text]
  • <I>Exobasidium Ferrugineae</I>
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/120.451 Volume 120, pp. 451–460 April–June 2012 Exobasidium ferrugineae sp. nov., associated with hypertrophied flowers of Lyonia ferruginea in the southeastern USA Aaron H. Kennedy1, Nisse A. Goldberg2 & Andrew M. Minnis3* 1National Identification Services, USDA-APHIS-PPQ-PHP, 10300 Baltimore Ave., B 580, Beltsville, MD, 20705, USA 2Jacksonville University, Dept. of Biology and Marine Science, 2800 University Blvd. North, Jacksonville, FL 32211, USA 3Center for Forest Mycology Research, Northern Research Station, USDA-Forest Service, One Gifford Pinochet Drive, Madison, WI 53726, USA * Correspondence to: [email protected] Abstract — Exobasidium ferrugineae, associated with hypertrophied flowers and less commonly leaves of Lyonia ferruginea (rusty staggerbush), is formally described here as a new species. Morphological and DNA sequence (ITS, nLSU) data are provided. Phylogenetic analyses confirm that it is not conspecific with any species of Exobasidium represented by existing DNA sequence data. A key to North American species of Exobasidium on Lyonia is presented. Key words — Basidiomycota, Ericaceae, Exobasidiales, Exobasidiomycetes, plant pathogen Introduction Exobasidium Woronin (Exobasidiales, Exobasidiomycetes) is a basidio- mycetous genus associated with diseases of ericaceous plants commonly characterized by formation of galls on leaves, shoots, and flowers (Burt 1915, Savile 1959, Nannfeldt 1981). Early authors named species on the basis of symptomatology and host association, whereas monographers, including Burt (1915) and Savile (1959), advocated broader taxonomic concepts. These authors suggested that symptoms were variable, overlapping, and dependent on time and environmental conditions. Furthermore, fungal morphology was not definitive for species recognition and usually poorly known, and host associations are not supported by inoculation and cross-inoculation experiments.
    [Show full text]
  • Lives Within Lives: Hidden Fungal Biodiversity and the Importance of Conservation
    Fungal Ecology 35 (2018) 127e134 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Commentary Lives within lives: Hidden fungal biodiversity and the importance of conservation * ** Meredith Blackwell a, b, , Fernando E. Vega c, a Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA b Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA c Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA article info abstract Article history: Nothing is sterile. Insects, plants, and fungi, highly speciose groups of organisms, conceal a vast fungal Received 22 March 2018 biodiversity. An approximation of the total number of fungal species on Earth remains an elusive goal, Received in revised form but estimates should include fungal species hidden in associations with other organisms. Some specific 28 May 2018 roles have been discovered for the fungi hidden within other life forms, including contributions to Accepted 30 May 2018 nutrition, detoxification of foodstuffs, and production of volatile organic compounds. Fungi rely on as- Available online 9 July 2018 sociates for dispersal to fresh habitats and, under some conditions, provide them with competitive ad- Corresponding Editor: Prof. Lynne Boddy vantages. New methods are available to discover microscopic fungi that previously have been overlooked. In fungal conservation efforts, it is essential not only to discover hidden fungi but also to Keywords: determine if they are rare or actually endangered. Conservation Published by Elsevier Ltd. Endophytes Insect fungi Mycobiome Mycoparasites Secondary metabolites Symbiosis 1. Introduction many fungi rely on insects for dispersal (Buchner, 1953, 1965; Vega and Dowd, 2005; Urubschurov and Janczyk, 2011; Douglas, 2015).
    [Show full text]
  • D2c0dd149ad01efecf2d43f41ab
    Persoonia 33, 2014: 41–47 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X682313 Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina Q.-M. Wang1, B. Theelen2, M. Groenewald2, F.-Y. Bai1,2, T. Boekhout1,2,3,4 Key words Abstract Ustilaginomycotina (Basidiomycota, Fungi) has been reclassified recently based on multiple gene sequence analyses. However, the phylogenetic placement of two yeast-like genera Malassezia and Moniliella in fungi the subphylum remains unclear. Phylogenetic analyses using different algorithms based on the sequences of six molecular phylogeny genes, including the small subunit (18S) ribosomal DNA (rDNA), the large subunit (26S) rDNA D1/D2 domains, smuts the internal transcribed spacer regions (ITS 1 and 2) including 5.8S rDNA, the two subunits of RNA polymerase II taxonomy (RPB1 and RPB2) and the translation elongation factor 1-α (EF1-α), were performed to address their phylogenetic yeasts positions. Our analyses indicated that Malassezia and Moniliella represented two deeply rooted lineages within Ustilaginomycotina and have a sister relationship to both Ustilaginomycetes and Exobasidiomycetes. Those clades are described here as new classes, namely Moniliellomycetes with order Moniliellales, family Moniliellaceae, and genus Moniliella; and Malasseziomycetes with order Malasseziales, family Malasseziaceae, and genus Malasse- zia. Phenotypic differences support this classification suggesting widely different life styles among the mainly plant pathogenic Ustilaginomycotina. Article info Received: 25 October 2013; Accepted: 12 March 2014; Published: 23 May 2014. INTRODUCTION in the Exobasidiomycetes based on molecular phylogenetic analyses of the nuclear ribosomal RNA genes alone or in Basidiomycota (Dikarya, Fungi) contains three main phyloge- combination with protein genes (Begerow et al.
    [Show full text]