Navigating Virtual Reality Worlds with Leap Motion Controller

Total Page:16

File Type:pdf, Size:1020Kb

Navigating Virtual Reality Worlds with Leap Motion Controller FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Navigating Virtual Reality Worlds with Leap Motion Controller Rui Miguel de Paiva Batista Mestrado Integrado em Engenharia Informática e Computação Supervisor: Prof. Rui Pedro Amaral Rodrigues Co-Supervisor: Prof. Jorge Carlos Santos Cardoso January 25, 2016 Navigating Virtual Reality Worlds with Leap Motion Controller Rui Miguel de Paiva Batista Mestrado Integrado em Engenharia Informática e Computação Approved in oral examination by the committee: Chair: Nuno Honório Rodrigues Flores (Professor) External Examiner: Pedro Miguel do Vale Moreira (Professor) Supervisor: Rui Pedro Amaral Rodrigues (Professor) January 25, 2016 Resumo As visitas comerciais a imóveis têm como objetivo dar mais detalhes a um potencial comprador sobre a habitação. Este processo não é eficiente. O comprador tem que se deslocar fisicamente ao local da habitação, o que custa tanto dinheiro como tempo. De forma a tentar mitigar estes fatores começam a aparecer no mercado imobiliário as visitas virtuais. Estas visitas colmatam as falhas mencionadas, pois o comprador apenas tem que se deslocar a um ponto de acesso como o seu computador pessoal. No entanto, estas visitas virtuais também têm as suas desvantagens. Embora os imóveis virtuais possam ser criados com um grande detalhe, nas visitas virtuais os potenciais compradores não têm um sentimento de presença. Normalmente o comprador apenas pode ver fotos/vídeos de algumas divisões ou ter uma vista superficial semelhante a uma planta. A realidade virtual pode trazer ao mercado imobiliário o sentimento de presença. Com a utilização de periféricos como o "Oculus Rift", o utilizador consegue ser colocado no ambiente virtual numa perspetiva de primeira pessoa. No entanto isto também traz alguns problemas a nível da navegação. Esta dissertação tem como objetivo encontrar e avaliar formas de navegação sustentáveis para mundos virtuais a 3 dimensões usando vários dispositivos (como “Leap Motion”) e compará-las com alguns métodos de navegação existentes, tais como o comando. No âmbito deste trabalho serão usados os dispositivos “Leap Motion, o “Oculus Rift”, e um motor gráfico (e.g. Unity 3D ou Unreal Engine). O “Leap Motion” é um dispositivo recente para a interação com mundos virtuais. Este con- segue detetar a orientação, posição e curvatura das mãos de um utilizador. Em conjunto com o “Oculus Rift”, um dispositivo que permite através de visão estereoscópica oferecer ao utilizador uma perspectiva de primeira pessoa numa cena tridimensional, permite a interação entre o uti- lizador e um mundo virtual. Como o âmbito principal será o estudo de formas de navegação em mundos tridimensionais, serão tidos em conta alguns dos problemas típicos nos ambientes imer- sivos, como por exemplo o cansaço sentido durante a navegação. Será usado um motor gráfico de forma a criar a cena tridimensional. O principal caso de utilização será o de uma pessoa que ne- cessita de observar um imóvel e não tem disponibilidade de o visitar fisicamente. Com o “Oculus Rift” será possível colocar o utilizador numa perspetiva de primeira pessoa a visitar virtualmente o imóvel que será criado através dos motores gráficos supracitados. Será no entanto necessário que o utilizador se desloque pelo imóvel, usando para este efeito o “Leap Motion” e outros dispositivos. O caso de utilização principal tem alguns requisitos inerentes, tais como o facto de os utilizadores finais não possuírem experiência com algumas das tecnologias envolvidas, pelo O caso de uti- lização principal tem alguns requisitos inerentes, tais como o facto de os utilizadores finais não possuírem experiência com algumas das tecnologias envolvidas, pelo que a curva de aprendiza- gem para a adaptação terá de ser baixa. Alguns aspetos normalmente associados às primeiras utilizacões do “Oculus Rift” serão tidos em conta como, por exemplo, o enjoo ou, no caso do “Leap Motion”, o cansaço após algum tempo de utilização. Como o objetivo desta dissertação é uma avaliação de algo subjetivo, serão efetuados testes de utilização. Estes testes terão associados alguns questionários já existentes como o "Simulation Sickness Questionnaire" que servem como i ferramentas de comparação entre simuladores de realidade virtual. Palavras chave: HCI design and evaluation methods; Interaction paradigms; Interaction devices; Interaction techniques; Interaction design; Accessibility; ii Abstract Real state tours is a process where a potential buyer visits a house to know more details about it. This is an inefficient process at several levels. The user needs to travel physically to the house which brings monetary costs and it is a time consuming activity. To mitigate these factors the market is starting to have virtual real state tours. These have several benefits and the main