Ecological Footprint and Governing The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Economics and Sustainable Forest Management: Developing a Transdisciplinary Approach for the Carpathian Mountains
ECOLOGICAL ECONOMICS AND SUSTAINABLE FOREST MANAGEMENT: DEVELOPING A TRANSDISCIPLINARY APPROACH FOR THE CARPATHIAN MOUNTAINS Edited by I.P. Soloviy and W.S. Keeton Ukrainian National Forestry University Press, Lviv © Ihor P. Soloviy and William S. Keeton © Ukrainian National Forestry University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or otherwise without the prior permission of the publisher. Published by Ukrainian National Forestry University Press Gen. Chuprynky 103 Lviv 79057 Ukraine E-mail: [email protected] Ecological economics and sustainable forest management: developing a transdisciplinary approach for the Carpathian Mountains. Edited by I.P. Soloviy, W.S. Keeton. – Lviv : Ukrainian National Forestry University Press, Liga-Pres, 2009. − 432 p. – Statistics: fig. 28, tables 67 , bibliography 686 . The modern scientific conceptions and approaches of ecological economics and sustainable forestry are presented in the book. The attention is given especially to the possibility of the integration of these concepts towards solving the real ecological and economic problems of mountain territories and its sustainable development. The ways of sustainability of forest sector approaching have been proposed using the Ukrainian Carpathian Mountains as a case study. The book will be a useful source for scientists and experts in the field of forest and environmental policies, forest economics and management, as well as for the broad nature conservation publicity. Printed and bound in Ukraine by Omelchenko V. G. LTD Kozelnytska 4, Lviv, Ukraine, phone + 38 0322 98 0380 ISBN 978-966-397-109-0 ЕКОЛОГІЧНА ЕКОНОМІКА ТА МЕНЕДЖМЕНТ СТАЛОГО ЛІСОВОГО ГОСПОДАРСТВА: РОЗВИТОК ТРАНСДИСЦИПЛІНАРНОГО ПІДХОДУ ДО КАРПАТСЬКИХ ГІР За науковою редакцією І. -
Ocean Governance and the Marine Fisheries Crisis: Two Decades of Innovation - and Frustration
OCEAN GOVERNANCE AND THE MARINE FISHERIES CRISIS: TWO DECADES OF INNOVATION - AND FRUSTRATION Harry N. Scheiber" I. IN T R O DU C T IO N ............................................................................................ 119 II. T HE U .N. R ESPO NSE ...................................................................... ........ 123 III. T HE U .S. D EBAT E .................................................................................... 127 IV.APPROACHES TO FISHERIES MANAGEMENT ..... ...................................... 129 A. The PrecautionaryPrinciple ........................................................ :.130 B. The Preservationist Approach ........................................................... 131 C. Protection of biodiversity and ecosystem integrity ............................... 133 D. Privatizationofproperty rights infisheries ........................................ 134 V . C O N C LU SIO N ............................................................................................ 137 I. INTRODUCTION Twenty years ago, many well-regarded marine biologists and fishery-management experts objected to the notion that marine fish stocks could actually be "depleted" or "exhausted."' Policy makers and even many scientists persistently resisted the idea that a marine fish population or species could be wiped out despite large-scale changes in the marine fishing' situation in modern times, including the modernization of fishing fleets. The industrialization of fishing vessels began with the introduction of steam-trawler -
A Critical Perspective on the Global Political Ecology of Aquaculture and Sustainability
Master’s Thesis 2018 30 ECTS Faculty of Life Science Department of International Environment and Development Studies NORAGRIC William Derman, Main Supervisor at NMBU A Critical Perspective on the Global Political Ecology of Aquaculture and Sustainability Per Ditlef Faye International Environmental Studies Faculty of Life Science Norwegian University of Life Sciences Master's Thesis 2018 Department of International Environment and Development Studies – NORAGRIC A Critical Perspective on the Global Political Ecology of Aquaculture and Sustainability Sustainable farming of the Ocean: A perspective on Sustainability and Aquaculture Per Ditlef Faye International Environmental Studies The Department of International Environment and Development Studies, Noragric, is the international gateway for the Norwegian University of Life Sciences (NMBU). Eight departments, associated research institutions and the Norwegian College of Veterinary Medicine in Oslo. Established in 1986, Noragric’s contribution to international development lies in the interface between research, education (Bachelor, Master and PhD programmes) and assignments. The Noragric Master thesis are the final theses submitted by students in order to fulfil the requirements under the Noragric Master programme “International Environmental Studies”, “International Development Studies” and “International Relations”. The findings in this thesis do not necessarily reflect the views of Noragric. Extracts from this publication may only be reproduced after prior consultation with the author and on condition that the source is indicated. For rights of reproduction or translation contact Noragric. Declaration I, Per Ditlef Faye, declare that this thesis is a result of my research investigations and findings. Sources of information other than my own have been acknowledged and a reference list has been appended. This work has not been previously submitted to any other university for award of any type of academic degree. -
