A New Mass Formula and Magic Number At

Total Page:16

File Type:pdf, Size:1020Kb

A New Mass Formula and Magic Number At New Magicity of Light Nuclei C. Samanta* and S. Adhikari* Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000 A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N= 14 (Z= 7-10), Z=14 (N=13- 19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 32Ne, 35Na, 38Mg, 41Al as bound nuclei and 28O as unbound. PACS numbers: 21.10.Dr, 21.10.Pc, 25.60.Dz, 27.30.+t The origin of the unusual Similarly, the electron density stability of nuclei with nucleon numbers distribution in magic atomic clusters is 2, 8, 20, 28, 50, 82 and 126, commonly more localized than those that are less referred to as “magic numbers”, was stable. explained more than half a century ago Recently, atomic clusters have to be due to nuclear shell structure [1-3]. been found whose stabilities are not The discovery in 1984 that similar magic ruled by the electronic shell closure. For numbers also appear in small clusters of example, Na8Mg cluster [6] which Na-atoms [4] was at first surprising since contains 10 valence electrons should not - the nature of force holding atomic be magic, but it is. Similarly, Al 13 and clusters and nuclei are fundamentally Al13K [7], which contains 40 electrons different. In analogy with the stability of each, are magic while Al13Cu which also magic nuclei, the magic numbers in Na- contains 40 electrons is not [8]. The clusters were explained due to electronic same phenomena also appear in nuclei. shell closure. However, due to the Recently the neutron number N=16 has different nature of the potentials in been found to be a new magic number in atomic and nuclear domain, the two sets only a few neutron-rich nuclei [9]. The of magic numbers do not exactly central question then arises: why do coincide, namely, the magic numbers in nuclei and clusters deviate from the the Na-clusters are 2, 8, 20, 40, 58, magic numbers prescribed by the shell 92…[4,5] whereas, the nuclear magic structure and is there a convenient way numbers are 2, 8, 20, 28, 50, 82...[3]. to predict the occurrence of the Nevertheless, these two unlikely anomalous magic clusters /nuclei. While fields have found many commonalities such analysis may be easier in atomic such as, giant dipole resonance (which clusters because of the interaction being was well known in nuclear physics) is well known, similar analysis in nuclei now found to exist in free electron poses some difficulties. atomic cluster [5]. The root-mean-square There exists in literature mass (rms) radii of magic nuclei are relatively formulae [3,10-12] to examine the small compared to other nearby nuclei. stability of nuclei with varying neutron and proton numbers. However, these extra stability of certain nuclei. This led formulations are more suitable for to the discovery of a new magic number medium to heavy mass nuclei. No mass at N=16 [9] but, the exact Z region could formula so far exists that can account for not be clearly established as the the exotic properties of the light nuclei corresponding cross section data yielded near the dripline. We have critically ambigious results. An anomalous examined the available experimental behaviour in the binding energy of very data [13] from Li to Bi, which has enabled us to prescribe a mass formula 50 Li (z = 3) capable of explaining the binding 40 energies of almost all the known 30 20 isotopes from Li to Bi. From a B.E. (MeV) exp comparison with the experimental one- 10 new B-W neutron (Sn) or, one-proton (Sp) 0 separation energies, we can identify the 0246810 140 C (z = 6) locations of new magicity or, loss of it. 120 The redefinition of the dripline resulting 100 from this formula further allows us to 80 B.E. (MeV) B.E. 60 40 predict the existence of several bound exp 20 new B-W nuclei beyond the conventional neutron 0 drip line. 0 5 10 15 20 To formulate this mass formula Ne (z = 10) we started with the Bethe-Weizsacker 200 (B-W) mass formula [3], which gives a 160 reasonable description of the binding B.E. (MeV) 120 exp new B-W energy of medium to heavy mass nuclei. 