TRANSLOCATION in PLANTS Between Regions of Synthesis and Utilization. by CURTIS (22; Also 9 and 25); and MASON and PHILLIS Have
TRANSLOCATION IN PLANTS A. S. CRAFTS Introduction Elimination of certain untenable theories has nlarrowed recent research on translocation to a search for the mechanism of rapid longitudinal move- ment of foods through phloem. (For comprehensive bibliographies see 22, 48, and 51.) Present theories fall into two categories: (1) movement of solute molecules taking place in, through, or upon the surface of sieve-tube protoplasm, and which results from protoplasmic activity; (2) mass flow of solution through sieve tubes or phloem, related, at least indirectly, to activ- ity of photosynthetic tissues, and not dependent upon the activity of the sieve-tube protoplasm.1 Both mechanisms are based upon ringing experi- ments which demonstrate limitation of primary movement of foods to the phloem, and upon analytical data which indicate concentration gradients between regions of synthesis and utilization. Evidence for the protoplasmic streaming hypothesis has been reviewed by CURTIS (22; also 9 and 25); and MASON and PHILLIS have recently elabo- rated an activated diffusion theory (45, 46, 47, 48) to explain solute move- ment via the sieve-tube protoplasm. These workers postulate an indepen- dent movement of various solutes resulting from independent gradients; they call upon vital activities or surface phenomena to explain the accelera- tion required. This paper presents the case for mass flow, drawing attention to certain quantitative evidence and to cytological studies oni the activity of sieve-tube protoplasm. Concentration gradients of organic solutes in the phloem have been ade- quately demonstrated.2 That they cause an effective diffusional movement of the solutes is less certain. Physical aspects indicate that diffusion, over long distainees, is naturally a slow process; and acceleration of unilateral solute movement, to the required rates, independent of the solvent, would necessitate an immense expenditure of energy.
[Show full text]