OCCURRENCE of SIEVE ELEMENTS in PHLOEM RAYS Kishore S. Rajput & K. S. Rao Solitary Sieve Elements Or Groups of Sieve Element

Total Page:16

File Type:pdf, Size:1020Kb

OCCURRENCE of SIEVE ELEMENTS in PHLOEM RAYS Kishore S. Rajput & K. S. Rao Solitary Sieve Elements Or Groups of Sieve Element lAWA Journal, Vol. 18 (2),1997: 197-201 OCCURRENCE OF SIEVE ELEMENTS IN PHLOEM RAYS by Kishore S. Rajput & K. S. Rao Department of Botany, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390 002, India SUMMARY Solitary sieve elements or groups of sieve elements were encountered in the rays of secondary phloem of Erythrina indica, Guazuma tomentosa, Acacia nilotica, Azadirachta indica, and Tectona grandis trees. These elements were short and possessed simple and compound sieve plates on their transverse to slightly oblique end walls. Each sieve tube ele­ ment was associated with a single companion cell at their comers. Like axial sieve tube elements, the sieve tube elements of the rays showed slime (P-protein) plugs and cytoplasmic strands when functional and massive deposition of callose on sieve plates in nonfunctional sieve tube elements. The distribution pattern of these ray sieve elements differed among the species studied. The detailed structure and possible signifi­ cance of these elements are discussed. Key words: Sieve elements, phloem rays, Erythrina indica, Guazuma tomentosa, Acacia nilotica, Azadirachta indica, Tectona grandis. INTRODUCTION Occurrence of sieve elements in the rays of secondary phloem is a rare feature and has been reported in Cucurbitaceae (Fischer 1884) and Compositae (Chavan et al. 1983). They have also been reported in mesocarpic as well as endocarpic regions of fruits (Thanki 1978; Shah et al. 1983). However, in the aforementioned plants they are slightly oblique to the axial sieve tube elements and developed mostly in the regions of ray splitting and ray fusion. Meagre information is available on naturally occurring sieve tube elements in the rays of secondary phloem (Chavan et al. 1983). The present paper reports the occurrence and structure of sieve elements in the radial system of some tropical trees. MATERIALS AND METHODS Samples of phloem tissues from the main trunks of Erythrina indica, Guazuma tomen­ tosa, Acacia nilotica, Azadirachta indica and Tectona grandis were collected at breast height from trees growing in the Dangs forest of southern Gujarat, India. They were immediately fixed in FAA (Berlyn & Miksche 1976). Transverse, radial and tangential longitudinal sections of 12-15 !lm thickness were cut on a sliding microtome and Downloaded from Brill.com09/29/2021 05:34:07AM via free access 198 IAWA Journal, Vol. 18 (2), 1997 ® Downloaded from Brill.com09/29/2021 05:34:07AM via free access Rajput & Rao - Sieve elements in phloem rays 199 stained with tannic acid-ferric chloride-lacmoide combination (Cheadle et al. 1953). Dimensional details were obtained directly either from tangential longitudinal or ra­ dial longitudinal sections with an ocular microscopic scale. The sieve tube elements that occurred among the ray cells are designated as ray sieve elements. RESULTS Radially arranged sieve tube elements were encountered either solitary or in groups of 1-5 in uniseriate as well as multiseriate rays of secondary phloem. They were short and each sieve tube element was associated with a single companion cell. In all the five species sieve plates were either simple (Fig. lA, B) or compound (Fig. 1C) on trans­ verse to slightly oblique end walls. The structure and behaviour of these ray sieve elements are similar to those of axial sieve elements. Massive deposition of callose (Fig. lD), collapse of companion cells, obliteration and loss of cell content are also noticed in ray sieve elements. These also showed accumulation of slime (P-protein) plugs against the sieve plate, cytoplasmic strands but no sieve areas on their lateral walls. The diameter of these elements was relatively larger than that of adjacent ray parenchyma cells, but more or less equal to that of axial sieve tube elements. The sieve pores were smaller, however. These sieve tube elements showed contact with axial sieve tube elements in all three planes (Fig. IE, F). Though the sieve tube elements were observed in both uniseriate and multi seriate rays, their distribution was characteristic for each plant studied. In Erythrina, they developed only in the centre of multiseriate rays but apparently not in uniseriate rays. In Guazuma they were found in both uniseriate and multi seriate rays and, when present in uniseriate rays, their position varied. They were located either at the extreme (outer) radial end or in the centre of the ray. In multi seriate rays they were present at the margin of the ray. The marginal ray sieve elements are often associated with axial sieve tube elements. However, in Acacia and Azadirachta the ray sieve elements occur only at the extreme radial ends or at the margin of rays. In Tectona they were found randomly among ray cells. The sieve plates of both the axial and ray sieve elements in Erythrina, Guazuma