80 The B-W formula for the binding energy 510152025 Neutron Number (N) of a nucleus of atomic number A and proton number Z is, Fig 1 Binding Energy vs. N, calculated with 2/3 1/3 B-W and new formula B(A, Z)= av A – as A – ac Z (Z-1) /A 2 neutron-rich Na isotopes around N=20 – asym (A-2Z) /A + δ (1) was also observed and it was attributed to a loss of magicity [9,14]. Since the B- where, av =15.85 MeV, as =18.34 MeV, W mass formula is inadequate in the low ac=0.71 MeV and asym =23.21 MeV. The -1/2 mass region, it cannot be used to identify pairing energy term δ =+ap A for even -1/2 such deviations. Most importantly, a N-even Z , -ap A for odd N-odd Z, clear evidence of particle stability in 31F and 0 for odd A nuclei and, ap =12 MeV. 30 This mass formula not only (as opposed to instability in F) was found [15], but according to the B-W underestimates the binding energies of 30,31 the light nuclei, it also predicts too large formula both F should be unstable. It a pairing energy for such nuclei (Fig.1, is thus imperative to formulate a mass 2). equation which can help to identify the It is pertinent to note that a mere new magicity or, its loss and, give a survey of the one-neutron separation proper limit of the neutron-drip line. energies of the available nuclei reveals A careful study reveals that a marked deviation between the experimental binding energy and the the magic number show distinct prediction of the B-W mass formula deviation from the calculations. occurs in light nuclei, specially when the neutron proton asymmetry is large. This indicates a more complicated 25 O (Z = 8) dependence of nuclear binding energy 20 on the neutron-proton number arising 15 exp 10 new from a major change in shape and size 5 Sn (MeV) (like, halo/skin) of the nucleus near the 0 -5 5101520 neutron dripline [16]. Recently, near 15 N≈Z the role of the neutron-proton Ne (Z = 10) interaction and its consequences for p-n 10 exp new pairing has been investigated [17]. A 5 steep decrease of the isoscalar p-n Sn (MeV) 0 10 15 20 pairing energy was suggested with -5 increasing N-Z . A detailed and 15 Mg (Z = 12) systematic search carried out to fit all the 10 exp isotopes from Li to Bi also supports that B-W 5 new and, leads to an additional term in the Sn (MeV) 0 12 17 22 27 existing mass formula and a redefinition -5 of the pairing term. The binding energy Neutron Number N of any nucleus of mass A is then defined as, Fig 2 One - neutron separation energy vs. N and calculation with formula 2/3 1/3 B(A, Z)new=av A – as A –ac Z(Z-1)/A 2 ∆ δ – asym (A-2Z) /A + (N,Z) + new, Just prior to the magic number, (2) the experimental Sn values are where, ∆(N, Z)= N - 4/3 Z Nk Z e-z/3, significantly higher and, right after it; - z / c δnew = (1 – e ) δ, k = 0.45, and c = the Sn suddenly drops to a lower value. 6.0/Ln 2, (other constants remaining the Sometimes, the Sn value does not drop same). drastically after being high and, we call that particular nucleon number as While almost all the elements pseudo-magic, as it reflects pseudo shell from Li to Bi can be explained by this closure due to rearrangements of shells unique equation (2), binding energies of that changes both position and width of some very neutron deficient light nuclei the shell gaps. In Fig. 2 the known magic are slightly underestimated (Fig.1). number at N=20 (Z=10) can be clearly The power of this mass formula identified. The magicity at N=20 is is its uniqueness in explaining not only found to disappear in the Z= 12 -17 the binding energies but also the one- or, region. Magicity at N=8 also disappears two- neutron and proton- separation at Z=4 (Fig. 3). energies. Fig. 2 shows a comparison of The Sn values from the new 26 28 the Sn data and theoretical calculations formula predicts O and O as bound for Z= 9 and 10. As the latter does not nuclei with very small binding energies incorporate the nuclear shell effect, the (Fig. 2). However, the two-neutron experimental separation energies near separation energy(S2n) is negative for magicity has moved down to N=16 from N=20. Thus, the new formula helps to 20 Be (Z = 4) resolve the previous ambiguity and 15 exp ascertains magicity at N=16 for Z= 7- 9.
