2018 Nobel Prize in Medicine Awarded to 2 Cancer Immunotherapy Researchers Oct

Total Page:16

File Type:pdf, Size:1020Kb

2018 Nobel Prize in Medicine Awarded to 2 Cancer Immunotherapy Researchers Oct 2018 Nobel Prize in Medicine Awarded to 2 Cancer Immunotherapy Researchers Oct. 1, 2018 The Nobel Prize for Physiology and Medicine was awarded to James P. Allison, left, and Tasuku Honjo on Monday for their work on cancer research.Jonathan Nackstrand/Agence France-Presse — Getty Images The Nobel Prize in Physiology or Medicine was awarded on Monday to James P. Allison of the United States and Tasuku Honjo of Japan for their work on unleashing the body’s immune system to attack cancer, a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options. Their success, which came after many researchers had given up on the idea, “brought immunotherapy out from decades of skepticism,” said Dr. Jedd Wolchok, a cancer specialist at Memorial Sloan Kettering Cancer Center in New York. It has, he said, “led to human applications that have affected an untold number of people’s health.” Before Dr. Allison’s and Dr. Honjo’s discoveries, cancer treatment consisted of surgery, radiation, chemotherapy and hormonal treatments. A statement from the Nobel committee hailed their accomplishments as establishing “an entirely new principle for cancer therapy.” The drugs based on their work belong to a class called checkpoint inhibitors, with tongue-twisting names that have nonetheless become familiar to many patients. The first ones approved were ipilimumab (brand name Yervoy), nivolumab (Opdivo) and pembrolizumab (Keytruda). Others have since come to market. Earlier attempts by other researchers to recruit the immune system to fight cancer sometimes worked but more often did not. Dr. Allison and Dr. Honjo succeeded where others had failed by deciphering exactly how cells were interacting so they could fine-tune methods to control the immune system. Checkpoint inhibitors do not work for everyone and they have only been approved for some cancers. They can have severe side effects, and they are expensive, costing more than $100,000 a year. But the approach, known as immunotherapy, has become a mainstay of treatment for a number of types of cancer, and a great deal of research is underway — including work by Dr. Allison and Dr. Honjo — to find the best ways of combining checkpoint inhibitors with one another and with standard treatments to help more patients. The checkpoint inhibitors now on the market are used for cancers of the lung, kidney, bladder, head and neck; for the aggressive skin cancer melanoma; and for Hodgkin lymphoma and other cancers. checkpoint ANTIGEN PRESENTING CELL Antigen receptor T-CELLS T-cells are a type of white blood cell that can identify and kill infected, damaged or cancerous cells. Each T-cell has clawlike receptors on its surface that can recognize and lock onto antigens, foreign or abnormal protein fragments on the surface of infected or cancerous cells. ACTIVATING A T-CELL The T-cell must be activated before it can find and attack cancer cells. A specialized cell presents the T-cell with an antigen from a cancer cell, along with a co-stimulator protein. The T-cell begins to hunt down and kill any cells that are covered with the same antigen. CANCER AND CHECKPOINTS Cancer cells can avoid destruction by taking advantage of a switch on the T- cell called an immune checkpoint. The checkpoint can shut down the T- cell and suppress the immune response, allowing the cancer to grow undisturbed. CHECKPOINT INHIBITORS Drugs known as checkpoint inhibitors can physically block the checkpoint, which frees the immune system to attack the cancer. A single T- cell can kill thousands of cancer cells. Dr. Honjo, 76, is a longtime professor at Kyoto University, where he did his landmark work. Previously, he did research at Osaka University, the University of Tokyo and the National Institutes of Health in Washington. Dr. Allison, 70, is chairman of immunology at the University of Texas M.D. Anderson Cancer Center. He did the work recognized by the Nobel committee while working the University of California at Berkeley and Memorial Sloan Kettering Cancer Center in New York. “When I’m thanked by patients who recover, I truly feel the significance of our research,” Dr. Honjo said during a news conference at the Japanese university, according to Japanese news reports. He added: “I’d like to continue researching cancer for a while so that this immunotherapy will help save more cancer patients than ever before.” In a telephone interview, Dr. Allison said that when checkpoint inhibitors work, patients “are good to go for a decade or more.” He said he was working with other researchers, including