Insights Into the Evolution of Lungs and Swim Bladders Author(S): Christopher B

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Evolution of Lungs and Swim Bladders Author(S): Christopher B Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology The Origin and Evolution of the Surfactant System in Fish: Insights into the Evolution of Lungs and Swim Bladders Author(s): Christopher B. Daniels, Sandra Orgeig, Lucy C. Sullivan, Nicholas Ling, Michael B. Bennett, Samuel Schürch, Adalberto Luis Val, and Colin J. Brauner Source: Physiological and Biochemical Zoology, Vol. 77, No. 5 (September/October 2004), pp. 732-749 Published by: The University of Chicago Press. Sponsored by the Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology Stable URL: http://www.jstor.org/stable/10.1086/422058 . Accessed: 08/11/2015 22:31 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology are collaborating with JSTOR to digitize, preserve and extend access to Physiological and Biochemical Zoology. http://www.jstor.org This content downloaded from 23.235.32.0 on Sun, 8 Nov 2015 22:31:46 PM All use subject to JSTOR Terms and Conditions 732 The Origin and Evolution of the Surfactant System in Fish: Insights into the Evolution of Lungs and Swim Bladders* Christopher B. Daniels1,† presence of a surfactant system and suggest that this system Sandra Orgeig1 may have originated in epithelial cells lining the pharynx. Here Lucy C. Sullivan1,‡ we present new data on the surfactant system in swim bladders Nicholas Ling2,§ of three teleost fish (the air-breathing pirarucu Arapaima gigas Michael B. Bennett3 and tarpon Megalops cyprinoides and the non-air-breathing Samuel Schu¨rch4 New Zealand snapper Pagrus auratus). We determined the pres- Adalberto Luis Val5 ence of surfactant using biochemical, biophysical, and mor- Colin J. Brauner6 phological analyses and determined homology using immu- 1School of Earth and Environmental Sciences, University of nohistochemical analysis of the surfactant proteins (SPs). We Adelaide, Adelaide, South Australia 5005, Australia; relate the presence and structure of the surfactant system to 2Department of Zoology, University of Auckland, Auckland, those previously described in the swim bladders of another New Zealand; 3School of Biomedical Sciences, Department of teleost, the goldfish, and those of the air-breathing organs of Anatomy and Developmental Biology, University of the other members of the Osteichthyes, the more primitive air- Queensland, St. Lucia, Queensland 4072, Australia; breathing Actinopterygii and the Sarcopterygii. Snapper and 4Department of Physiology and Biophysics, University of tarpon swim bladders are lined with squamous and cuboidal Calgary, Calgary, Alberta T2N 4N1, Canada; 5Instituto epithelial cells, respectively, containing membrane-bound la- Nacional de Pesquisas da Amazoˆnia (INPA), Manaus, mellar bodies. Phosphatidylcholine dominates the phospholipid Amazonas 69083, Brazil; 6Department of Zoology, University (PL) profile of lavage material from all fish analyzed to date. of British Columbia, 6270 University Boulevard, Vancouver, The presence of the characteristic surfactant lipids in pirarucu British Columbia V6T 1Z4, Canada and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim Accepted 11/19/03 bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other Online enhancement: color figure. fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmam- malian species and SP-B in actinopterygian fishes. The ex- tremely high cholesterol/disaturated PL and cholesterol/PL ra- ABSTRACT tios of surfactant extracted from tarpon and pirarucu bladders Several times throughout their radiation fish have evolved either and the poor surface activity of tarpon surfactant are charac- lungs or swim bladders as gas-holding structures. Lungs and teristics of the surfactant system in other fishes. Despite the swim bladders have different ontogenetic origins and can be paraphyletic phylogeny of the Osteichthyes, their surfactant is used either for buoyancy or as an accessory respiratory organ. uniform in composition and may represent the vertebrate Therefore, the presence of air-filled bladders or lungs in dif- protosurfactant. ferent groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the * This article was presented at the symposium “How to Live Successfully on Land If One Is a Fish: The Functional Morphology and Physiology of the Introduction Vertebrate Invasion of the Land,” Sixth International Congress of Comparative Physiology and Biochemistry, Mount Buller, Victoria, Australia, 2003. Many species of fishes can breathe air. Fish utilize a number †Corresponding author; e-mail: [email protected]. of different structures for aerial gas exchange, including the ‡Present address: Department of Microbiology and Immunology, University of skin, gills, mouth and buccal cavity, intestine, and other spe- Melbourne, Victoria 3010, Australia. cifically evolved chambers. In particular, lungs appeared in- § Present address: Department of Biological Sciences, University of Waikato, dependently several times. Lung structure can vary from the Private Bag 3105, Hamilton, New Zealand. simple, transparent, baglike structures of rope fish and bichirs Physiological and Biochemical Zoology 77(5):732–749. 2004. ᭧ 2004 by The (Polypteriformes, Cladista) to more complex compartmental- University of Chicago. All rights reserved. 