Lawrence Berkeley National Laboratory Recent Work
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spontaneous Fission of U234, Pu236, Cm240, and Cm244
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Spontaneous Fission of U234, Pu236, Cm240, and Cm244 Permalink https://escholarship.org/uc/item/0df1j1qm Authors Ghiorso, A. Higgins, G.H. Larsh, A.E. et al. Publication Date 1952-04-21 eScholarship.org Powered by the California Digital Library University of California TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 UCRL-1772 Unclassified-Chemistry Distribution UNIVEBSITY OF CALIFCEiNIil Radiation Laboratory Contract No, ti-7405-eng-4.8 24.4 SPONTANEOUS FISSION OF' I'Zu6, ~m~~~~ AND Gm A, Ghiorso, G. H, Higgins, A. E. Larsh, Go To Seaborg, and So G, Thompson April 21, 1752 Berkeley, California A. Ghiorso, G. H. Higgins, A. E. Larsh, G. T. Seaborg, and S. Go Thompson Radiation Laboratory and Department of Chemistry Uni versity of California, Berkeley, Californf a April 21, 1952 In a recent communication commenting on the mechanism of fission we called attention to the simple exponential dependence of spontaneous fission rate on Z~/Aand to the effect of an odd nucleon in slowing the fission process.1 Since it is of interest to test further the simple correlation of the spontaneous fission rate for even-even nuclides wfth z~/A~a further number of such rates have been determined, The spontaneous fission rates were measured by pladng the chemically purified samples on one electrode of a parallel plate ionization chamber, filled with a mixture of argon and carbon dioxide, which was connected with an amplifier f ollawed by a register and a stylus recorder. -
Computing ATOMIC NUCLEI
UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes. -
CHEMISTRY for the Bottom of the Periodic Table
http://cyclotron.tamu.edu CHEMISTRY for the Bottom of the Periodic Table Techniques to investigate chemical properties of superheavy elements lead to improved methods for separating heavy metals THE SCIENCE The chemical properties of superheavy element 113, nihonium, are almost completely unknown, so a team of researchers from the Cyclotron Institute at Texas A&M University and the Institut Pluridisciplinaire Hubert Curien in France are developing techniques that could be used to study this fleeting element. As part of that effort, they are comparing the properties of nihonium to the chemically similar elements indium and thallium; to do so, the team studied the separation of these two elements using a new class of designer molecules called ionic liquids. THE IMPACT Measuring the chemical properties of nihonium and other superheavy elements will increase our understanding of the principles that control the Periodic Table. Comparing the data from nihonium to results for similar elements, obtained using the team’s fast, efficient, single-step process, reveals trends that arise from the structure of the Periodic Table. This research could also lead to better methods of re- using indium, a metal that is part of flat-panel displays but not currently mined in the United States. The proposed mechanism of transfer. Thallium (Tl) bonds with chlorine (Cl) and moves into the ionic liquid (in blue). SUMMARY The distribution of indium and thallium between the aque- ous and organic phases is the key to understanding the PUBLICATIONS separation of these elements. An aqueous solution, con- E.E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M.F. -
A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena
World Journal of Nuclear Science and Technology, 2018, 8, 11-22 http://www.scirp.org/journal/wjnst ISSN Online: 2161-6809 ISSN Print: 2161-6795 A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena Faustino Menegus F. Menegus V. Europa, Bussero, Italy How to cite this paper: Menegus, F. Abstract (2018) A Suggestion Complementing the Magic Numbers Interpretation of the Nu- Ideas, solely related on the nuclear shell model, fail to give an interpretation of clear Fission Phenomena. World Journal of the experimental central role of 54Xe in the asymmetric fission of actinides. Nuclear Science and Technology, 8, 11-22. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The repre- https://doi.org/10.4236/wjnst.2018.81002 sentation of the natural isotopes, in the Z-Neutron Excess plane, suggests the Received: November 21, 2017 importance of the of the Neutron Excess evolution mode in the fragments of Accepted: January 23, 2018 the asymmetric actinide fission and in the fragments of the β-delayed fission Published: January 26, 2018 of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is Copyright © 2018 by author and directed by the 50 and 82 neutron magic numbers. The present isotope repre- Scientific Research Publishing Inc. sentation offers a frame for the interpretation of the post fission evaporation This work is licensed under the Creative of neutrons, higher for the AL compared to the AH fragments, a tenet in nuc- Commons Attribution International License (CC BY 4.0). lear fission. -
Neutrinoless Double Beta Decay