his wife, Dr. Padmanee Sharma, an oncologist at MD Anderson, to understand the mechanisms so the treatments would help more patients. “It’s a big challenge,” Dr. Allison said. “But we know the basic rules now. It’s just a matter of more hard work to put things together based on science.” Dr. Allison said he first heard about the prize via calls and texts from family, friends and colleagues who had seen news reports, before the Nobel committee could reach him. He was in New York, and the committee did not have his cellphone number. Dr. Allison and Dr. Honjo, working separately, showed in the 1990s how certain proteins act as “brakes” on the immune system’s T-cells and limit their ability to attack cancer cells. Suppressing those proteins, they theorized, could transform the body’s ability to fight cancer. T-cells, a type of white blood cell, are sometimes called the soldiers of the immune system. They are deployed to fight infections and cancer, but malignant cells can elude them. The T-cells carry molecules called checkpoints, that the body uses to shut the cells down when it needs to stop them. Cancer cells can lock onto those checkpoints, crippling the T-cells and preventing them from fighting the disease. Dr. Allison identified a checkpoint called CTLA-4. Dr. Honjo found a different one, called PD-1. Those discoveries made it possible to develop drugs that would stop the checkpoints from working, so that the T-cells would be free to fight cancer. The process is often referred to as taking the brakes off the immune system. Ipilimumab was based on Dr. Allison’s work on the checkpoint CTLA-4. The later drugs work on PD-1. Former President Jimmy Carter received a checkpoint inhibitor, Keytruda, in 2015 when melanoma had spread to his brain and liver. His last scan, in June, showed no cancer, an aide said. A study published in August found that combining Yervoy and Opdivo significantly prolonged life for people in a desperate situation, with melanoma that had spread to the brain. But for all their successes, the danger is that these treatments can also turn the fury of the immune system against the patient’s own tissue, leading to side effects that can be severe. The lungs, intestines and sometimes even the heart have become inflamed. The thyroid gland can turn sluggish. Damage to the pancreas has caused diabetes in some patients. Others have developed rheumatoid arthritis. When the drugs were first introduced, side effects even caused some deaths. Doctors have learned to better control the problems. Overall, the side effects from ipilimumab, or Yervoy, are considered worse than those from the other checkpoint inhibitors. Describing the two researchers, Dr. Wolchok, a melanoma specialist who has worked with Dr. Allison, said: “They were basic scientists who were intrigued with the ways in which these mysterious T-cells behaved. They dug deeply to understand biologic pathways.” Dr. Wolchok treated some of the patients with advanced melanoma who were among the first to receive the drug based on Dr. Allison’s work. Dr. Allison is not a physician, and does not work directly with patients. One day in 2006, Dr. Wolchok called him and insisted that he leave his lab and head to the clinic. Nobel Prize Winning Scientists Reflect on Nearly Sleeping Through the Life-Changing Call How eight winners got the word. Oct. 4, 2015 There, Dr. Wolchok introduced him to a young woman who had been near death from melanoma, and who was now completely free of the disease — after only four doses of the drug Dr. Allison had developed. Dr. Allison wept. That woman, Sharon Belvin, went on to run half marathons. She has remained healthy, has two children and recently attended Dr. Allison’s birthday party, Dr. Wolchok said. Dr. Wolchok noted that although Dr. Allison’s and Dr. Honjo’s discoveries are based on the same idea, they involve separate braking mechanisms in the immune system. “These two pathways are very different,” he said. “That’s good. They’re non- redundant. If patients don’t have the desired outcome from one we can use the other one. It speaks to the multiple different molecular brakes that exist to keep this powerful set of cells and organs that we call the immune system under control.” When will the other Nobels be announced? • The Nobel Prize in Physics will be announced on Tuesday in Sweden. Read about last year’s winners, Rainer Weiss, Kip Thorne and Barry Barish. • The Nobel Prize in Chemistry will be announced on Wednesday in Sweden. Read about last year’s winners, Jacques Dubochet, Joachim Frank and Richard Henderson. • The Nobel Peace Prize will be announced on Friday in Norway. Read about last year’s winner, the International Campaign to Abolish Nuclear Weapons..