1522-2152/2004/7705-3061$15.00 ized structures in lungfish (Dipnoi). Lungs are likely to have This content downloaded from 23.235.32.0 on Sun, 8 Nov 2015 22:31:46 PM All use subject to JSTOR Terms and Conditions Surfactant in Air-Breathing Organs of Fish 733 first appeared in the placoderms. Moreover, the possible pres- Sullivan et al. 1998; Prem et al. 2000; Bourbon and Chailley- ence of lungs in placoderm fossils indicates that these animals Heu 2001) and gas exchange (gar; Smits et al. 1994), and also must also have had a breathing mechanism and possibly a in lunged fishes (rope fish, bichirs, and the three species of respiratory oscillator for responding to changes in blood and sarcopterygian lungfishes; Smits et al. 1994; Orgeig and Daniels lung gases. Recent evidence suggests that such mechanisms 1995; Sullivan et al. 1998). must have been in place before the lungs themselves evolved In this article, we use previously published biochemical and (Perry et al. 2001). However, placoderm lungs are not ho- morphological analyses of the surfactant system of primitive mologous with the original Osteichthyian lungs, because pla- fish and add new information on this system in teleosts (two coderm lungs were most likely derived from the anterior phar- freshwater-inhabiting air breathers, the pirarucu A. gigas and ynx (Denison 1941; Perry et al. 2001). Moreover, placoderm the tarpon M. cyprinoides, and one marine fish, the snapper lungs may have served a different function. They may have Pagrus auratus). This review (with new data) demonstrates that been important in promoting neutral buoyancy for these the surfactant system of fishes is most likely homologous with heavily armored fish. With the extinction of the placoderms, that of the tetrapods, despite the different ontogenetic origins lungs disappeared in the stem group and are lacking in all and functional aspects of the air-breathing organs (Rubio et al. cartilaginous fishes. Chondrichthyians are less dense than pla- 1996; Sullivan et al. 1998; Prem et al. 2000). In addition, the coderms, because they lack armor plates, and they use squalene high-cholesterol, low–saturated phospholipid composition of in their liver for buoyancy (Hickman et al. 2001). However, it surfactant found in fishes and in the ancient sarcopterygian, is likely that lungs reappeared in the stem ancestor of the Os- the Australian lungfish (Neoceratodus forsteri), represents a very teichthyes. In both branches of the Osteichthyes (Sarcopterygii, primitive, poorly surface-active mixture, which we term a “pro- i.e., lungfish and the most primitive Actinopterygii, i.e., tosurfactant” (Daniels and Skinner 1994; Daniels et al. 1995a; Polypteriformes), the lungs appear as paired ventral structures Orgeig and Daniels 1995; Daniels and Orgeig 2001). A prim- derived from the posterior pharynx and posterior to the gills itive, if not the original, function of fish surfactant is likely to (reviewed in Perry et al. 2001). Primitive Devonian ostei- be acting as an antiadhesive (Daniels and Skinner 1994), but chthyian fish may have breathed air in response to low envi- surfactant may also prevent fluid from entering the bladder or ronmental O2 and used the neutral buoyancy that an air-filled lung, prevent oxidative damage to the epithelial lining, and act lung provides to rest at the surface (Dehadrai and Tripathi 1976; as an antiseptic/antibiotic (Daniels and Orgeig 2001). We also Fange 1983). outline the evolution
Recommended publications
  • O2 Secretion in the Eye and Swimbladder of Fishes
    1641 The Journal of Experimental Biology 209, 1641-1652 Published by The Company of Biologists 2007 doi:10.1242/jeb.003319 Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes Michael Berenbrink School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK e-mail: [email protected] Accepted 12 March 2007 Summary The ability of some fishes to inflate their compressible value of haemoglobin. These changes predisposed teleost swimbladder with almost pure oxygen to maintain neutral fishes for the later evolution of swimbladder oxygen buoyancy, even against the high hydrostatic pressure secretion, which occurred at least four times independently several thousand metres below the water surface, has and can be associated with increased auditory sensitivity fascinated physiologists for more than 200·years. This and invasion of the deep sea in some groups. It is proposed review shows how evolutionary reconstruction of the that the increasing availability of molecular phylogenetic components of such a complex physiological system on a trees for evolutionary reconstructions may be as important phylogenetic tree can generate new and important insights for understanding physiological diversity in the post- into the origin of complex phenotypes that are difficult to genomic era as the increase of genomic sequence obtain with a purely mechanistic approach alone. Thus, it information in single model species. is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an Glossary available online at avascular, metabolically active retina. Evolution of this http://jeb.biologists.org/cgi/content/full/210/9/1641/DC1 system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of Key words: oxygen secretion, Root effect, rete mirabile, choroid, haemoglobin (the Root effect) and in the specific buffer swimbladder, phylogenetic reconstruction.