REPORT TO THE NUCLEAR SCIENCE ADVISORY COMMITTEE Neutrinoless Double Beta Decay NOVEMBER 18, 2015 NLDBD Report November 18, 2015 EXECUTIVE SUMMARY In March 2015, DOE and NSF charged NSAC Subcommittee on neutrinoless double beta decay (NLDBD) to provide additional guidance related to the development of next generation experimentation for this field. The new charge (Appendix A) requests a status report on the existing efforts in this subfield, along with an assessment of the necessary R&D required for each candidate technology before a future downselect. The Subcommittee membership was augmented to replace several members who were not able to continue in this phase (the present Subcommittee membership is attached as Appendix B). The Subcommittee solicited additional written input from the present worldwide collaborative efforts on double beta decay projects in order to collect the information necessary to address the new charge. An open meeting was held where these collaborations were invited to present material related to their current projects, conceptual designs for next generation experiments, and the critical R&D required before a potential down-select. We also heard presentations related to nuclear theory and the impact of future cosmological data on the subject of NLDBD. The Subcommittee presented its principal findings and comments in response to the March 2015 charge at the NSAC meeting in October 2015. The March 2015 charge requested the Subcommittee to: Assess the status of ongoing R&D for NLDBD candidate technology demonstrations for a possible future ton-scale NLDBD experiment. For each candidate technology demonstration, identify the major remaining R&D tasks needed ONLY to demonstrate downselect criteria, including the sensitivity goals, outlined in the NSAC report of May 2014. -
RIB Production by Photofission in the Framework of the ALTO Project
Available online at www.sciencedirect.com NIM B Beam Interactions with Materials & Atoms Nuclear Instruments and Methods in Physics Research B 266 (2008) 4092–4096 www.elsevier.com/locate/nimb RIB production by photofission in the framework of the ALTO project: First experimental measurements and Monte-Carlo simulations M. Cheikh Mhamed *, S. Essabaa, C. Lau, M. Lebois, B. Roussie`re, M. Ducourtieux, S. Franchoo, D. Guillemaud Mueller, F. Ibrahim, J.F. LeDu, J. Lesrel, A.C. Mueller, M. Raynaud, A. Said, D. Verney, S. Wurth Institut de Physique Nucle´aire, IN2P3-CNRS/Universite´ Paris-Sud, F-91406 Orsay Cedex, France Available online 11 June 2008 Abstract The ALTO facility (Acce´le´rateur Line´aire aupre`s du Tandem d’Orsay) has been built and is now under commissioning. The facility is intended for the production of low energy neutron-rich ion-beams by ISOL technique. This will open new perspectives in the study of nuclei very far from the valley of stability. Neutron-rich nuclei are produced by photofission in a thick uranium carbide target (UCx) using a 10 lA, 50 MeV electron beam. The target is the same as that already had been used on the previous deuteron based fission ISOL setup (PARRNE [F. Clapier et al., Phys. Rev. ST-AB (1998) 013501.]). The intended nominal fission rate is about 1011 fissions/s. We have studied the adequacy of a thick carbide uranium target to produce neutron-rich nuclei by photofission by means of Monte-Carlo simulations. We present the production rates in the target and after extraction and mass separation steps. -
Nuclear Models: Shell Model
LectureLecture 33 NuclearNuclear models:models: ShellShell modelmodel WS2012/13 : ‚Introduction to Nuclear and Particle Physics ‘, Part I 1 NuclearNuclear modelsmodels Nuclear models Models with strong interaction between Models of non-interacting the nucleons nucleons Liquid drop model Fermi gas model ααα-particle model Optical model Shell model … … Nucleons interact with the nearest Nucleons move freely inside the nucleus: neighbors and practically don‘t move: mean free path λ ~ R A nuclear radius mean free path λ << R A nuclear radius 2 III.III. ShellShell modelmodel 3 ShellShell modelmodel Magic numbers: Nuclides with certain proton and/or neutron numbers are found to be exceptionally stable. These so-called magic numbers are 2, 8, 20, 28, 50, 82, 126 — The doubly magic nuclei: — Nuclei with magic proton or neutron number have an unusually large number of stable or long lived nuclides . — A nucleus with a magic neutron (proton) number requires a lot of energy to separate a neutron (proton) from it. — A nucleus with one more neutron (proton) than a magic number is very easy to separate. — The first exitation level is very high : a lot of energy is needed to excite such nuclei — The doubly magic nuclei have a spherical form Nucleons are arranged into complete shells within the atomic nucleus 4 ExcitationExcitation energyenergy forfor magicm nuclei 5 NuclearNuclear potentialpotential The energy spectrum is defined by the nuclear potential solution of Schrödinger equation for a realistic potential The nuclear force is very short-ranged => the form of the potential follows the density distribution of the nucleons within the nucleus: for very light nuclei (A < 7), the nucleon distribution has Gaussian form (corresponding to a harmonic oscillator potential ) for heavier nuclei it can be parameterised by a Fermi distribution. -