Stars – Papua New Guinea's National Strategy for Responsible Sustainable Development
- StaRs – Papua New Guinea's National Strategy for Responsible Sustainable Development Misty E Baloiloi CMG PhD Email: [email protected] 1 Abstract for 2016 PNG Update Sustaining development (in PNG) beyond the resources boom Abstract 1 StaRs – Papua New Guinea's National Strategy for Responsible Sustainable Development Prof Misty Baloiloi, former adviser to Minister for National Planning and Monitoring on Sustainable Development From StaRS, “PNG is in an unique position to choose a future that is responsible and sustainable”. PNG can lead the way in a development revolution toward sustainability revolution towards an ecologically or responsible sustainable future. Papua New Guinea has its own Agenda 21. PNG has its own national strategy for responsible sustainable development (RSD). It is called StaRS. It is the process of transformation from a brown economy to a green economy. StaRS provide a totally new paradigm for development in PNG. It does not replace our development plans but elevates within them the principles of responsible sustainable development and strategic planning. It redefines the development road map by prescribing a growth strategy built on the principles of green growth, green economics, ecological economics and sustainable livelihoods and sustainable development. Em mi yah! In 2009 PNG adopted its Vision 2050 – an aspirational statement and set of beliefs and principles on the sort of PNG we want by 2050. In 2014 the PNG Government endorsed a new national strategy for responsible sustainable development called ”The Strategy”. One year later this was superseded by StaRS. “We believe that the people of PNG, both of today and tomorrow, should be continually aware that in striving to improve their lot they should not make the mistake of blindly destroying their rich natural environment.” “StaRS has been developed at a time when there is a recognizable growth in the economic fortunes of the nation, but also a growing global consciousness that environmental threats are being realized. -
Default Emissions from Biofuels
Definition of input data to assess GHG default emissions from biofuels in EU legislation Version 1c - July 2017 Edwards, R. Padella, M. Giuntoli, J. Koeble, R. O’Connell, A. Bulgheroni, C. Marelli, L. 2017 EUR 28349 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC104483 EUR 28349 EN PDF ISBN 978-92-79-64617-1 ISSN 1831-9424 doi:10.2790/658143 Print ISBN 978-92-79-64616-4 ISSN 1018-5593 doi:10.2790/22354 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Edwards, R., Padella, M., Giuntoli, J., Koeble, R., O’Connell, A., Bulgheroni, C., Marelli, L., Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 , EUR28349 EN, doi: 10.2790/658143 All images © European Union 2017 Title Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 Abstract The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) (2009/30/EC), amended in 2015 by Directive (EU) 2015/1513 (so called ‘ILUC Directive’), fix a minimum requirement for greenhouse gas (GHG) savings for biofuels and bioliquids for the period until 2020, and set the rules for calculating the greenhouse impact of biofuels, bioliquids and their fossil fuels comparators. -
IFC Carbon Neutrality Committment Factsheet
Carbon Neutral Commitment for IFC’s Own Operations IFC, along with the World Bank, are committed to making our internal business operations carbon neutral by: IFC’s Carbon Neutrality 1. Calculating greenhouse gas (GHG) emissions from our operations Commitment is an integral 2. Reducing carbon emissions through both familiar and innovative conservation measures part of IFC's corporate 3. Purchasing carbon offsets to balance our remaining internal carbon footprint after our reduction efforts response to climate change. IFC’s carbon neutrality commitment encourages continual improvement towards more efficient business operations that help mitigate climate change. It is also consistent with IFC’s strategy of guiding our investment work to address climate change and ensure environmental and social sustainability of projects that IFC finances. This factsheet focuses on the carbon footprint of our internal operations rather than the footprint of IFC’s portfolio. IFC uses the ‘operational control approach’ for setting its CALCULATING OUR GHG EMISSIONS organizational boundaries for its GHG inventory. Emissions are included from all locations for which IFC has direct control over IFC has calculated the annual GHG emissions for its internal business operations, and where it can influence decisions that impact GHG operations for headquarters in Washington, D.C. since 2006, and for emissions. IFC’s global operations since 2008 including global business travel. IFC’s annual GHG inventory includes the following sources of The methodology IFC formally used is based on the Greenhouse Gas GHG emissions from IFC’s leased and owned facilities and air Protocol Initiative (GHG Protocol), an internationally recognized GHG travel: accounting and reporting standard. -
