Anura: Brachycephalidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anura: Brachycephalidae) Com Base Em Dados Morfológicos
Pós-graduação em Biologia Animal Laboratório de Anatomia Comparada de Vertebrados Departamento de Ciências Fisiológicas Instituto de Ciências Biológicas da Universidade de Brasília Sistemática filogenética do gênero Brachycephalus Fitzinger, 1826 (Anura: Brachycephalidae) com base em dados morfológicos Tese apresentada ao Programa de pós-graduação em Biologia Animal para a obtenção do título de doutor em Biologia Animal Leandro Ambrósio Campos Orientador: Antonio Sebben Co-orientador: Helio Ricardo da Silva Maio de 2011 Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-graduação em Biologia Animal TESE DE DOUTORADO LEANDRO AMBRÓSIO CAMPOS Título: “Sistemática filogenética do gêneroBrachycephalus Fitzinger, 1826 (Anura: Brachycephalidae) com base em dados morfológicos.” Comissão Examinadora: Prof. Dr. Antonio Sebben Presidente / Orientador UnB Prof. Dr. José Peres Pombal Jr. Prof. Dr. Lílian Gimenes Giugliano Membro Titular Externo não Vinculado ao Programa Membro Titular Interno Vinculado ao Programa Museu Nacional - UFRJ UnB Prof. Dr. Cristiano de Campos Nogueira Prof. Dr. Rosana Tidon Membro Titular Interno Vinculado ao Programa Membro Titular Interno Vinculado ao Programa UnB UnB Brasília, 30 de maio de 2011 Dedico esse trabalho à minha mãe Corina e aos meus irmãos Flávio, Luciano e Eliane i Agradecimentos Ao Prof. Dr. Antônio Sebben, pela orientação, dedicação, paciência e companheirismo ao longo do trabalho. Ao Prof. Dr. Helio Ricardo da Silva pela orientação, companheirismo e pelo auxílio imprescindível nas expedições de campo. Aos professores Carlos Alberto Schwartz, Elizabeth Ferroni Schwartz, Mácia Renata Mortari e Osmindo Pires Jr. pelos auxílios prestados ao longo do trabalho. Aos técnicos Pedro Ivo Mollina Pelicano, Washington José de Oliveira e Valter Cézar Fernandes Silveira pelo companheirismo e auxílio ao longo do trabalho. -
Synchrotron Microtomography Applied to the Volumetric Analysis of Internal Structures of Thoropa Miliaris Tadpoles G
www.nature.com/scientificreports OPEN Synchrotron microtomography applied to the volumetric analysis of internal structures of Thoropa miliaris tadpoles G. Fidalgo1*, K. Paiva1, G. Mendes1, R. Barcellos1, G. Colaço2, G. Sena1, A. Pickler1, C. L. Mota1, G. Tromba3, L. P. Nogueira4, D. Braz5, H. R. Silva2, M. V. Colaço1 & R. C. Barroso1 Amphibians are models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change due to their sensitivity and vulnerability to changes in the environment. Developmental series of amphibians are informative about their biology, and X-ray based 3D reconstruction holds promise for quantifying morphological changes during growth—some with a direct impact on the possibility of an experimental investigation on several of the ecological topics listed above. However, 3D resolution and discrimination of their soft tissues have been difcult with traditional X-ray computed tomography, without time-consuming contrast staining. Tomographic data were initially performed (pre-processing and reconstruction) using the open- source software tool SYRMEP Tomo Project. Data processing and analysis of the reconstructed tomography volumes were conducted using the segmentation semi-automatic settings of the software Avizo Fire 8, which provide information about each investigated tissues, organs or bone elements. Hence, volumetric analyses were carried out to quantify the development of structures in diferent tadpole developmental stages. Our work shows that synchrotron X-ray microtomography using phase-contrast mode resolves the edges of the internal tissues (as well as overall tadpole morphology), facilitating the segmentation of the investigated tissues. Reconstruction algorithms and segmentation software played an important role in the qualitative and quantitative analysis of each target structure of the Thoropa miliaris tadpole at diferent stages of development, providing information on volume, shape and length. -