Recommended publications
  • A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena
    World Journal of Nuclear Science and Technology, 2018, 8, 11-22 http://www.scirp.org/journal/wjnst ISSN Online: 2161-6809 ISSN Print: 2161-6795 A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena Faustino Menegus F. Menegus V. Europa, Bussero, Italy How to cite this paper: Menegus, F. Abstract (2018) A Suggestion Complementing the Magic Numbers Interpretation of the Nu- Ideas, solely related on the nuclear shell model, fail to give an interpretation of clear Fission Phenomena. World Journal of the experimental central role of 54Xe in the asymmetric fission of actinides. Nuclear Science and Technology, 8, 11-22. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The repre- https://doi.org/10.4236/wjnst.2018.81002 sentation of the natural isotopes, in the Z-Neutron Excess plane, suggests the Received: November 21, 2017 importance of the of the Neutron Excess evolution mode in the fragments of Accepted: January 23, 2018 the asymmetric actinide fission and in the fragments of the β-delayed fission Published: January 26, 2018 of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is Copyright © 2018 by author and directed by the 50 and 82 neutron magic numbers. The present isotope repre- Scientific Research Publishing Inc. sentation offers a frame for the interpretation of the post fission evaporation This work is licensed under the Creative of neutrons, higher for the AL compared to the AH fragments, a tenet in nuc- Commons Attribution International License (CC BY 4.0). lear fission.
    [Show full text]
  • Nuclear Models: Shell Model
    LectureLecture 33 NuclearNuclear models:models: ShellShell modelmodel WS2012/13 : ‚Introduction to Nuclear and Particle Physics ‘, Part I 1 NuclearNuclear modelsmodels Nuclear models Models with strong interaction between Models of non-interacting the nucleons nucleons Liquid drop model Fermi gas model ααα-particle model Optical model Shell model … … Nucleons interact with the nearest Nucleons move freely inside the nucleus: neighbors and practically don‘t move: mean free path λ ~ R A nuclear radius mean free path λ << R A nuclear radius 2 III.III. ShellShell modelmodel 3 ShellShell modelmodel Magic numbers: Nuclides with certain proton and/or neutron numbers are found to be exceptionally stable. These so-called magic numbers are 2, 8, 20, 28, 50, 82, 126 — The doubly magic nuclei: — Nuclei with magic proton or neutron number have an unusually large number of stable or long lived nuclides . — A nucleus with a magic neutron (proton) number requires a lot of energy to separate a neutron (proton) from it. — A nucleus with one more neutron (proton) than a magic number is very easy to separate. — The first exitation level is very high : a lot of energy is needed to excite such nuclei — The doubly magic nuclei have a spherical form Nucleons are arranged into complete shells within the atomic nucleus 4 ExcitationExcitation energyenergy forfor magicm nuclei 5 NuclearNuclear potentialpotential The energy spectrum is defined by the nuclear potential solution of Schrödinger equation for a realistic potential The nuclear force is very short-ranged => the form of the potential follows the density distribution of the nucleons within the nucleus: for very light nuclei (A < 7), the nucleon distribution has Gaussian form (corresponding to a harmonic oscillator potential ) for heavier nuclei it can be parameterised by a Fermi distribution.
    [Show full text]
  • Keynote Address: One Hundred Years of Nuclear Physics – Progress and Prospects
    PRAMANA c Indian Academy of Sciences Vol. 82, No. 4 — journal of April 2014 physics pp. 619–624 Keynote address: One hundred years of nuclear physics – Progress and prospects S KAILAS1,2 1Bhabha Atomic Research Centre, Mumbai 400 085, India 2UM–DAE Centre for Excellence in Basic Sciences, Mumbai 400 098, India E-mail: [email protected] DOI: 10.1007/s12043-014-0710-0; ePublication: 5 April 2014 Abstract. Nuclear physics research is growing on several fronts, along energy and intensity fron- tiers, with exotic projectiles and targets. The nuclear physics facilities under construction and those being planned for the future make the prospects for research in this field very bright. Keywords. Nuclear structure and reactions; nuclear properties; superheavy nuclei. PACS Nos 21.10.–k; 25.70.Jj; 25.70.–z 1. Introduction Nuclear physics research is nearly one hundred years old. Currently, this field of research is progressing [1] broadly in three directions (figure 1): Investigation of nuclei and nuclear matter at high energies and densities; observation of behaviour of nuclei under extreme conditions of temperature, angular momentum and deformation; and production and study of nuclei away from the line of stability. Nuclear physics research began with the investiga- tion of about 300 nuclei. Today, this number has grown many folds, nearly by a factor of ten. In the area of high-energy nuclear physics, some recent phenomena observed have provided interesting connections to other disciplines in physics, e.g. in the heavy-ion collisions at relativistic energies, it has been observed [2] that the hot dense matter formed in the collision behaved like an ideal fluid with the ratio of shear viscosity to entropy being close to 1/4π.