Recommended publications
  • Mirati's Clinical Programs
    NASDAQ: MRTX Targeting the genetic and immunological drivers of cancer Corporate Presentation August 2019 1 Safe Harbor Statement Certain statements contained in this presentation, other than statements of fact that are independently verifiable at the date hereof, are "forward-looking" statements, within the meaning of the Private Securities Litigation Reform Act of 1955, that involve significant risks and uncertainties. Forward looking statements can be identified by the use of forward looking words such as “believes,” “expects,” “hopes,” “may,” “will,” “plan,” “intends,” “estimates,” “could,” “should,” “would,” “continue,” “seeks,” “pro forma,” or “anticipates,” or other similar words (including their use in the negative), or by discussions of future matters such as the development of current or future product candidates, timing of potential development activities and milestones, business plans and strategies, possible changes in legislation and other statements that are not historical. Forward-looking statements are based on current expectations of management and on what management believes to be reasonable assumptions based on information currently available to them, and are subject to risks and uncertainties. Such risks and uncertainties may cause actual results to differ materially from those anticipated in the forward-looking statements. Such risks and uncertainties include without limitation potential delays in development timelines, negative clinical trial results, reliance on third parties for development efforts, changes in the competitive landscape, changes in the standard of care, as well as other risks detailed in Mirati's recent filings on Forms 10-K and 10-Q with the U.S. Securities and Exchange Commission. Except as required by law, Mirati undertakes no obligation to update any forward-looking statements to reflect new information, events or circumstances, or to reflect the occurrence of unanticipated events.
    [Show full text]
  • Immune Checkpoint Inhibitor Combinations Current Efforts And
    Drug Resistance Updates 45 (2019) 13–29 Contents lists available at ScienceDirect Drug Resistance Updates journal homepage: www.elsevier.com/locate/drup Immune checkpoint inhibitor combinations: Current efforts and important aspects for success T ⁎ Edo Kon, Itai Benhar Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel ARTICLE INFO ABSTRACT Keywords: Immune checkpoint inhibitors (ICI) have emerged as a remarkable treatment option for diverse cancer types. Resistance Currently, ICIs are approved for an expanding array of cancer indications. However, the majority of patients still Immunotherapy do not demonstrate a durable long-term response following ICI therapy. In addition, many patients receiving ICI Clinic therapy develop immune-related adverse events (irAEs) affecting a wide variety of organs. To increase the CAR-T percentage of patients who benefit from ICI therapy and to reduce the occurrence of irAEs, there is an ongoing Radiation therapy effort to combine current ICIs with novel checkpoints inhibitors or other therapeutic approaches to achieve a Chemotherapy ff RNA cancer vaccines synergistic e ect which is larger than the sum of its parts. Angiogenesis In this review we highlight the essential factors for more effective ICI combinations. We describe how the Tumor microenvironment design of these strategies should be driven by the tumor's immunological context. We analyze current combi- nation strategies and describe how they can be improved to unleash the immune system's full anti-cancer po- tential as well as convert immunologically "cold" tumors into "hot" ones.
    [Show full text]
  • Immune-Checkpoint Blockade Therapy in Lymphoma
    International Journal of Molecular Sciences Review Immune-Checkpoint Blockade Therapy in Lymphoma Ayumi Kuzume 1,2, SungGi Chi 1 , Nobuhiko Yamauchi 1 and Yosuke Minami 1,* 1 Department of Hematology, National Cancer Center Hospital East, Kashiwa 277–8577, Japan; [email protected] (A.K.); [email protected] (S.C.); [email protected] (N.Y.) 2 Department of Hematology, Kameda Medical Center, Kamogawa 296–8602, Japan * Correspondence: [email protected]; Tel.: +81-4-7133-1111; Fax: +81-7133-6502 Received: 11 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.