advantage is the user only having to dislocate to a access point like a personal computer. Virtual tours also have its disadvantages. The houses built in virtual environments, although detailed, can not give the potential buyer the feeling of presence. Normally the buyer can only look at pictures of rooms or see the virtual house in a broad perspective like a blueprint. Virtual reality can bring to the real state market the feeling of presence. Using devices like the Oculus Rift, users can be placed in a virtual reality property with a first person perspective. This brings some new challenges like navigation. The dissertation Navigating Virtual Reality Worlds with the Leap Motion Controller main goal is to find and evaluate several navigation methods to control a virtual character inside a virtual simulator. Recent devices as the Leap Motion will be compared with more traditional devices, like the gamepad. To accomplish the goals set in this dissertation, tools like a game engine (Unity3D or Unreal Engine) will be utilized. Leap Motion is a recent device to interact with virtual worlds. It can detect in real time the position direction and arch from user’s hands. When combined with Oculus Rift, a device that through stereoscopic vision offers the user a first person perspective which allows the user to interact with the virtual world with a greater level of immersion. With the main goal set, some frequent problems with immersive simulators will be considered (for example, the user’s fatigue). To help create the virtual world a game engine will be utilized. A survey of the main game engines will be made and one of them will be chosen to create the final application. The main use case scenario will be a real estate virtual tour. A user that can not travel to an apartment can, through the application, make a virtual tour to it anywhere in the world. With the first perspective feature given by the Oculus Rift, the user can have a immerse tour and have a realistic view of the apartment. However, it will be necessary to navigate through the property. Using a device like the Leap Motion, the user can interact with the world without losing the immersion factor. The main use case scenario has some requirements that must be taken into account. Has the target audience is every one over eighteen years old, the learning curve of the techniques must be low and the devices must be simple to handle. Also, effects related with the use of the Oculus Rift will be taken into consideration and evaluated, like motion sickness and fatigue. To evaluate the several techniques some tests will be made to the users, like the Simulation Sickness Questionnaire(SSQ). These act like comparison tools to test virtual reality simulators. Key Words: HCI design and evaluation methods; Interaction paradigms; Interaction devices; In- teraction techniques; Interaction design; Accessibility; iii iv Acknowledgments I would like to thank all the people that helped me during this dissertation. For the guidance given and all the helpful discussions during the semester, Professor Jorge C. S. Cardoso was of the most valuable help. All his patience, insight and knowledge were essential in the development of this project. All the members from School of Arts, that gave me the possibility to work in a great environment. A special thanks to Tiago, for the help he gave me locating all possible physical resources for the development and testing on the School of Arts. I also would like to thank my supervisor Professor Rui Pedro Amaral Rodrigues for helping me with the document, for all availability and for providing all the resources for the experiment in FEUP. Another special thanks to Eng. António Sérgio Ferreira, for his "strong words" on this last part of the semester. Thanks also to my girlfriend for all her patience that she had in times of stress, always helping me see the brighter future. I would like to thank also all the test subjects that volunteered for my experiment. Rui Miguel de Paiva Batista v vi “A bruise is a lesson... and each lesson makes us better.” George R.R. Martin vii viii Contents 1 Introduction1 1.1 Context . .1 1.2 Problem Definition . .2 1.3 Tasks and Objectives . .2 1.4 Dissertation Structure . .3 2 Literature Review5 2.1 Navigation Techniques and Virtual World Interactions . .5 2.1.1 Metaphors . .5 2.2 Physical Devices . .8 2.2.1 Head-Mounted Displays . .8 2.2.2 Input Devices . 10 2.3 Evaluation and Metrics . 11 2.4 Summary . 12 3 Proposed Methodology and Architecture 13 3.1 Methodology . 13 3.1.1 Applications Review . 14 3.1.2 Techniques Review . 15 3.1.3 Game Engine Review . 17 3.2 Architecture . 17 4 Iterative design and implementation of navigation metaphors 21 4.1 Techniques Iterations . 21 4.1.1 Gamepad . 21 4.1.2 Airplane . 22 4.1.3 Point to Point . 23 4.2 Final Iterations and Implementation . 24 4.2.1 Airplane . 24 4.2.2 Gamepad . 25 4.2.3 Point to Point . 26 4.3 Summary . 27 5 Experimental Procedure 29 5.1 Experiment Outline .