    [Show full text]
  • Three Related Topics on the Periodic Tables of Elements
    Three related topics on the periodic tables of elements Yoshiteru Maeno*, Kouichi Hagino, and Takehiko Ishiguro Department of physics, Kyoto University, Kyoto 606-8502, Japan * [email protected] (The Foundations of Chemistry: received 30 May 2020; accepted 31 July 2020) Abstaract: A large variety of periodic tables of the chemical elements have been proposed. It was Mendeleev who proposed a periodic table based on the extensive periodic law and predicted a number of unknown elements at that time. The periodic table currently used worldwide is of a long form pioneered by Werner in 1905. As the first topic, we describe the work of Pfeiffer (1920), who refined Werner’s work and rearranged the rare-earth elements in a separate table below the main table for convenience. Today’s widely used periodic table essentially inherits Pfeiffer’s arrangements. Although long-form tables more precisely represent electron orbitals around a nucleus, they lose some of the features of Mendeleev’s short-form table to express similarities of chemical properties of elements when forming compounds. As the second topic, we compare various three-dimensional helical periodic tables that resolve some of the shortcomings of the long-form periodic tables in this respect. In particular, we explain how the 3D periodic table “Elementouch” (Maeno 2001), which combines the s- and p-blocks into one tube, can recover features of Mendeleev’s periodic law. Finally we introduce a topic on the recently proposed nuclear periodic table based on the proton magic numbers (Hagino and Maeno 2020). Here, the nuclear shell structure leads to a new arrangement of the elements with the proton magic-number nuclei treated like noble-gas atoms.
    [Show full text]
  • Low-Energy Nuclear Physics Part 2: Low-Energy Nuclear Physics
    BNL-113453-2017-JA White paper on nuclear astrophysics and low-energy nuclear physics Part 2: Low-energy nuclear physics Mark A. Riley, Charlotte Elster, Joe Carlson, Michael P. Carpenter, Richard Casten, Paul Fallon, Alexandra Gade, Carl Gross, Gaute Hagen, Anna C. Hayes, Douglas W. Higinbotham, Calvin R. Howell, Charles J. Horowitz, Kate L. Jones, Filip G. Kondev, Suzanne Lapi, Augusto Macchiavelli, Elizabeth A. McCutchen, Joe Natowitz, Witold Nazarewicz, Thomas Papenbrock, Sanjay Reddy, Martin J. Savage, Guy Savard, Bradley M. Sherrill, Lee G. Sobotka, Mark A. Stoyer, M. Betty Tsang, Kai Vetter, Ingo Wiedenhoever, Alan H. Wuosmaa, Sherry Yennello Submitted to Progress in Particle and Nuclear Physics January 13, 2017 National Nuclear Data Center Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Upper Limit in Mendeleev's Periodic Table Element No.155
    AMERICAN RESEARCH PRESS Upper Limit in Mendeleev’s Periodic Table Element No.155 by Albert Khazan Third Edition — 2012 American Research Press Albert Khazan Upper Limit in Mendeleev’s Periodic Table — Element No. 155 Third Edition with some recent amendments contained in new chapters Edited and prefaced by Dmitri Rabounski Editor-in-Chief of Progress in Physics and The Abraham Zelmanov Journal Rehoboth, New Mexico, USA — 2012 — This book can be ordered in a paper bound reprint from: Books on Demand, ProQuest Information and Learning (University of Microfilm International) 300 N. Zeeb Road, P. O. Box 1346, Ann Arbor, MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ This book can be ordered on-line from: Publishing Online, Co. (Seattle, Washington State) http://PublishingOnline.com Copyright c Albert Khazan, 2009, 2010, 2012 All rights reserved. Electronic copying, print copying and distribution of this book for non-commercial, academic or individual use can be made by any user without permission or charge. Any part of this book being cited or used howsoever in other publications must acknowledge this publication. No part of this book may be re- produced in any form whatsoever (including storage in any media) for commercial use without the prior permission of the copyright holder. Requests for permission to reproduce any part of this book for commercial use must be addressed to the Author. The Author retains his rights to use this book as a whole or any part of it in any other publications and in any way he sees fit.