Sustainability
Alternatives for Saving Energy, Chemicals, and Materials If existing treatment processes are appropriate, efficient and functioning well; if the quality of water derived from its source and produced by the plant meet drinking water regulations and are of satisfactory quality, what steps can be taken to achieve economies in the use of energy, chemicals, and materials? Water Conservation Only if less water is produced will chemical use, sludge production, and the energy costs associated with water production decline. However, water conservation is an anathema to water utility management since the costs of operations must be paid for by the revenues produced by the sale of water. For example, water utility budget shortfalls often occur in those years in which adequate and timely rainfall reduce the peak summer demands for water. If a community adopts water conservation as a step toward reduced consumption of resources and long-term system sustainability, enlightened municipal management is obligated to ensure that revenues for properly operating and maintaining their water system are secured even in the face of declining water use. In other words, rates must be managed to both promote conservation and maintain economic viability of the utility enterprise. This has recently been defined as Full Cost Pricing. Full Cost Pricing In 2006, the United States Environmental Protection Agency (USEPA) convened an expert workshop of academics, water utility executives, public utility commissioners, utility rate setting practitioners, and other responsible parties to explore the issue of full cost pricing for water and wastewater service. Full cost pricing was defined as a pricing structure for drinking water and wastewater service that fully recovers the cost of providing that service in an economically efficient, environmentally sound, and socially acceptable manner. -
Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset
energies Editorial Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset Wen-Hsien Tsai Department of Business Administration, National Central University, Jhongli, Taoyuan 32001, Taiwan; [email protected]; Tel.: +886-3-426-7247 Received: 29 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 1. Introduction The Paris Agreement was signed by 195 nations in December 2015 to strengthen the global response to the threat of climate change following the 1992 United Nations Framework Convention on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the Paris Agreement, the increase in the global average temperature is anticipated to be held to well below 2 ◦C above pre-industrial levels, and efforts are being employed to limit the temperature increase to 1.5 ◦C. The United States Environmental Protection Agency (EPA) provides information on emissions of the main greenhouse gases. It shows that about 81% of the totally emitted greenhouse gases were carbon dioxide (CO2), 10% methane, and 7% nitrous oxide in 2018. Therefore, carbon dioxide (CO2) emissions (or carbon emissions) are the most important cause of global warming. The United Nations has made efforts to reduce greenhouse gas emissions or mitigate their effect. In Article 6 of the Paris Agreement, three cooperative approaches that countries can take in attaining the goal of their carbon emission reduction are described, including direct bilateral cooperation, new sustainable development mechanisms, and non-market-based approaches. The World Bank stated that there are some incentives that have been created to encourage carbon emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing, the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost renewable energy. -
Download?Doi=10.1.1.104.6035&Rep=Rep1&Type=Pdf>
UC Irvine UC Irvine Previously Published Works Title Towards a performative aesthetics of interactivity Permalink https://escholarship.org/uc/item/6w42d6p2 Author Penny, SG Publication Date 2011-12-01 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fibreculture Journal DIGITAL MEDIA + NETWORKS + TRANSDISCIPLINARY CRITIQUE issue 19 2011: Ubiquity issn: 1449 1443 FCJ-132 Towards a Performative Aesthetics of Interactivity Simon Penny University of California, Irvine Introduction As I write this, at the end of 2010, it is sobering to reflect on the fact that over a couple of decades of explosive development in new media art (or ‘digital multimedia’ as it used to be called), in screen based as well as ‘embodied’ and gesture based interaction, the aesthetics of interaction doesn’t seem to have advanced much. At the same time, interaction schemes and dynamics which were once only known in obscure corners of the world of media art research/ creation have found their way into commodities from 3D TV and game platforms (Wii, Kinect) to sophisticated phones (iPhone, Android). While increasingly sophisticated theoretical analyses (from Manovich, 2002 to Chun, 2008 to Hansen, 2006, more recently Stern, 2011 and others) have brought diverse perspectives to bear, I am troubled by the fact that we appear to have ad- vanced little in our ability to qualitatively discuss the characteristics of aesthetically rich interac- tion and interactivity and the complexities of designing interaction as artistic practice; in ways which can function as a guide to production as well as theoretical discourse. -