Recommended publications
  • P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications
    P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications Problem Definition Preamble ● Thank you for attending our review! We are looking for: ● constructive criticisms ● outside perspective Team Member Introduction Member Role Alex Dawson-Elli Team Lead - Biomedical Engineer Nate Burrell Biomedical Engineer Jascha Wilcox Biomedical Engineer Kenny LaMarca Computer Engineer Kevin Alexandre Computer Engineer context context volume rendering stereo visualization technology Background ● Anatomy is inherently a 3D problem ● conventional teaching techniques: ○ book -> 2D ○ dissection -> may discourage some students ● Modern technology is underutilized in the classroom Problem Statement Current State:Students learning anatomy from a textbook, at a low level of excitement, and a low level of exposure to modern imaging modalities Desired State: Students learning in a stereoscopic anatomy visualization environment, with a high level of excitement, and a high level of exposure to modern imaging modalities Project Goals: create a fully virtual stereo anatomy viewer Constraints: budget, pre-designed hardware, must use existing data set Stakeholders ● Project advisor ○ Dr. Christian Linte ● Teachers ○ Instructor of students (grade 6-12) ● Students ○ Our target age group is middle and high school students (grade 6-12) Use Scenario Customer Needs Customer Rqmt. # Importance Description CR1 9 Easy for a teacher to learn CR2 9 Easy for the Student to use CR3 9 Graphical Interface CR4 9 Stereo Viewing System, in 3D
    [Show full text]
  • Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task
    Old Dominion University ODU Digital Commons Psychology Theses & Dissertations Psychology Spring 2019 Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task Shelby K. Long Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/psychology_etds Part of the Applied Behavior Analysis Commons, Human Factors Psychology Commons, and the Robotics Commons Recommended Citation Long, Shelby K.. "Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task" (2019). Master of Science (MS), Thesis, Psychology, Old Dominion University, DOI: 10.25777/yh1y-0016 https://digitalcommons.odu.edu/psychology_etds/231 This Thesis is brought to you for free and open access by the Psychology at ODU Digital Commons. It has been accepted for inclusion in Psychology Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK by Shelby K. Long B.S. December 2013, Georgia Institute of Technology A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE PSYCHOLOGY OLD DOMINION UNIVERSITY May 2019 Approved by: James P. Bliss (Director) Yusuke Yamani (Member) Xiaoxiao Hu (Member) ABSTRACT EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK Shelby K. Long Old Dominion University, 2019 Director: Dr. James P. Bliss The use of robotic arms across domains is increasing, but the relationship between control features and performance is not fully understood.