and Tectona are simple, while those of axial sieve elements are both simple and compound in Acacia and Azadirachta. Both simple and compound sieve plates occur in ray sieve elements of Acacia, but Azadirachta has only simple sieve plates. Fig. 1. Sieve elements in phloem rays (A-0 tangential, E transverse, F radial view). - A: Group of sieve elements (arrow) in a phloem ray of Erythrina. - B: Sieve element in Azadirachta showing a sieve plate (arrow). - C: Sieve element at a ray margin with a compound sieve plate (arrowhead) in Acacia. - 0: Sieve plate (arrow) connecting ray and axial sieve elements in Tec­ tona. Note the massive callose deposition on the sieve plate. - E: Arrangement of radial sieve elements (arrow) between fibre bands in Tectona. Note the sieve plate between radial and axial sieve elements (arrowhead). - F: Continuation of sieve elements (arrow) from the axial to the radial system in Tectona. - Fig. A, x 390; Fig. B-E, x 380; Fig. F, x 300. Downloaded from Brill.com09/29/2021 05:34:07AM via free access 200 IAWA Journal, Vol. 18 (2), 1997 DISCUSSION In all the five species studied, radially arranged sieve tube elements occurred either solitary or in groups in the phloem rays, They tend to be shorter and narrower than the axial sieve tube elements, and shorter but wider than the parenchyma cells of the phloem rays, Ray sieve elements have been observed parallel or slightly oblique to axial sieve tube elements mostly in the region of ray splitting (Chavan et aL 1983), In the present study, however, the sieve tube elements are radially arranged like ray cells, Occur­ rence of simple as well as compound sieve plates has also been reported by Thanki (1978) and Chavan et aL (1983) and it seems true that even sieve plates of these ele­ ments show specialization in utilizing the maximum area on the sieve plate (Shah & Chavan 1980), Occurrence of well-developed sieve plates with slime plugs and their connection with the main phloem strands indicates that they are probably involved in the short-distance exchange of photosynthetic material with the ray parenchyma cells (Chavan 1981), The occurrence of ray sieve elements suggests that they develop as an additional translocatory pathway to cope with the rapid transport of photosynthates (Thanki 1978; Shah et aL 1983; Chavan et aL 1983), Their constant association with companion cells (Esau 1969), ability to deposit callose and slime plugs, and their contact with axial sieve elements also suggest their role in the translocation of photo­ synthates. Axial sieve tube elements which cease to function show massive deposition of callose on sieve plates as a sign of inactivation (Evert 1984; Lawton & Lawton 1971; Deshpande & Rajendrababu 1985; Vishwakarma 1991). In the present study ray sieve elements present in nonfunctional zones of phloem also showed sieve pores completely blocked by callose. The differentation of either solitary or grouped sieve tube elements in response to injury or chemicals, especially growth hormones, has already been reported by earlier workers (Eschrich 1953; La Motte & Jacobs 1963; Digby & Wareing 1966a, b; Aloni 1980). In the present study, the sampled trees were growing in deep forest and before sampling care was taken that the trees had not been injured earlier; therefore, the oc­ currence of these ray sieve elements was not in response to either injury or chemicals. This occurrence may be related, however, to incidental development to serve short­ distance transport of photosynthates between the axial and radial system. ACKNOWLEDGEMENT The authors are thankful to the University Grants Commission, New Delhi for financial support. REFERENCES Aloni, R. 1980. Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue culture. Planta 150: 225-263. Berlyn, G.P. & J.P. Miksche. 1976. Botanical microtechnique and cytochemistry. Iowa State University Press, Ames, USA. Downloaded from Brill.com09/29/2021 05:34:07AM via free access Rajput & Rao - Sieve elements in phloem rays 201 Chavan, R. R. 1981. Systematic anatomy of secondary phloem in dicots. PhD Thesis, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India. Chavan, R.R., J.J. Shah & K.R. Patel. 1983. Isolated sieve tube(s) / Elements in the bark of some Angiosperms. IAWA Bull. n.s. 4: 255-263. Cheadle, v.r., E.M. Gifford Jr & K. Esau. 1953. A staining combination for phloem and contigu­ ous tissues. Stain Technol. 28: 49-53. Deshpande, B. P. & T. Rajendrababu. 1985. Seasonal changes in structure of the secondary phlo­ em of Grewia tileaefolia, a deciduous tree from India. Ann. Bot. 56: 61-71. Digby, 1. & P. P. Wareing. 1966a. The effect of applied growth hormones on cambial division and the differentiation of cambial derivatives. Ann. Bot. 30: 539-548. Digby, J. & P.P. Wareing. 1966b. The relationship between endogenous hormone levels in plants and seasonal aspects of cambial activity. Ann. Bot. 30: 607-622. Esau, K. 1969. The phloem. Handbuch der Pflanzenanatomie. Vol. 5. Gebr. Bomtraeger, Berlin. Eschrich, W. 1953. Beitrage zur Kenntnis der Wundsiebrohrenentwicklung bei Impatiens holsti.