    [Show full text]
  • Proton Decay at the Drip-Line Magic Number Z = 82, Corresponding to the Closure of a Major Nuclear Shell
    NEWS AND VIEWS NUCLEAR PHYSICS-------------------------------- case since it has one proton more than the Proton decay at the drip-line magic number Z = 82, corresponding to the closure of a major nuclear shell. In Philip Woods fact the observed proton decay comes from an excited intruder state configura­ WHAT determines whether a nuclear ton decay half-life measurements can be tion formed by the promotion of a proton species exists? For nuclear scientists the used to explore nuclear shell structures in from below the Z=82 shell closure. This answer to this poser is that the species this twilight zone of nuclear existence. decay transition was used to provide should live long enough to be identified The proton drip-line sounds an inter­ unique information on the quantum mix­ and its properties studied. This still begs esting place to visit. So how do we get ing between normal and intruder state the fundamental scientific question of there? The answer is an old one: fusion. configurations in the daughter nucleus. what the ultimate boundaries to nuclear In this case, the fusion of heavy nuclei Following the serendipitous discovery existence are. Work by Davids et al. 1 at produces highly neutron-deficient com­ of nuclear proton decay4 from an excited Argonne National Laboratory in the pound nuclei, which rapidly de-excite by state in 1970, and the first example of United States has pinpointed the remotest boiling off particles and gamma-rays, leav­ ground-state proton decay5 in 1981, there border post to date, with the discovery of ing behind a plethora of highly unstable followed relative lulls in activity.
    [Show full text]
  • Nuclear Magic Numbers: New Features Far from Stability
    Nuclear magic numbers: new features far from stability O. Sorlin1, M.-G. Porquet2 1Grand Acc´el´erateur National d’Ions Lours (GANIL), CEA/DSM - CNRS/IN2P3, B.P. 55027, F-14076 Caen Cedex 5, France 2Centre de Spectrom´etrie Nucl´eaire et de Spectrom´etrie de Masse (CSNSM), CNRS/IN2P3 - Universit´eParis-Sud, Bˆat 104-108, F-91405 Orsay, France May 19, 2008 Abstract The main purpose of the present manuscript is to review the structural evolution along the isotonic and isotopic chains around the ”traditional” magic numbers 8, 20, 28, 50, 82 and 126. The exotic regions of the chart of nuclides have been explored during the three last decades. Then the postulate of permanent magic numbers was definitely abandoned and the reason for these structural mutations has been in turn searched for. General trends in the evolution of shell closures are discussed using complementary experimental information, such as the binding energies of the orbits bounding the shell gaps, the trends of the first collective states of the even-even semi-magic nuclei, and the behavior of certain single-nucleon states. Each section is devoted to a particular magic number. It describes the underlying physics of the shell evolution which is not yet fully understood and indicates future experimental and theoretical challenges. The nuclear mean field embodies various facets of the Nucleon- Nucleon interaction, among which the spin-orbit and tensor terms play decisive roles in the arXiv:0805.2561v1 [nucl-ex] 16 May 2008 shell evolutions. The present review intends to provide experimental constraints to be used for the refinement of theoretical models aiming at a good description of the existing atomic nuclei and at more accurate predictions of hitherto unreachable systems.