    [Show full text]
  • Leap Motion Controllertm
    Leap Motion ControllerTM The world’s leading hand tracking technology The Leap Motion Controller from Ultraleap is an optical hand tracking module that captures the movement of users’ hands and fingers so they can interact naturally with digital content. Small, fast, and accurate, the Leap Motion Controller can be used for productivity applications with Windows computers, integrated into enterprise- grade hardware solutions or displays, or attached to virtual/augmented reality headsets for AR/VR/XR prototyping, research, and development. The controller is capable of tracking hands within a 3D interactive zone that extends up to 60cm (24”) or more, extending from the device in a 120×150° field of view. Leap Motion‘s software is able to discern 27 distinct hand elements, including bones and joints, and track them even when they are obscured by other parts of the hand. With a 120Hz refresh rate and low-latency software, the time between motion and photon falls beneath the human perception threshold1. An accessory component, the VR Developer Mount, allows for easy, reliable, and consistent attachment of the device to virtual reality headsets such as the Oculus Rift and HTC Vive. The Leap Motion App Gallery features 75+ legacy desktop applications and a demo suite for virtual reality. Example applications • Entertainment (location-based VR/AR experiences, arcades, amusement parks) • Healthcare (stroke rehabilitation, training, mirror, medical imaging, lazy eye treatment) • Therapy and Education (anatomic visualizations, hands-on learning) • Personnel training (flight simulators, complex computer systems) • Industrial design and engineering (automotive, assembly lines, facilities management) • Robotics (telepresence, robotic controls, AI-assisted teaching) The Leap Motion Controller features a 120×150° • Global team collaboration field of view and an interactive tracking range of more than 2 feet (60cm).
    [Show full text]
  • Natural Menu Interactions in VR with Leap Motion Masterarbeit
    Natural Menu Interactions in VR with Leap Motion Masterarbeit Zur Erlangung des Grades Master of Science (M.Sc.) im Studiengang Informatik vorgelegt von Björn Zeutzheim Erstgutachter: Prof. Dr. Stefan Müller (Institut für Computervisualistik, AG Computergraphik) Zweitgutachter: Nils Höhner, M.Sc. (Institut für Wissensmedien, IWM) Koblenz, der 6. September 2019 Erklärung Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ja Nein Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. □ □ . (Ort, Datum) (Unterschrift) Abstract With the appearance of modern virtual reality (VR) headsets on the consumer market, there has been the biggest boom in the history of VR technology. Naturally, this was accompanied by an increasing focus on the problems of current VR hardware. Especially the control in VR has always been a complex topic. One possible solution is the Leap Motion, a hand tracking device that was initially developed for desktop use, but with the last major software update it can be attached to standard VR headsets. This device allows very precise tracking of the user’s hands and fingers and their replication in the virtual world. The aim of this work is to design virtual user interfaces that can be operated with the Leap Motion to provide a natural method of interaction between the user and the VR environment. After that, subject tests are performed to evaluate their performance and compare them to traditional VR controllers. Zusammenfassung Mit dem Erscheinen moderner Virtual Reality (VR) Headsets auf dem Verbrauchermarkt, gab es den bisher größten Aufschwung in der Geschichte der VR Technologie.
    [Show full text]
  • Universidad Católica De Santiago De Guayaquil Facultad De Artes Y Humanidades Carrera De Ingenieria En Producción Y Dirección En Artes Multimedia
    UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES CARRERA DE INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA TÌTULO: CREACIÓN DE UNA APLICACIÓN MULTIMEDIA QUE DESARROLLE POR MEDIO DE JUEGOS Y ACTIVIDADES LAS HABILIDADES MOTRICES FINAS EN LOS NIÑOS DE PREESCOLAR USANDO LA REALIDAD VIRTUAL EN LOS DISPOSITIVOS MÓVILES TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA AUTOR: ROBERTO ADELKARÍN BELTRÁN LUCAS TUTOR: LIC. LAMBERT SARANGO YAMIL, MGS Guayaquil, Ecuador 2015 UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA CERTIFICACIÓN Certificamos que el presente trabajo fue realizado en su totalidad por Roberto Adelkarín Beltrán Lucas, como requerimiento parcial para la obtención del Título de Ingeniero en Producción y Dirección de Arte Multimedia. TUTOR ______________________ Lic. Yamil Lambert Sarango, Mgs DIRECTOR DE LA CARRERA ______________________ Lic. Víctor Hugo Moreno, Mgs Guayaquil, a los 29 del mes de septiembre del año 2015 UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA DECLARACIÓN DE RESPONSABILIDAD Yo, Roberto Adelkarín Beltrán Lucas DECLARO QUE: El Trabajo de Titulación Creación de una aplicación multimedia que a través de juegos y actividades desarrolle las habilidades cognitivas y motrices en los niños de preescolar, usando para ello la realidad virtual en los dispositivos móviles previa a la obtención del Título de Ingeniería en producción y dirección de arte multimedia, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía.