Recommended publications
  • Bark Anatomy and Cell Size Variation in Quercus Faginea
    Turkish Journal of Botany Turk J Bot (2013) 37: 561-570 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1201-54 Bark anatomy and cell size variation in Quercus faginea 1,2, 2 2 2 Teresa QUILHÓ *, Vicelina SOUSA , Fatima TAVARES , Helena PEREIRA 1 Centre of Forests and Forest Products, Tropical Research Institute, Tapada da Ajuda, 1347-017 Lisbon, Portugal 2 Centre of Forestry Research, School of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal Received: 30.01.2012 Accepted: 27.09.2012 Published Online: 15.05.2013 Printed: 30.05.2013 Abstract: The bark structure of Quercus faginea Lam. in trees 30–60 years old grown in Portugal is described. The rhytidome consists of 3–5 sequential periderms alternating with secondary phloem. The phellem is composed of 2–5 layers of cells with thin suberised walls and narrow (1–3 seriate) tangential band of lignified thick-walled cells. The phelloderm is thin (2–3 seriate). Secondary phloem is formed by a few tangential bands of fibres alternating with bands of sieve elements and axial parenchyma. Formation of conspicuous sclereids and the dilatation growth (proliferation and enlargement of parenchyma cells) affect the bark structure. Fused phloem rays give rise to broad rays. Crystals and druses were mostly seen in dilated axial parenchyma cells. Bark thickness, sieve tube element length, and secondary phloem fibre wall thickness decreased with tree height. The sieve tube width did not follow any regular trend. In general, the fibre length had a small increase toward breast height, followed by a decrease towards the top.
    [Show full text]
  • Parenchyma Cell Respiration and Survival in Secondary Xylem: Does Metabolic Activity Decline with Cell Age?
    Plant, Cell and Environment (2007) 30, 934–943 doi: 10.1111/j.1365-3040.2007.01677.x Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? R. SPICER1 & N. M. HOLBROOK2 1Rowland Institute at Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA and 2Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA ABSTRACT defines (and arguably drives) heartwood formation, a form of tissue senescence during which the oldest, non- Sapwood respiration often declines towards the sapwood/ functional xylem is compartmentalized in the centre of the heartwood boundary, but it is not known if parenchyma stem. The cause of parenchyma cell death is not known, metabolic activity declines with cell age. We measured but evidence for decreased metabolic activity in the inner- sapwood respiration in five temperate species (sapwood age most sapwood has led to a view of parenchyma ageing as range of 5–64 years) and expressed respiration on a live cell a gradual, passive decline in metabolism that terminates in basis by quantifying living parenchyma. We found no effect cell death. of parenchyma age on respiration in two conifers (Pinus Multiple reports suggest that sapwood respiration strobus, Tsuga canadensis), both of which had signifi- declines towards the sapwood/heartwood boundary cant amounts of dead parenchyma in the sapwood. In (Goodwin & Goddard 1940; Higuchi, Shimada & Watanabe angiosperms (Acer rubrum, Fraxinus americana, Quercus 1967; Pruyn, Gartner & Harmon 2002a,b; Pruyn, Harmon & rubra), both bulk tissue and live cell respiration were Gartner 2003; Pruyn, Gartner & Harmon 2005), although reduced by about one-half in the oldest relative to the there have been reports of no change (Bowman et al.