Rsidade Federal Do Paraná
UNIVERSIDADE FEDERAL DO PARANÁ CARLOS DANIEL RIVADENEIRA MONTENEGRO ECOLOGICAL IMPLICATIONS IN THE SPECIATION OF MONTANE FROGS WITH SKY ISLANDS DISTRIBUTION CURITIBA 2020 CARLOS DANIEL RIVADENEIRA MONTENEGRO ECOLOGICAL IMPLICATIONS IN THE SPECIATION OF MONTANE FROGS WITH SKY ISLANDS DISTRIBUTION Dissertação apresentada ao Programa de Pós-Graduação em Zoologia do Departamento de Zoologia, Setor de Ciências Biológicas da Universidade Federal do Paraná como requisito parcial para a obtenção do título de Mestre em Zoologia. Orientador: Prof. Dr. Marcio R. Pie Co-orientador: Dr. Andreas L. S. Meyer CURITIBA 2020 Universidade Federal do Paraná. Sistema de Bibliotecas. Biblioteca de Ciências Biológicas. (Rosilei Vilas Boas – CRB/9-939). Montenegro, Carlos Daniel Rivadeneira. Ecological implications in the speciation of montane frogs with sky islands distribution. / Carlos Daniel Rivadeneira Montenegro. – Curitiba, 2020. 51 f. : il. Orientador: Marcio R. Pie. Coorientador: Andreas L. S. Meyer. Dissertação (Mestrado) – Universidade Federal do Paraná, Setor de Ciências Biológicas. Programa de Pós-Graduação em Zoologia. 1. Sapo. 2. Herpetologia. 3. Habitat (Ecologia). 4. Nicho (Ecologia). 5. Anfíbio – Mata Atlântica. I.Título. II. Pie, Marcio R. III. Meyer, Andreas L. S. IV. Universidade Federal do Paraná. Setor de Ciências Biológicas. Programa de Pós-Graduação em Zoologia. CDD (20.ed.) 597.8 MINISTÉRIO DA EDUCAÇÃO SETOR DE CIENCIAS BIOLOGICAS UNIVERSIDADE FEDERAL DO PARANÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO ZOOLOGIA - 40001016008P4 TERMO DE APROVAÇÃO Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em ZOOLOGIA da Universidade Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de CARLOS DANIEL RIVADENEIRA MONTENEGRO intitulada: Ecological implications in the speciation of montane frogs with sky islands distribution, sob orientação do Prof. -
Download PDF (Inglês)
Biota Neotropica 18(3): e20170322, 2018 www.scielo.br/bn ISSN 1676-0611 (online edition) Article Anuran amphibians in state of Paraná, southern Brazil Manuela Santos-Pereira1* , José P. Pombal Jr.2 & Carlos Frederico D. Rocha1 1Universidade do Estado do Rio de Janeiro, Ecologia, Rua São Francisco Xavier, 524, Rio de Janeiro, RJ, Brasil 2Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados, Rio de Janeiro, RJ, Brasil *Corresponding author: Manuela Santos-Pereira, e-mail: [email protected] SANTOS-PEREIRA, M., POMBAL Jr., J.P., ROCHA, C.F.D. Anuran amphibians in state of Paraná, southern Brazil. Biota Neotropica. 18(3): e20170322. http://dx.doi.org/10.1590/1676-0611-BN-2017-0322 Abstract: The state of Paraná, located in southern Brazil, was originally covered almost entirely by the Atlantic Forest biome, with some areas of Cerrado savanna. In the present day, little of this natural vegetation remains, mostly remnants of Atlantic Forest located in the coastal zone. While some data are available on the anurans of the state of Paraná, no complete list has yet been published, which may hamper the understanding of its potential anuran diversity and limit the development of adequate conservation measures. To rectify this situation, we elaborated a list of the anuran species that occur in state of Paraná, based on records obtained from published sources. We recorded a total of 137 anuran species, distributed in 13 families. Nineteen of these species are endemic to the state of Paraná and five are included in the red lists of the state of Paraná, Brazil and/or the IUCN. -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water. -
Phenotypic and Genetic Divergence Among Poison Frog Populations in a Mimetic Radiation
Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation Evan Twomey1, Justin Yeager1,2, Jason Lee Brown1,3, Victor Morales4, Molly Cummings5, Kyle Summers1* 1 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 2 Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America, 3 Department of Biology, Duke University, Durham, North Carolina, United States of America, 4 La Facultad de Ciencias Biolo´gicas, Universidad de Ricardo Palma, Lima, Peru, 5 Department of Integrative Biology, University of Texas, Austin, Texas, United States of America Abstract The evolution of Mu¨llerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a ‘‘transition-zone’’ with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations. -
Standard Guidelines for the Captive Keeping of Anurans
Standard Guidelines for the Captive Keeping of Anurans Developed by the Workgroup Anurans of the Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e. V. Informations about the booklet The amphibian table benefi ted from the participation of the following specialists: Dr. Beat Akeret: Zoologist, Ecologist and Scientist in Nature Conserva- tion; President of the DGHT Regional Group Switzerland and the DGHT City Group Zurich Dr. Samuel Furrer: Zoologist; Curator of Amphibians and Reptiles of the Zurich Zoological Gardens (until 2017) Prof. Dr. Stefan Lötters: Zoologist; Docent at the University of Trier for Herpeto- logy, specialising in amphibians; Member of the Board of the DGHT Workgroup Anurans Dr. Peter Janzen: Zoologist, specialising in amphibians; Chairman and Coordinator of the Conservation Breeding Project “Amphibian Ark” Detlef Papenfuß, Ulrich Schmidt, Ralf Schmitt, Stefan Ziesmann, Frank Malz- korn: Members of the Board of the DGHT Workgroup Anurans Dr. Axel Kwet: Zoologist, amphibian specialist; Management and Editorial Board of the DGHT Bianca Opitz: Layout and Typesetting Thomas Ulber: Translation, Herprint International A wide range of other specialists provided important additional information and details that have been Oophaga pumilio incorporated in the amphibian table. Poison Dart Frog page 2 Foreword Dear Reader, keeping anurans in an expertly manner means taking an interest in one of the most fascinating groups of animals that, at the same time, is a symbol of the current threats to global biodiversity and an indicator of progressing climate change. The contribution that private terrarium keeping is able to make to researching the biology of anurans is evident from the countless publications that have been the result of individuals dedicating themselves to this most attractive sector of herpetology. -
Instituto De Biologia Da Universidade De Brasília Departamento De Ciências Fisiológicas Laboratório De Anatomia Comparativa Dos Vertebrados
Instituto de Biologia da Universidade de Brasília Departamento de Ciências Fisiológicas Laboratório de Anatomia Comparativa dos Vertebrados Pós-graduação em Biologia Animal OSTEOLOGIA DE BRACHYCEPHALUS (ANURA: BRACHYCEPHALIDAE): DESENVOLVIMENTO E DIVERSIDADE MORFOLÓGICA DAS PLACAS ÓSSEAS, REGIÃO AUDITIVA E SUA IMPORTÂNCIA PARA O MONOFILETISMO DO GÊNERO Leandro Ambrósio Campos Dissertação de Mestrado Fevereiro de 2007 Osteologia de Brachycephalus (Anura, Brachycephalidae): desenvolvimento e diversidade morfológica das placas ósseas, região auditiva e sua importância para o monofiletismo do gênero Leandro Ambrósio Campos Dissertação apresentada ao Programa de Pós-graduação em Biologia Animal do Instituto de Biologia da Universidade de Brasília para a obtenção do título de Mestre em Biologia Animal Orientador: Dr. Antônio Sebben Brasília, fevereiro de 2007 Dedico aos meus pais João (1932-2005) e Corina, aos meus irmãos, especialmte ao Flávio, pelos sarifí- cios pela minha formação. AGRADECIMENTOS: Ao Prof. Dr. Antonio Sebben, pela orientação, e pela amizade e companherismo ao longo de todo o trabalho. Ao Dr. Hélio Ricardo da Silva, pela grande contribuição no trabalho, leitura de manuscritos e busca por dados. Ao Prof. Dr. Osmindo Rodrigues Pires Jr., por permitir minha participação em suas expedições de coleta e pela grande ajuda no campo. À mestra Leonora Tavares Bastos, minha companheira, pela presença e compreensão em os todos os momentos difíceis, e também pelo auxílio nas técnicas de MEV. Aos estagiários Andréa Lessa Benedet e Flávio Henrique Corrêa Brandão, pela amizade e ajuda ao longo de todo o projeto. À Profª Dra Sônia Nair Bao, pela instrução e permissão de uso do MEV. Aos técnicos Washington José de Oliveira e Valter Cesar Fernandes Silveira, pelo companherismo e auxílio ao longo do trabalho. -