    [Show full text]
  • Whitepaper Head Mounted Displays & Data Glasses Applications and Systems
    Whitepaper Head Mounted Displays & Data Glasses Applications and Systems Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) System classes Application fields Directions of development Summary Content . System classes Head Mounted Display (HMD) – Video glasses – Data glasses . Simulator disease / Cyber Sickness . Application fields HMDs: interior inspections, training, virtual hedging engineering / ergonomics . Application fields data glasses: process support, teleservice, consistency checks, collaboration . Directions of development: technical specifications, (eye) tracking, retinal displays, light field technology, imaging depth sensors . Application preconditions information & integration (human, IT, processes) . Final remark 2 SystemSystem classes classes Application fields Directions of development Summary Head Mounted Displays (HMDs) – Overview . 1961: first HMD on market . 1965: 3D-tracked HMD by Ivan Sutherland . Since the 1970s a significant number of HMDs is applied in the military sector (training, additional display) Table: Important HMD- projects since the 1970s [Quelle: Li, Hua et. al.: Review and analysis of avionic helmet-mounted displays. In : Op-tical Engineering 52(11), 110901, Novembre2013] 3 SystemSystem classes classes Application fields Directions of development Summary Classification HMD – Video glasses – Data glasses Head Mounted Display
    [Show full text]
  • Controller-Free Hand Tracking for Grab-And-Place Tasks in Immersive Virtual Reality: Design Elements and Their Empirical Study
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2020 doi:10.20944/preprints202010.0431.v1 Article Controller-free Hand Tracking for Grab-and-place Tasks in Immersive Virtual Reality: Design Elements and their Empirical Study Alexander Masurovsky 1,2* , Paul Chojecki1, Detlef Runde1, Mustafa Lafci1, David Przewozny1 and Michael Gaebler3 1 Fraunhofer Heinrich Hertz Institute, Berlin, Germany 2 Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany 3 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany * Correspondence: [email protected] Abstract: Hand tracking enables controller-free interaction with virtual environments, which can, compared to traditional handheld controllers, make virtual reality (VR) experiences more natural and immersive. As naturalness hinges on both technological and user-based features, fine-tuning the former while assessing the latter can be used to increase usability. For a grab-and-place use case in immersive VR, we compared a prototype of a camera-based hand tracking interface (Leap Motion) with customized design elements to the standard Leap Motion application programming interface (API) and a traditional controller solution (Oculus Touch). Usability was tested in 32 young healthy participants, whose performance was analyzed in terms of accuracy, speed and errors as well as subjective experience. We found higher performance and overall usability as well as overall preference for the handheld controller compared to both controller-free solutions. While most measures did not differ between the two controller-free solutions, the modifications made to the Leap API to form our prototype led to a significant decrease in accidental drops. Our results do not support the assumption of higher naturalness for hand tracking but suggest design elements to improve the robustness of controller-free object interaction in a grab-and-place scenario.
    [Show full text]
  • Usability Evaluation of Input Devices for Navigation and Interaction in 3D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International SERIES on Information Systems and Management in Creative eMedia... Usability evaluation of input devices for navigation and interaction in 3D visualisation Peter Skrljˇ Jozeˇ Guna Ciril Bohak, Matija Marolt University of Ljubljana University of Ljubljana University of Ljubljana Faculty of Computer and Faculty of Electrical Faculty of Computer and Information Science Engineering Information Science [email protected] [email protected] fciril.bohak, [email protected] ABSTRACT exploration, which describes navigation through space with We present an assessment study of user experience and us- no target goal, search, where the user must navigate to a ability of different kinds of input devices for view manipula- certain goal with speed, and finally maneuvering, which de- tion in a 3D data visualisation application. Three input de- scribes slower movements but with higher precision. All of vices were compared: a computer mouse, a 3D mouse with the above mentioned aspects are important while developing six degrees of freedom, and the Leap Motion Controller - a highly usable interface for 3D navigation. a device for touchless interaction. Assessment of these de- In our case we do not address a specific aspect of navigation vices was conducted using the System Usability Scale (SUS) listed in introduction (exploration, search or maneuvering), methodology, with addition of application specific questions. we are covering the user experience. Further research for ad- To gain further insight into users’ behaviour, the users’ per- dressing individual aspects are planned as part of future work.