The Carbon Footprint of Global Trade Tackling Emissions from International Freight Transport
The Carbon Footprint of Global Trade Tackling Emissions from International Freight Transport 1 International Transport Forum: Global dialogue for better transport Growing concern Projected increase of CO2 emissions from trade-related international freight CO2 emissions om eight = 30% 7% of all transport-related of global CO2 emissions from fuel CO2 emissions combustion The issue CO2 emissions from global freight transport are set to increase fourfold Growth in international trade has been more empty runs and increased demand for rapid, characterised by globalisation and the associated energy-intensive transport such as air freight. As geographical fragmentation of international freight transport — whether by air, land or sea — production processes. Supply chains have become relies heavily on fossil fuel for propulsion and is longer and more complex, as logistics networks link still a long way from being able to switch to cleaner more and more economic centres across oceans energy sources, it is one of the hardest sectors to and continents. Changing consumer preferences decarbonise. and new manufacturing requirements also affect international trade and thus shape freight patterns. The long-term impact of global trade on carbon This has led to more frequent and smaller freight dioxide (CO2) emissions has been largely ignored. shipments and, as a result, to less full containers, International trade contributes to global CO2 2 8132 Mt CO2 emissions 2108 Mt om eight = 30% 7% of all transport-related of global CO2 emissions from fuel CO2 emissions combustion Freight Freight 2010 2050 The issue CO2 emissions from global freight transport are set to increase fourfold emissions mainly through freight transport. -
The Carbon Footprint of Domestic Water Use in the Huron River Watershed
The Carbon Footprint of Domestic Water Use in the Huron River Watershed Introduction A significant amount of energy enables our daily use of water. Whenever water is moved uphill, treated, heated, cooled, or pressurized, energy is needed. Most energy production emits carbon dioxide (CO2), which contributes to global warming. Therefore, water use is another, often overlooked, contributor to our individual and collective carbon footprint. Better decisions related to water treatment and use can help reduce the amount of energy used throughout the water use cycle. By focusing on water conservation, efficiency, and reuse, we can minimize energy use, reduce the associated carbon footprint, and protect our freshwater resources. The Huron River Watershed As more people move to cities, the demand on municipal water supplies will grow. In some cities the cost of energy The watershed of the Huron River encompasses over to pump, treat, and deliver water to consumers already 900 square miles of Southeast Michigan. The river itself is around 60% of a city’s energy bill.v Fifty percent of the flows more than 125 miles from its source near Big Lake in total energy consumed by the City of Ann Arbor goes to Springfield Township, to its outlet at Pointe Mouillee in Lake drinking water and wastewater treatment. Both the costs Erie. The watershed contains all or parts of seven counties: Oakland, Livingston, Ingham, Jackson, Washtenaw, Wayne, and and energy required to provide clean and reliable water Monroe, and is home to more than a half million residents. will continue to increase as demand grows. Also, higher The communities of the watershed have access to an abun- regulatory standards are expected for both drinking water dance of freshwater. -
Buckminster Fuller Playboy Interview
Buckminster Fuller the Playboy interview February 1972 a cesc publication Buckminster Fuller - the 1972 Playboy Interview ©1972 Playboy cesc publications, P.O. Box 232, Totnes, Devon TQ9 9DD England Page 2 of 19 Buckminster Fuller - the 1972 Playboy Interview ©1972 Playboy a candid conversation with the visionary architect/inventor/philosopher R. BUCKMINSTER FULLER PLAYBOY: Is there a single statement you could make than the others and that makes him a challenge to the that would express the spirit of your philosophy? speediest and most powerful, and there’s a fight between the two and the one wins disseminates the FULLER: I always try to point one thing out: if we do species. The others can just go hump.’ more with less, our resources are adequate to take care of everybody. All political systems are founded Imagine how this happened with man - man in great on the premise that the opposite is true. We’ve been ignorance, born with hunger, born with the need to assuming all along that failure was certain, that our regenerate, not knowing whether or not he’ll survive. universe was running down and it was strictly you or He begins by observing that the people who eat roots me, kill or be killed as long as it lasted. But now, in and berries very often get poisoned by them, and he our century, we’ve discovered that man can be a sees that the animals that don’t eat those things don’t success on his planet, and this is the great change that get poisoned.