Establishing a Protocol to Measure Tetrodotoxin (TTX) Levels in Small-Bodied Newts (Genus Lissotriton) in Western Europe
Establishing a protocol to measure tetrodotoxin (TTX) levels in small-bodied newts (genus Lissotriton) in western Europe Rosa Wagstaff This Thesis is Submitted in Fulfilment of the Requirements for the Degree of MSc by Research School of Science, Engineering and Environment University of Salford, Salford, UK March 2021 1 Abstract Tetrodotoxin (TTX) is a defence toxin most commonly found in marine organisms, and amphibians are the only land vertebrates (tetrapods) which are known to produce TTX. However, the origin of TTX in amphibians remains largely unknown, and our knowledge about the existence and distribution of TTX across taxa and populations is very incomplete. The present study summarises our knowledge of TTX in amphibians, and describes a series of experiments to determine whether TTX can be detected in newts (genus Lissotriton and Icthyosaura) across north-eastern Europe. The study was based on eggs and fresh roadkills collected in England, Scotland, Wales and France. The roadkill samples were collected at a site inhabited by both Lissotriton vulgaris and L. helveticus, and species identification was attempted using mtDNA sequencing. An initial set of TTX detection experiments considered all samples, and trialled alternative extraction protocols before employing HPLC/UV/Vis spectrometry. While strong candidate peaks for TTX were identified in some samples, the employed approach was not sufficiently sensitive to unambiguously demonstrate its presence. Three of the adult newts collected from England were further tested for TTX using liquid chromatography and high-resolution mass spectrometry. No tetrodotoxin was detected in any of the newts that were tested. The findings are discussed in light of the observed constraints by the protocols used and should serve as a useful basis for future studies on the presence of TTX in European amphibians. -
Larval Development and Morphology of Six Neotropical Poison-Dart Frogs of the Genus Ranitomeya (Anura: Dendrobatidae) Based on Captive-Raised Specimens
Bonn zoological Bulletin 69 (2): 191–223 ISSN 2190–7307 2020 · Klein B. et al. http://www.zoologicalbulletin.de https://doi.org/10.20363/BZB-2020.69.2.191 Research article urn:lsid:zoobank.org:pub:607B5771-A379-42B6-A9A7-B5D5A2AB27FB Larval development and morphology of six Neotropical poison-dart frogs of the genus Ranitomeya (Anura: Dendrobatidae) based on captive-raised specimens Benjamin Klein1, Ruth Anastasia Regnet2, Markus Krings3 & Dennis Rödder4, * 1, 2, 3, 4Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160,D-53113 Bonn, Germany 2, 4 Programa de Pós Graduação em Zoologia, Universidade Estadual de Santa Cruz - UESC, Rodovia Jorge Amado, Km 16, 45662-900 Salobrinho, Ilhéus, Bahia, Brazil * Corresponding author: Email: [email protected] 1 urn:lsid:zoobank.org:author:5F4659E8-4E44-4F22-A1D4-7BBEF1D3E5F1 2 urn:lsid:zoobank.org:author:1B245FFB-03C5-4386-A06E-C149C8A40AC6 3 urn:lsid:zoobank.org:author:D78A5661-FC81-42BA-B9E4-948E21E2D6BC 4 urn:lsid:zoobank.org:author:C7D0E2AF-2147-43FA-A89A-D770AAEA150E Abstract. Larval development is a crucial step during the ontogeny of amphibians, concomitantly it is the most sensitive life phase in this group. Due to the complex morphological, physiological and anatomical changes, in addition to their susceptibility to the environment changes, this phase is known as one of the most critical period of development as well as an obstacle in ex-situ breeding programs. Tadpole growth rates can be used to predict the effects of biotic interactions, as well as to predict the survival rate on environmental changes. The assessment of the mortality rate during this phase can be performed using a non-invasive image-based tool, programmed on the open source statistical platform R, SAISAQ (semi-automatic quantification of image-based surface area). -