    [Show full text]
  • Virtual Reality Games Integration Module for Managing and Monitoring of Hand Therapy
    SBC { Proceedings of SBGames 2020 | ISSN: 2179-2259 Games and Health { Full Papers Virtual Reality Games Integration Module for Managing and Monitoring of Hand Therapy Ana Grasielle Dionísio Corrêa Adriano Rapussi Felipe Monteiro da Costa Programa de Pós-Graduação em Faculdade de Computação e Informática Faculdade de Computação e Informática Distúrbios do Desenvolvimento Universidade Presbiteriana Mackenzie Universidade Presbiteriana Mackenzie Universidade Presbiteriana Mackenzie São Paulo, Brasil São Paulo, Brasil São Paulo, Brasil [email protected] [email protected] [email protected] Raquel Cymrot Natália Regina Kintschner Silvana Maria Blascovi-Assis Escola de Engenharia Programa de Pós-Graduação em Distúrbios Programa de Pós-Graduação em Distúrbios do Universidade Presbiteriana Mackenzie do Desenvolvimento Desenvolvimento São Paulo, Brasil Universidade Presbiteriana Mackenzie Universidade Presbiteriana Mackenzie [email protected] São Paulo, Brasil São Paulo, Brasil [email protected] [email protected] Abstract—Injuries to the hand function caused by overwork need to manipulate the joystick. However, it is still a challenge or neurological problems lead to the need for intense motor to detect finer hand movements, for example, movements of rehabilitation programs. Rehabilitation training is generally grasping and releasing objects [1]. Other solutions using limited to the rehabilitation center and/or hospitals and patients cameras or wearable technologies such as data gloves are are idle at home. We have developed a module for managing and some of the hand movement capture options most used in monitoring virtual reality games, controlled by the Leap Motion manual rehabilitation [6]. Controller (LMC) sensor, for the rehabilitation of the manual function that can be used in a clinical and/or home environment.
    [Show full text]
  • THE CHALLENGE of HAND GESTURE INTERACTION in the VIRTUAL REALITY ENVIRONMENT Evaluation of In-Air Hand Gesture Using the Leap Motion Controller
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Theseus Hong An Pham THE CHALLENGE OF HAND GESTURE INTERACTION IN THE VIRTUAL REALITY ENVIRONMENT Evaluation of in-air hand gesture using the Leap Motion Controller THE CHALLENGE OF HAND GESTURE INTERACTION IN THE VIRTUAL REALITY ENVIRONMENT Evaluation of in-air hand gesture using the Leap Motion Controller Hong An Pham Bachelor’s Thesis Spring 2018 Information Technology Oulu University of Applied Sciences ABSTRACT Oulu University of Applied Sciences Degree Programme in Information Technology, Internet Services Author: Hong An Pham Title of Bachelor´s thesis: The Challenge of Hand Gesture Interaction in the Virtual Reality Environment Supervisor: Lasse Haverinen Term and year of completion: Spring 2018 Number of pages: 53 In recent years, people in the world have perceived how 3D inventions change our life. Along with the rise of the Virtual Reality technology, there are two types of interaction methods for illustrating human ‘s command in the virtual environment: via controllers and via in-air hand gesture. Using in- air hand gesture is more considered because of natural manipulation and a lower cost for hardware controller. However, comparing with controller device, in-air hand gesture has many limitation of imprecise operation so it is not popular in 3D game and manufacturing industries. By means of a user study with several levels of users, this research conducts a usability test in order to analyse the factors affect in-air hand gesture interaction. With a virtual environment with an Oculus headset and a Leap Motion controller, users were free to perform gesture actions and acknowledge the world with three sensors: sight, touch and hearing.