Spontaneous Fission Half-Lives of Heavy and Superheavy Nuclei Within a Generalized Liquid Drop Model
Spontaneous fission half-lives of heavy and superheavy nuclei within a generalized liquid drop model Xiaojun Bao1, Hongfei Zhang1,∗ G. Royer2, Junqing Li1,3 June 4, 2018 1. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2. Laboratoire Subatech, UMR: IN2P3/CNRS-Universit´e-Ecole des Mines, 4 rue A. Kastler, 44 Nantes, France 3. Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China Abstract We systematically calculate the spontaneous fission half-lives for heavy and superheavy arXiv:1302.7117v1 [nucl-th] 28 Feb 2013 nuclei between U and Fl isotopes. The spontaneous fission process is studied within the semi-empirical WKB approximation. The potential barrier is obtained using a generalized liquid drop model, taking into account the nuclear proximity, the mass asymmetry, the phenomenological pairing correction, and the microscopic shell cor- rection. Macroscopic inertial-mass function has been employed for the calculation of the fission half-life. The results reproduce rather well the experimental data. Rela- tively long half-lives are predicted for many unknown nuclei, sufficient to detect them if synthesized in a laboratory. Keywords: heavy and superheavy nuclei; half-lives; spontaneous fission ∗Corresponding author. Tel.: +86 931 8622306. E-mail address: [email protected] 1 1 Introduction Spontaneous fission of heavy nuclei was first predicted by Bohr and Wheeler in 1939 [1]. Their fission theory was based on the liquid drop model. Interestingly, their work also con- tained an estimate of a lifetime for fission from the ground state. Soon afterwards, Flerov and Petrzak [2] presented the first experimental evidence for spontaneous fission. -
An Octad for Darmstadtium and Excitement for Copernicium
SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says. -
Chapter 3 the Fundamentals of Nuclear Physics Outline Natural
Outline Chapter 3 The Fundamentals of Nuclear • Terms: activity, half life, average life • Nuclear disintegration schemes Physics • Parent-daughter relationships Radiation Dosimetry I • Activation of isotopes Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther Natural radioactivity Activity • Activity – number of disintegrations per unit time; • Particles inside a nucleus are in constant motion; directly proportional to the number of atoms can escape if acquire enough energy present • Most lighter atoms with Z<82 (lead) have at least N Average one stable isotope t / ta A N N0e lifetime • All atoms with Z > 82 are radioactive and t disintegrate until a stable isotope is formed ta= 1.44 th • Artificial radioactivity: nucleus can be made A N e0.693t / th A 2t / th unstable upon bombardment with neutrons, high 0 0 Half-life energy protons, etc. • Units: Bq = 1/s, Ci=3.7x 1010 Bq Activity Activity Emitted radiation 1 Example 1 Example 1A • A prostate implant has a half-life of 17 days. • A prostate implant has a half-life of 17 days. If the What percent of the dose is delivered in the first initial dose rate is 10cGy/h, what is the total dose day? N N delivered? t /th t 2 or e Dtotal D0tavg N0 N0 A. 0.5 A. 9 0.693t 0.693t B. 2 t /th 1/17 t 2 2 0.96 B. 29 D D e th dt D h e th C. 4 total 0 0 0.693 0.693t /th 0.6931/17 C. -
Keynote Address: One Hundred Years of Nuclear Physics – Progress and Prospects
PRAMANA c Indian Academy of Sciences Vol. 82, No. 4 — journal of April 2014 physics pp. 619–624 Keynote address: One hundred years of nuclear physics – Progress and prospects S KAILAS1,2 1Bhabha Atomic Research Centre, Mumbai 400 085, India 2UM–DAE Centre for Excellence in Basic Sciences, Mumbai 400 098, India E-mail: [email protected] DOI: 10.1007/s12043-014-0710-0; ePublication: 5 April 2014 Abstract. Nuclear physics research is growing on several fronts, along energy and intensity fron- tiers, with exotic projectiles and targets. The nuclear physics facilities under construction and those being planned for the future make the prospects for research in this field very bright. Keywords. Nuclear structure and reactions; nuclear properties; superheavy nuclei. PACS Nos 21.10.–k; 25.70.Jj; 25.70.–z 1. Introduction Nuclear physics research is nearly one hundred years old. Currently, this field of research is progressing [1] broadly in three directions (figure 1): Investigation of nuclei and nuclear matter at high energies and densities; observation of behaviour of nuclei under extreme conditions of temperature, angular momentum and deformation; and production and study of nuclei away from the line of stability. Nuclear physics research began with the investiga- tion of about 300 nuclei. Today, this number has grown many folds, nearly by a factor of ten. In the area of high-energy nuclear physics, some recent phenomena observed have provided interesting connections to other disciplines in physics, e.g. in the heavy-ion collisions at relativistic energies, it has been observed [2] that the hot dense matter formed in the collision behaved like an ideal fluid with the ratio of shear viscosity to entropy being close to 1/4π. -
Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.