    [Show full text]
  • Plant Histology and Anatomy Q
    PLANT HISTOLOGY AND ANATOMY Q. Transcellular strands are seen in a) Xylem vessels b) ThidTracheids c) Parenchyma cells d) Sieve tubes Q. Epiphytes absorb water by a spongy tissue called a) Mesophy ll b) Velamen c) Conjuctive tissue d) Phloem Q. The presence of vessel s and companion cells are characters of a) Gymnosperms b) Angiosperms c) Bryophytes d) Pteridophytes Q. AhilAmphivasal vascul lbdlar bundle is found in a) Cycas and Dryopteris b) Dracaena and Yucca c) Helianthus and Cucurbita d) maize and Wheat Q. Bamboo and grasses elonggyate by the activity of a) Apical meristem b) Intercalary meristem c) SdSecondary meritistem d) Lateral ameristem Q. Fibres associated with phloem are called a) Intraxylary fibres b) Pericycle fibres c) Bast fibres d) Cortical fibres Q. Callose is found in a) Sieve Plates b) Cross walls of tracheids c) Phloem parenchyma d) Comapanion cell Q. Which are common in xylem and phloem tissues? a) PhParenchyma and CllCollench yma b) Collenchyma and Sclerenchyma c) Parenchyma and Sclerenchyma d) Aerenchyma and Sclerenchyma Q. Quiescent centre is found in a) Root tip b) Shoot tip c) Floral tip d) Leaf tip Q. The plastids in meristematic tissue are in a a) Fullyyp developed state b) Half developed state c) Proplastid state d) Plasmolysed state Q. In hydrophytes, aerenchyma helps in a) Attachment b) Photosynthesis c) Buoyancy d) Mechanical support Q. Cistoliths are composedfd of a) Calcium oxalate b) Calcium carbonate c) GGucosdeslucosides d) MgCO 3 Q. CllCollench yma differs f rom sclerenchyma a) Retaining protoplasm at maturity b) Having thick walls c) HHiaving w idlide lumen d) Being meristematic Q.
    [Show full text]
  • Microbiology and Plant Pathology
    ALAGAPPA UNIVERSITY (Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded As category - I University by MHRD-UGC) (A State University Established by the Government of TamilNadu) KARAIKUDI – 630 003 DIRECTORATE OF DISTANCE EDUCATION M. Sc. BOTONY Second Year – Third Semester 34631- MICROBIOLOGY AND PLANT PATHOLOGY Copy Right Reserved For Private Use only Authors: Dr. A. Arun, Associate Professor & Head (i/c), Department of Microbiology, Alagappa University, Karaikudi- 630 003. (Units 1-7) Dr. M. Jothibasu Assistant Professor Department of Botany Alagappa University Karaikudi-03 (Units 8-14) “The Copyright shall be vested with Alagappa University” All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Alagappa University, Karaikudi, Tamil Nadu. SYLLABI – BOOK MAPPING TABLE 34631- MICROBIOLOGY AND PLANT PATHOLOGY SYLLABI MAPPING IN BOOK BLOCK-1: SCOPE OF MICROBIOLOGY UNIT I Introduction to Microbiology- Scope of Microbiology- 1-8 Evolution into Science- Characterization of microorganisms. UNIT II Classification of Microorganisms- Archea and Bacteria- 9-15 Characteristics of Bacteria- Morphology -Ultra Structure. UNIT III Nutrition – Growth – Reproduction- Bacterial Cultural and 16-27 Cultural characteristics- Economic importance of bacteria BLOCK 2: VIRUS AND MYCOPLASMAS UNIT IV Virology – General features- Classification of virus- 28-34 Characteristics – Ultra structure. UNIT V Virus- Isolation – Purification –Chemical nature- Replication- 35-46 Transmission- Virions.
    [Show full text]
  • Does the Distance to Normal Renal Parenchyma (DTNRP) in Nephron-Sparing Surgery for Renal Cell Carcinoma Have an Effect on Survival?