    [Show full text]
  • Self Representation and Interaction in Immersive Virtual Reality
    Self Representation and Interaction in Immersive Virtual Reality Eros Viola a, Fabio Solari b and Manuela Chessa c Dept. of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Italy Keywords: Virtual Reality, Self Representation, Intel Realsense D435, Interaction, Leap Motion, Manus Prime Haptic Gloves, Alignment, Rigid Transformation, Live Correction. Abstract: Inserting a self-representation in Virtual Reality is an open problem with several implications for both the sense of presence and interaction in virtual environments. To cope the problem with low cost devices, we de- vise a framework to align the measurements of different acquisition devices used while wearing a tracked VR head-mounted display (HMD). Specifically, we use the skeletal tracking features of an RGB-D sensor (Intel Realsense d435) to build the user’s avatar, and compare different interaction technologies: a Leap Motion, the Manus Prime haptic gloves, and the Oculus Controllers. The effectiveness of the proposed systems is assessed through an experimental session, where an assembly task is proposed with the three different interaction medi- ums, with and without the self-representation. Users reported their feeling by answering the User Experience and Igroup Presence Questionnaires, and we analyze the total time to completion and the error rate. 1 INTRODUCTION The focus is to develop a framework that is compat- ible with the most common head-mounted displays In current Virtual Reality (VR) applications, the vi- (HMDs), and that can also be extended to other track- sual feedback of the user’s body is often missing, de- ing devices, both for the body tracking and for the spite the abundance of enabling technologies, which hands and fingers tracking.
    [Show full text]
  • Virtual Reality 3D Space & Tracking
    Virtual Reality 3D Space & Tracking Ján Cíger Reviatech SAS [email protected] http://janoc.rd-h.com/ 16.10.2014 Ján Cíger (Reviatech SAS) RV01 16.10.2014 1 / 57 Outline Who am I? Tracking Coordinates in 3D Space Introduction Position in 3D Technologies Orientation in 3D VRPN Euler angles What is VRPN Axis/angle representation Simple Example Rotation matrices (3 × 3) Quaternions Resources Ján Cíger (Reviatech SAS) RV01 16.10.2014 2 / 57 Who am I? Who am I? PhD from VRlab, EPFL, Switzerland I AI for virtual humans, how to make autonomous characters ("NPCs") smarter I Lab focused on human character animation, motion capture, interaction in VR I ≈ 20 PhD students, several post-docs, many master students. VRlab: http://vrlab.epfl.ch IIG: http://iig.epfl.ch Ján Cíger (Reviatech SAS) RV01 16.10.2014 3 / 57 Who am I? Who am I? SensoramaLab, Aalborg University, Denmark I Building a new lab focusing on new media, interaction, use in rehabilitation I Large projection system, tracking, many interactive demos I Teaching bachelor & master students, project supervision. Ján Cíger (Reviatech SAS) RV01 16.10.2014 4 / 57 Who am I? Who am I? Reviatech SAS I Applied research, looking for new technologies useful for our products/customers I Tracking, augmented reality, AI, building software & hardware prototypes. http://www.reviatech.com/ Ján Cíger (Reviatech SAS) RV01 16.10.2014 5 / 57 Coordinates in 3D Space Position in 3D Outline Who am I? Tracking Coordinates in 3D Space Introduction Position in 3D Technologies Orientation in 3D VRPN Euler angles What is VRPN Axis/angle representation Simple Example Rotation matrices (3 × 3) Quaternions Resources Ján Cíger (Reviatech SAS) RV01 16.10.2014 6 / 57 Coordinates in 3D Space Position in 3D 3D Position Carthesian I 3 perpendicular axes I Left or right handed! I Z-up vs Y-up! I Usually same scale on all axes http://viz.aset.psu.edu/gho/sem_notes/3d_ I Common units – meters, fundamentals/html/3d_coordinates.html millimetres, inches, feet.
    [Show full text]