Poison Frog Warning Signals: from the Rainforest to the Genome and Back Again by Adam Michael Murray Stuckert June, 2018
Poison frog warning signals: From the rainforest to the genome and back again by Adam Michael Murray Stuckert June, 2018 Director of Dissertation: Dr. Kyle Summers Major Department: Biology Signal communication is pervasive in nature and is used to convey information to both conspecifics and heterospecifics. Aposematic species use warning signals (e.g. bright coloration) to alert predators to the presence of a secondary defense (e.g., spines, toxins, etc). The presence of a conspicuous signal in combination with a secondary defense is thought to increase the efficiency of learned avoidance by predators and may prevent attacks altogether. Aposematism is widespread both geographically and taxonomically, and aposematic species are seen across the tree of life (including nudibranchs, invertebrates, and vertebrates). There are three main requirements for aposematism to function effectively. First, aposematic species must be able to produce a pattern that contrasts the environmental background (typically via chromatophores and pigments). Second, predators must be able to receive and learn to avoid preying upon aposematic individuals based on the signal. And finally, aposematism must confer a fitness benefit to the population of an aposematic species. In this dissertation I examine both the information that aposematic species convey and how the aposematic signal itself is produced. First, I examine whether the aposematic signal conveys detailed information to visual predators regarding an individual’s specific level of toxicity—a key, but contentious, hypothesis of aposematic theory. Second, I test whether the aposematic signal is multimodal in vertebrates by determining whether they present non-visual predators with an olfactory cue/signal that contains sufficient information to indicate the possession of toxins and thus decrease the likelihood of attack. -
Peruvian Poison Frog, Ranitomeya Flavovittata (Anura: Dendrobatidae)
Biparental care and social monogamy in the Peruvian poison frog, Ranitomeya flavovittata (Anura: Dendrobatidae) Fredrik Tegnér Arbetsgruppen för Tropisk Ekologi Minor Field Study 184 Committee of Tropical Ecology ISSN 1653-5634 Uppsala University, Sweden April 2014 Uppsala Biparental care and social monogamy in the Peruvian poison frog, Ranitomeya flavovittata (Anura: Dendrobatidae) Fredrik Tegnér Supervisors: Prof. Jakob Höglund, Department of Ecology and Genetics, Animal Ecology, Uppsala University, Sweden. Dr. Paul Beaver, Tahuayo River Amazon Research Center, Loreto, Peru. Abstract Parental care is a common reproductive strategy amongst vertebrates and in many cases essential to ensure reproductive success. More elaborate parental systems such as biparental care are on the other hand rare, and overall restricted to the avian fauna. In the family Dendrobatidae (neotropical poison frogs), we find a variety of advanced social behaviour and parental care systems. Most poison frogs exhibit male only parental care and a polygamous mating system, were the male attends to the eggs, and after hatching carries the tadpoles on its back and deposits them in a small nutritive pool of water (phytotelmata). Recent studies of poison frogs belonging to the genus Ranitomeya have revealed the exhibition of biparental care and social monogamy in the two species Ranitomeya imitator and R. vanzolinii. Further studies also revealed genetic monogamy in R. imitator, being the first amphibian described with this mating system. The sister taxa of R. vanzolinii, R. flavovittata has been poorly studied and is thought to exhibit the same parental behaviour as aforementioned species. The aim of this study was to investigate and to describe the parental behaviour and mating system of the Peruvian poison frog R.