    ANTICANCER RESEARCH 25: 1629-1632 (2005) Does the Distance to Normal Renal Parenchyma (DTNRP) in Nephron-sparing Surgery for Renal Cell Carcinoma have an Effect on Survival? Z. AKÇETIN1, V. ZUGOR1, D. ELSÄSSER1, F.S. KRAUSE1, B. LAUSEN2, K.M. SCHROTT1 and D.G. ENGEHAUSEN1 Departments of 1Urology and 2Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Germany Abstract. Background: The effect of the distance to normal renal solitary kidneys. Additionally, organ preservation in the parenchyma (DTNRP) on survival after nephron-sparing surgery presence of an intact contralateral kidney can be performed (NSS) for renal cell cancer (RCC) was analyzed. Additionally, for small localized tumors with nearly equivalent results for the role of T-classification, tumor diameter and tumor grading tumor-specific survival, compared to nephrectomy (1). The was considered. Patients and Methods: NSS was performed on question of whether a small safety margin in intraoperative 126 patients with RCC between 1988 and 2000. Eighty-six patients histology may be adequate for favorable outcome of the were submitted to annual follow-up. These 86 patients were sub- patient constitutes an everyday issue for the practitioner classified into statistical groups according to the distance performing nephron-sparing surgery. In this context, the to normal renal parenchyma (≤ 2mm; > 2mm – ≤ 5mm; clinical impact of defined surgical margin widths for >5 mm), T-classification, tumor diameter (≤ 20mm; > 20mm - avoiding local tumor recurrence and, therefore, improved ≤ 30 mm; >30 mm – ≤ 50mm; >50mm) and tumor grading. survival after nephron-sparing surgery has been discussed The effect of belonging to one of these groups on survival was but still remains controversial.
    [Show full text]
  • INTERXYLARY PHLOEM (Included Phloem) by Marcelo R
    INTERXYLARY PHLOEM (included phloem) By Marcelo R. Pace Interxylary phloem is the presence of phloem strands embedded within the secondary xylem (wood), and produced by the activity of a single cambium (Carlquist 2013). Stems with this cambial variant are also referred to as foraminate, due to the conspicuous interxylary phloem strands in the shape of dots scattered within the wood. (Fig. 1A). However, the presence of interxylary phloem is sometimes less evident and can only be confirmed by microscopy. Fig. 1. Stem cross-section of Strychnos (Loganiaceae). A. S. guianensis, macroscopic view. B. S. millepunctata, microscopic view. Interxylary phloem can have four different ontogenetic origins. The first one is where the cambium produces phloem in both directions (inside and outside), followed by the formation of xylem only towards the inside, and as a result, enclosing the phloem in the wood. Examples of this origin are present in Thunbergia (Acanthaceae; Fig. 2A) and Dicella (Malpighiaceae; Fig 2B). However, in Thunbergia the interxylary phloem is derived from the interfascicular cambium resulting in radial patches that alternate with regions of the xylem that originate from the fascicular cambium (Fig. 2A). A second origin of the interxylary phloem is through the formation of small phloem arcs. These later become embedded in the wood through the production of xylem by the cambium on their flanks. The resulting phloem islands will contain a fragment of cambium at the bottom. This type is present in Strychnos (Loganiaceae; Fig. 1), the African species of Combretum (Combretaceae; Van Vliet, 1979), and in at least one neotropical species of Combretum (Acevedo-Rodríguez, pers.
    [Show full text]
  • Tissues and Other Levels of Organization MODULE - 1 Diversity and Evolution of Life
    Tissues and Other Levels of Organization MODULE - 1 Diversity and Evolution of Life 5 Notes TISSUES AND OTHER LEVELS OF ORGANIZATION You have just learnt that cell is the fundamental structural and functional unit of organisms and that bodies of organisms are made up of cells of various shapes and sizes. Groups of similar cells aggregate to collectively perform a particular function. Such groups of cells are termed “tissues”. This lesson deals with the various kinds of tissues of plants and animals. OBJECTIVES After completing this lesson, you will be able to : z define tissues; z classify plant tissues; z name the various kinds of plant tissues; z enunciate the tunica corpus theory and histogen theory; z classify animal tissues; z describe the structure and function of various kinds of epithelial tissues; z describe the structure and function of various kinds of connective tissues; z describe the structure and function of muscular tissue; z describe the structure and function of nervous tissue. 5.1 WHAT IS A TISSUE Organs such as stem, and roots in plants, and stomach, heart and lungs in animals are made up of different kinds of tissues. A tissue is a group of cells with a common origin, structure and function. Their common origin means they are derived from the same layer (details in lesson No. 20) of cells in the embryo. Being of a common origin, there are similar in structure and hence perform the same function. Several types of tissues organise to form an organ. Example : Blood, bone, and cartilage are some examples of animal tissues whereas parenchyma, collenchyma, xylem and phloem are different tissues present in the plants.