    [Show full text]
  • Annual Report Fy 2018 Human Frontier Science Program Organization
    APRIL 2017 APRIL 2018 — MARCH 2019 ANNUAL REPORT FY 2018 HUMAN FRONTIER SCIENCE PROGRAM ORGANIZATION The Human Frontier Science Program Organization (HFSPO) is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontier of the life sciences. Special emphasis is given to the support and training of independent young investigators, beginning at the postdoctoral level. The Program is implemented by an international organisation, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, Norway, Singapore, Switzerland, the United Kingdom of Great Britain and Nothern Ireland, the United States of America, and the European Commission. Since 1990, over 7000 researchers from more than 70 countries have been supported. Of these, 28 HFSP awardees have gone on to receive the Nobel Prize. 2 The following documents are available on the HFSP website www.hfsp.org: Joint Communiqués (Tokyo 1992, Washington 1997, Berlin 2002, Bern 2004, Ottawa 2007, Canberra 2010, Brussels 2013, London 2016): https://www.hfsp.org/about/governance/membership Statutes of the International Human Frontier Science Program Organization: https://www.hfsp.org/about/governance/hfspo-statutes Guidelines for the participation of new members in HFSPO: https://www.hfsp.org/about/governance/membership General reviews of the HFSP (1996, 2001, 2006-2007, 2010, 2018): https://www.hfsp.org/about/strategy/reviews Updated and previous lists of awards, including titles and abstracts:
    [Show full text]
  • October 11, 1994, NIH Record, Vol. XLVI, No. 21
    October l 1, 1994 Vol. XLVI No. 21 "Still U.S. Department of Health The Second and Human Services Best Thing About Payday" National Institutes of Health Dunbar To Give First Pittman Lecture, Oct. 26 By Sara Byars scientist recognized internarionally for A her pioneering work in contraceptive vaccines has been selected to deliver the first Margaret Pittman Lecture, a new NIH series chat honors outstanding women scientists. Dr. Bonnie S. Dunbar, professor of cell . :/ biology and obstetrics and gynecology at Baylor College of Medicine, will speak on "New ':'' .:' f ,; ... .. Fromiers in Reproductive Biology and I !- J ~ , • I , , ' f ., ' / , , Contraceptive Vaccines" at 3 p.m. on 0cc. 26 ' • /} : 4 t ., : in Masur Auditorium, Bldg. I 0 . ' ' . ! • ' I I I • Guiding che development of che Pittman • ' ' ,• ,: k'I I ' I lectureship series is the NIH women scientists J: • ! • •'I I It♦ l'- : ,4 • • •· ... / ;~ ~ advisory committee, a group char advises At the NIH Research Festival 1994 poster session, Dr. Lynn Hudson (r), chief. molecular genetics section scientific directors on matters pertaining co rhe ofNJNDS' Laboratory ofViral and Molecular Pathogenesis, stops by to view the work ofDr. Rosemary role of women scientists at NIH. Wong, one ofthe authors who works in NIDDK's Molemlar, Cellular and Endocrinology Branch. See This lectureship honors Or. Margaret additional coverage ofthe event on Pages 6-7. Pittman, rhe first woman co hold the position (See PITTMAN LECTURE, Page 2) NIGMS Reorganizes, Moves to Natcher Bldg. is month, che N acional Institute of General Medical Sciences is undergoing a reorganiza­ Vitetta Is NIAID's 1994 tion and a move to che new William H.
    [Show full text]
  • Mage, Rose G. 2018 Dr
    Mage, Rose G. 2018 Dr. Rose G. Mage Oral History Download the PDF: Mage_Rose_oral_history (130 kB) Office of NIH History and Stetten Museum Oral History with Dr. Rose Mage, NIAID August 22, 2018 GM: I am Dr. Gordon Margolin, volunteer in the Office of NIH History and Stetten Museum about to do an oral history with Dr. Rose G. Mage. She served as a Career Investigator in the NIAID Lab of Immunology, starting in 1965, and then as the Section Chief of the Molecular Immunogenetics section from 1988 until her retirement in 2008. We are here in the NIH Library’s audio-visual recording center on August 22, 2018. Thank you, Dr. Mage, for agreeing to record this history about you, your scientific accomplishments, and the time you spent here at NIH. Let’s begin by asking you to tell me a bit of your background, where you were raised, something about your family, and your educational pathway. RGM: I was born and raised in New York City. My father was an immigrant from Romania. He arrived in New York when he was 5 years old in 1905. I was named after his mother who died from typhoid in the 1920s. My mother was born in the USA but her family, three of her four older brothers were immigrants. I decided I wanted to be a scientist when I was about 9 years old, did well in public schools and skipped grades twice. I applied to the Bronx High School of Science and was accepted after taking a written test for admission.
    [Show full text]
  • Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors
    International Journal of Molecular Sciences Review Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors Ryuhjin Ahn 1 and Josie Ursini-Siegel 2,3,4,5,* 1 Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected] 2 Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada 3 Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada 4 Department of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada 5 Department of Oncology, McGill University, 546 Pine Avenue West, Montréal, QC H2W 1S6, Canada * Correspondence: [email protected]; Tel.: +514-340-8222 (ext. 26557); Fax: +514-340-7502 Abstract: Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvi- ronment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase signaling networks in coordinating immunosuppressive tumor microenvironments. This has led to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease when used as a monotherapy. On the other hand, cancer immunotherapies, including immune checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and Citation: Ahn, R.; Ursini-Siegel, J. lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment Clinical Potential of Kinase Inhibitors of other solid cancers.