    [Show full text]
  • Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants John Dustin Despotopulos University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Despotopulos, John Dustin, "Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2345. http://dx.doi.org/10.34917/7645877 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INVESTIGATION OF FLEROVIUM AND ELEMENT 115 HOMOLOGS WITH MACROCYCLIC EXTRACTANTS By John Dustin Despotopulos Bachelor of Science in Chemistry University of Oregon 2010 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy
    [Show full text]
  • Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected]
    Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected] These notes are evolving, so please let me know of any typos, factual errors etc. They will be updated weekly on QM+ (and may include updates to early parts we have already covered). Note that material in purple ‘Digression’ boxes is not examinable. Updated 16:29, on 05/12/2019. Contents 1 Basic Nuclear Properties4 1.1 Length Scales, Units and Dimensions............................7 2 Nuclear Properties and Models8 2.1 Nuclear Radius and Distribution of Nucleons.......................8 2.1.1 Scattering Cross Section............................... 12 2.1.2 Matter Distribution................................. 18 2.2 Nuclear Binding Energy................................... 20 2.3 The Nuclear Force....................................... 24 2.4 The Liquid Drop Model and the Semi-Empirical Mass Formula............ 26 2.5 The Shell Model........................................ 33 2.5.1 Nuclei Configurations................................ 44 3 Radioactive Decay and Nuclear Instability 48 3.1 Radioactive Decay...................................... 49 CONTENTS CONTENTS 3.2 a Decay............................................. 56 3.2.1 Decay Mechanism and a calculation of t1/2(Q) .................. 58 3.3 b-Decay............................................. 62 3.3.1 The Valley of Stability................................ 64 3.3.2 Neutrinos, Leptons and Weak Force........................ 68 3.4 g-Decay...........................................
    [Show full text]
  • Title a Nuclear Periodic Table Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Title A nuclear periodic table Author(s) Hagino, K.; Maeno, Y. Citation Foundations of Chemistry (2020) Issue Date 2020-04-21 URL http://hdl.handle.net/2433/250720 © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included Right in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Type Journal Article Textversion publisher Kyoto University Foundations of Chemistry https://doi.org/10.1007/s10698-020-09365-5 A nuclear periodic table K. Hagino1 · Y. Maeno1 © The Author(s) 2020 Abstract There has been plenty of empirical evidence which shows that the single-particle picture holds to a good approximation in atomic nuclei. In this picture, protons and neutrons move independently inside a mean-feld potential generated by an interaction among the nucle- ons.
    [Show full text]
  • Stability of Nuclei
    Stability of Nuclei Arbind Kumar Mallik Department of physics,Tribhuwan Multiple Campus, Palpa [email protected] Abstract Nucleus is composed of uncharged neutrons and charged protons, chiefly given the fact that the electrostatic repulsion of the protons tends to disrupt the nucleus? What is the nature of forces that ensure stability between charged and uncharged particles in the nucleus? Attempts have been made to solve this problem both on the experimental and theoretical sides. In this article, a brief statement of these investigations is described. Search for the causes of stability of nuclei have been made in the following four directions, Relative abundance of elements as well as of isotopes that occur in nature, The binding energy per nucleon curve, Decay constant of natural radioactive substances, Magic numbers. 1. Introduction It is found that the relative quantities of the different isotopes are The basic assumption made in this study is that elements and the same for every sample of a given element, from whatever part isotopes which occur in nature quite abundantly are very stable. of the earth's crest or even out of the meteorites it might have been There are now two branches of research, (a) the relative abundance taken. The results obtained may be summarised as follows:- of elements with respect to one another and (b) the relative abundance of the different isotopes within each element. a. Elements of even atomic number Z, usually posses a To solve the first problem, an enormous number of chemical much larger number of stable isotopes than the elements analysis of igneous rocks and other geological materials (like of odd Z which almost never have more than two stable earth's crest, a few meteorites, some nebula & the outermost isotopes.
    [Show full text]