    [Show full text]
  • Tree Identification: from Bark and Leaves Or Needles
    Tree Identification: from bark and leaves or needles A walk in the woods can be a lot of fun, especially if you bring your kids. How do you get them to come along with you? Tell them this. “Look at the bark on the trees. Can you can find any that look like burnt potato chips, warts, cat scratches, camouflage pants or rippling muscles?” Believe it or not, these are descriptions of different kinds of tree bark. Tree ID from bark:______________________________________________________ Black cherry: The bark looks like burnt potato chips. Hackberry: The bark is bumpy and warty. Ironwood: The bark has long thin strips. With a little imagination, an ironwood can look like it is used as a scratching post by cats. They can also be easily spotted in winter because their light brown dead leaves hang on well past the first snow. Sycamore: A tree with bark that looks like camouflaged pants. The largest tree in Illinois is a sycamore, a majestic 115-foot tree near Springfield. Musclewood: a tree with smooth gray bark covering a trunk with ridges that look like they are rippling muscles. Shagbark hickory: Long strips of shaggy bark peeling at both ends. Cottonwood: Has heavy ridges that make it look like Paul Bunyan’s corduroy pants. Bur oak: Thick and gnarly bark has deep craggy furrows. The corky bark allows it to easily withstand hot forest fires. Tree ID from leaves or needles:________________________________________ Willow Oak: Has elongated leaves similar to those of a willow tree. Red pine: Red has 3 letters; a red pine has groupings of 2-3 prickly needles.
    [Show full text]
  • The Bark: = Periderm
    The Bark: = Periderm The bark is everything outside the vascular cambium. As you can see, there is a lot going on in the bark. The Bark: periderm: phellogen (cork cambium): The phellogen is the region of cell division that forms the periderm tissues. Phellogen development influences bark appearance. The Bark: periderm: phellem (cork): Phellem replaces the epidermis as the tree increases in girth. Photosynthesis can take place in some trees both through the phellem and in fissures. The Bark: periderm: phelloderm: Phelloderm is active parenchyma tissue. Parenchyma cells can be used for storage, photosynthesis, defense, and even cell division! The Bark: phloem: Phloem tissue makes up the inner bark. However, it is vascular tissue formed from the vascular cambium. The Bark: phloem: sieve tube elements: Sieve tube elements actively transport photosynthates down the stem. Conifers have sieve cells instead. The cambium: The cambium is the primary meristem producing radial growth. It forms the phloem & xylem. The Xylem (wood): The xylem includes everything inside the vascular cambium. The Xylem: a growth increment (ring): The rings seen in many trees represent one growth increment. Growth rings provide the texture seen in wood. The Xylem: vessel elements: Hardwood species have vessel elements in addition to trachieds. Notice their location in the growth rings of this tree The Xylem: fibers: Fibers are cells with heavily lignified walls making them stiff. Many fibers in sapwood are alive at maturity and can be used for storage. The Xylem: axial parenchyma: Axial parenchyma is living tissue! Remember that parenchyma cells can be used for storage and cell division.