    [Show full text]
  • Timeline of Immunology
    TIMELINE OF IMMUNOLOGY 1549 – The earliest account of inoculation of smallpox (variolation) occurs in Wan Quan's (1499–1582) 1718 – Smallpox inoculation in Ottoman Empire realized by West. Lady Mary Wortley Montagu, the wife of the British ambassador to Constantinople, observed the positive effects of variolation on the native population and had the technique performed on her own children. 1796 – First demonstration of smallpox vaccination (Edward Jenner) 1837 – Description of the role of microbes in putrefaction and fermentation (Theodore Schwann) 1838 – Confirmation of the role of yeast in fermentation of sugar to alcohol (Charles Cagniard-Latour) 1840 – Proposal of the germ theory of disease (Jakob Henle) 1850 – Demonstration of the contagious nature of puerperal fever (childbed fever) (Ignaz Semmelweis) 1857–1870 – Confirmation of the role of microbes in fermentation (Louis Pasteur) 1862 – Phagocytosis (Ernst Haeckel) 1867 – Aseptic practice in surgery using carbolic acid (Joseph Lister) 1876 – Demonstration that microbes can cause disease-anthrax (Robert Koch) 1877 – Mast cells (Paul Ehrlich) 1878 – Confirmation and popularization of the germ theory of disease (Louis Pasteur) 1880 – 1881 -Theory that bacterial virulence could be attenuated by culture in vitro and used as vaccines. Proposed that live attenuated microbes produced immunity by depleting host of vital trace nutrients. Used to make chicken cholera and anthrax "vaccines" (Louis Pasteur) 1883 – 1905 – Cellular theory of immunity via phagocytosis by macrophages and microphages (polymorhonuclear leukocytes) (Elie Metchnikoff) 1885 – Introduction of concept of a "therapeutic vaccination". Report of a live "attenuated" vaccine for rabies (Louis Pasteur and Pierre Paul Émile Roux). 1888 – Identification of bacterial toxins (diphtheria bacillus) (Pierre Roux and Alexandre Yersin) 1888 – Bactericidal action of blood (George Nuttall) 1890 – Demonstration of antibody activity against diphtheria and tetanus toxins.
    [Show full text]
  • List of Fellows Selected Through Open Recruitment in Japan
    List of Fellows Selected through Open Recruitment in Japan The following list includes the names of the selected fellows, their host researchers and research themes under the first recruitment of FY 2007-2008 JSPS Postdoctoral Fellowship Program for Foreign Researchers. Under this recruitment, 1219 applications were received, among which 250 fellowships were awarded. Notification of the selection results will be made in writing through the head of the applying institution in the middle of December, 2006. An award letter will be sent to the successful candidates. Unsuccessful applicants (host researchers) will receive a notice of their approximate ranking, and will inform the candidates. Individual requests for selection results are not accepted. Fellow Family Name First Name Middle Name Host Researcher Host Institution Research Theme ABARZUA CABEZAS Fernando Guillermo HIROMI KUMON Okayama University New Suppressor Gene (REIC/DKK-3): Functional Analysis and Clinical Application for Prostate Cancer ABOU EL HASSAN Waleed Hassan Mohamed YOSHINOBU Tottori University Integrated Irrigation and Drainage Management KITAMURA for Sustainable Agriculture Development in Arid Land ABUBAKAR Saifudin Mohamed TATSUYA OKUBO The University of Tokyo Modern Applications of Solid State MAS NMR Spectroscopy in Zeolite Synthesis ADI Alpheus Bongo Chimaeze YOSHITO TAKASAKI University of Tsukuba Social Capital, Community Development and Poverty: The Impact of Cultural Norms in Africa AHMED Mohamed Abdel Fattah FUJI REN The University of Crossing the Language and Culture Barrier by Ibrahim Tokushima Multilingual Natural Language Processing AHN Jaecheol TAKAFUMI NOGUCHI The University of Tokyo Resources-Circulation Simulation for Inorganic Building Materials AHRARY Alireza MINORU OKADA Waseda University Real Environments Modeling by Fusion of Distance Information and Omni-directional Images AHSAN Md.
    [Show full text]
  • CV Tasuku Honjo
    Curriculum Vitae Professor Dr. Tasuku Honjo Name: Tasuku Honjo Born: 27 January 1942 Major Scientific Interest: Mechanism of antibody memory, cancer therapy Academic and Professional Career since 2005 Professor, Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Japan 1984 ‐ 2005 Professor, Department of Medical Chemistry, Faculty of Medicine, Kyoto University, Japan 1979 ‐ 1984 Professor of Genetics, Medical Faculty, Osaka University, Japan 1975 PHD in Medical Chemistry, Kyoto University 1974 Assistant Professor, Medical Faculty, Tokyo University, Japan 1966 MD, Kyoto University Functions in Scientific Societies and Committees (Selection) since 2012 Chairman, Board of Directors, Shizuoka Prefectural University Corporation, Japan 2006 ‐ 2012 Executive Member, Council for Science and Technology Policy, Cabinet Office, Japan since 2006 Scientific advisory board of the Singapore Immunology Network since 2005 Councilor of Takeda Science Foundation 2002 ‐ 2004 Dean, Faculty of Medicine, Kyoto University, Japan Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 1996 ‐ 2000 Dean, Faculty of Medicine, Kyoto University, Japan since 1996 External advisory board of the Committee for Human Gene Therapy Working Group 1992 ‐ 1995 Fellowship review committee member of International Human Frontier Science Program Honours and Awarded Memberships (Selection) 2018 Nobel Prize in Physiology or Medicine 2016 Kyoto Prize 2012 Robert Koch Prize 2005 Member of Japan Academy 2004 Leading Japanese Scientists
    [Show full text]
  • Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer
    cancers Review Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer Antonio Lopez-Beltran 1,*,† , Alessia Cimadamore 2,† , Ana Blanca 3, Francesco Massari 4 , Nuno Vau 5, Marina Scarpelli 2, Liang Cheng 6 and Rodolfo Montironi 2,* 1 Unit of Anatomic Pathology, Department of Morphological Sciences, Cordoba University Medical School, 14004 Cordoba, Spain 2 Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; [email protected] (A.C.); [email protected] (M.S.) 3 Maimonides Biomedical Research Institute of Cordoba, Department of Urology, University Hospital of Reina Sofia, 14004 Cordoba, Spain; [email protected] 4 Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; [email protected] 5 Medical Oncology, Champalimaud Clinical Center, 1400-038 Lisbon, Portugal; [email protected] 6 Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; [email protected] * Correspondence: [email protected] or [email protected] (A.L.-B.); [email protected] (R.M.); Tel.: +34-9-5721-8992 (A.L.-B.); +39-0-71-596-4830 (R.M.); Fax: +34-9-5721-8229 (A.L.-B.) † These authors contributed equally to the work. Simple Summary: In this review, we examined relevant clinical trial results with immune check- point inhibitors in patients with metastatic urothelial cancer. We also focused on the potential of immunotherapy in the adjuvant and neoadjuvant setting or as part of drug combinations. Finally, we briefly review the current landscape of biomarkers of response to immune checkpoint inhibitors, such as programmed death-ligand 1 (PD-L1) expression, tumor mutation burden, molecular subtypes Citation: Lopez-Beltran, A.; of bladder cancer, and immune-gene expression profiling.
    [Show full text]
  • Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: an Overview
    pharmaceuticals Review Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview Diederick J. van Doorn 1 , Robert Bart Takkenberg 1 and Heinz-Josef Klümpen 2,* 1 Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; [email protected] (D.J.v.D.); [email protected] (R.B.T.) 2 Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-566-5983 Abstract: Patients with hepatocellular carcinoma (HCC) face a common type of cancer, which is amongst the most deadly types of cancer worldwide. The therapeutic options range from curative resection or ablation to loco regional therapies in palliative setting and last but not least, systemic treatment. The latter group underwent major changes in the last decade and a half. Since the introduction of sorafenib in 2007, many other systemic treatments have been investigated. Most without success. It took more than ten years before lenvatinib could be added as alternative first-line treatment option. Just recently a new form of systemic treatment, immunotherapy, entered the field of therapeutic options in patients with HCC. Immune checkpoint inhibitors are becoming the new standard of care in patients with HCC. Several reviews reported on the latest phase 1/2 studies and discussed the higher response rates and better tolerability when compared to current standard of care therapies. This review will focus on elaborating the working mechanism of these checkpoint inhibitors, give an elaborate update of the therapeutic agents that are currently available or under research, and will give an overview of the latest trials, as well as ongoing and upcoming trials.
    [Show full text]