    [Show full text]
  • Squamous Cell Carcinoma of the Renal Parenchyma
    Zhang et al. BMC Urology (2020) 20:107 https://doi.org/10.1186/s12894-020-00676-5 CASE REPORT Open Access Squamous cell carcinoma of the renal parenchyma presenting as hydronephrosis: a case report and review of the recent literature Xirong Zhang1,2, Yuanfeng Zhang1, Chengguo Ge1, Junyong Zhang1 and Peihe Liang1* Abstract Background: Primary squamous cell carcinoma of the renal parenchyma is extremely rare, only 5 cases were reported. Case presentation: We probably report the fifth case of primary Squamous cell carcinoma (SCC) of the renal parenchyma in a 61-year-old female presenting with intermittent distending pain for 2 months. Contrast-enhanced computed tomography (CECT) revealed hydronephrosis of the right kidney, but a tumor cannot be excluded completely. Finally, nephrectomy was performed, and histological analysis determined that the diagnosis was kidney parenchyma squamous cell carcinoma involving perinephric adipose tissue. Conclusions: The present case emphasizes that it is difficult to make an accurate preoperative diagnosis with the presentation of hidden malignancy, such as hydronephrosis. Keywords: Kidney, Renal parenchyma, Squamous cell carcinoma, Hydronephrosis, Malignancy Background Case presentation Squamous cell carcinoma (SCC) of the renal pelvis is a The patient is a 61-year-old female. After suffering from rare neoplasm, accounting for only 0.5 to 0.8% of malig- intermittent pain in the right flank region for 2 months nant renal tumors [1], SCC of the renal parenchyma is she was referred to the urology department at an outside even less common. A review of the literature shows that hospital. The patient was diagnosed with hydronephrosis only five cases of primary SCC of the renal parenchyma of the right kidney and underwent a right ureteroscopy have been reported to date [2–6].
    [Show full text]
  • Secretory Tissues (Gesneriaceae)
    Acta Bot. Neerl. 46(4), December 1997, p.413-420 Secretory tissues of the flower of Sanango racemosum (Gesneriaceae). I. Light microscopy Sara Maldonadoi* and Marisa Oteguiif * Institute de Recursos Bioldgicos, INTA 1712, Villa Udaondo, Castelar, Argentina; fFacultad de Ciencias La 1900 La Naturales y Museo, Universidad Nacional de Plata, Plata, Argentina SUMMARY Sanango racemosum (Ruiz & Pav.) Barringer has a dry stigma without a free-flowing secretion fluid but with a hydrated proteinaceous pellicle. The stigmatic surface is covered with unicellular, bottle-shaped papillae. At maturity, a viscous emulsion is accumulated between the cuticle and the pecto-cellulosic wall of the papillae, causing it to become detached from the surface of the papilla cell walls. The style has a central solid core of transmitting tissue. The cells of the transmitting tissue are rich in starch and exhibit thick lateral walls rich in pectic substance. The nectary disk is a ring elongated into a cup, with five lobes at the top. One of the most conspicuous histological features of the disk is the abundance of starch in the secretory cells. The disk is supplied only by phloem; the stomata are found in the top of the lobes. A fluid substance is produced just before anthesis and secreted through the stomata with no visible decline in starch level. During anthesis and after fertilization, a rapid decline in starch is observed. The hypothesis that the disk has other functions besides that of a nectary is discussed. Key-words: disk, nectary, osmophore, Sanango, stigma, transmitting tissue. INTRODUCTION The monotypic genus Sanango G. S. Bunting and J.
    [Show full text]
  • Getting Chemicals Into Trees Without Spraying
    Urban Forestry NR/FF/020 (pr) Getting Chemicals Into Trees Without Spraying Michael Kuhns, Forestry Extension Specialist This fact sheet provides an overview of injection, or phellogen that makes cork to thicken the outer bark, implantation, and other ways to get chemicals, mainly phloem that conducts food through the tree from where pesticides, into trees. Many techniques and systems it is stored or made to where it is being used (all of these exist and some are very good, some are good in some tissues together make up the bark), vascular cambium situations, and some are ineffective or bad for trees. that divides rapidly to make new phloem and xylem cells, This fact sheet addresses all of these. and xylem or wood. Xylem includes an outer layer called the sapwood that conducts mostly water and minerals from the roots to the canopy, and an inner layer called the Chemicals are applied to trees for many reasons. heartwood that is aged sapwood that has died and has lost Insecticides repel or kill damaging insects, fungicides its ability to conduct water but still adds strength. treat or prevent fungal diseases, nutrients and plant growth regulators affect growth, and herbicides kill trees or prevent sprouting after tree removal. Spraying is the most typical way to apply these chemicals. It is fast, uses readily available equipment, and is understood. The Phellem (Cork Phellogen down side of spraying is that much of the chemical being or Outer Bark) Phloem applied is wasted, either to drift, run off, or because it can not be applied precisely to where it is needed in the tree.
    [Show full text]