    [Show full text]
  • Notes on the Swim-Bladder Physiology of Cod (Gadus Morhua) Investigated from the Underwater Laboratory "Helgoland"
    Helgol~inder wiss. Meeresunters. 29, 460-463 (1977) Notes on the swim-bladder physiology of cod (Gadus morhua) investigated from the underwater laboratory "Helgoland" G. SUNDNES, B. GULLIKSEN ~X~ J. MORK Biological stasjon; Trondheim, Norway ABSTRACT: In situ sampling of gas from cod swim-bladders took place during a fortnight's saturation mission with the underwater laboratory "Helgoland" in May-June I975. These samples were compared to those done by the conventional method of transporting the fish to the surface for sampling. Based upon these in-situ measurements, the mean O2-concentration was 55.7 °/0 in buoyant cod at 15 m depth. Repeated sampling of the same fish showed a change in gas composition. Compared to the conventional method of transporting fish for sampling to the surface, in-situ sampling gave results with less variation, and indicated that surface-sampling does not give the correct gas composition of buoyant fish at depth of catch. INTRODUCTION Physiological investigations of fish swim-bladder have usually been performed near the surface, i.e. at about one atmosphere pressure. It means that fish were usually brought to the surface from their natural habitat of high water pressure to reduced pressure before experiments were performed and samples taken. Even in experiments with fish in pressure chambers, the gas samples of the swim-bladder were taken at one atmosphere pressure. Gas sampIes from fish at the depth of buoyancy have rarely been reported. The development of the underwater laboratory has given marine biologists a better opportunity to work under hydrostatic pressure whereby fish are kept under "natural" experimental conditions.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Final Report
    2011 Project Abstract For the Period Ending June 30, 2014 PROJECT TITLE: Mississippi River Water Quality Assessment PROJECT MANAGER: Michael Sadowsky AFFILIATION: University of Minnesota MAILING ADDRESS: 140 Gortner Lab, 1479 Gortner Ave CITY/STATE/ZIP: Saint Paul, MN 55108 PHONE: (612) 626-0977 E-MAIL: [email protected] WEBSITE: http://www.cbs.umn.edu/main/news/inthefield/m3p.shtml FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 05c APPROPRIATION AMOUNT: $ 557,000 Overall Project Outcome and Results A metagenomics-based sequencing approach was utilized to characterize the bacterial community at sites along the Mississippi River in Minnesota to understand how these communities were influenced by or indicative of water quality. Results of this study revealed that the bacterial community throughout the river primarily consisted of a small number of highly abundant species that comprise a “core microbial community” that was stable both in terms of community membership and inferred functional traits. Variation in community membership and species abundances were primarily influenced by physicochemical parameters (e.g. pH and temperature) rather than spatial distance, and a reproducible community structure occurred annually toward the late summer. Furthermore, specific bacterial orders were related to chemical concentrations that co-varied with surrounding land use, suggesting that increases in abundance of these orders may be indicative of specific types of contamination throughout the river. Therefore, assessment of the total bacterial community provides more information about water quality and contamination sources than could be previously gleaned from traditional enumeration of indicator bacteria like Escherichia coli.
    [Show full text]
  • Using Stable Isotopes to Investigate Movement of Fish in Rice Paddy Fields
    Int Aquat Res DOI 10.1007/s40071-015-0105-y ORIGINAL RESEARCH Using stable isotopes to investigate movement of fish in rice paddy fields Jaeyong Lee . Jae-Ok Kim . Jeffrey S. Owen . Bomchul Kim Received: 7 January 2015 / Accepted: 17 April 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract We evaluated movement of fish, especially Misgurnus spp. (loach), in paddy fields and irrigation ponds by conducting an inventory of d13C and d15N of fish, potential food sources, and soil organic matter in two irrigation pond–paddy field systems in Korea. The pond–paddy systems differ with respect to the presence or the absence of a ridge between the paddy field and the irrigation pond and also whether or not livestock are present in their watersheds. The ridge prevents the free movement of fish between paddy field and irrigation pond habitats in one of the pond–paddy watersheds, but not in the other watershed. We found differences in loach d13C and d15N inhabiting the paddy fields compared to those in loach d13C and d15Nin the irrigation ponds. In irrigation ponds, loach d13C was lower in September (average -27.9 and -27.7 %) compared to July (average -26.2 and -26.3 %) in the watershed with a ridge (station 1) and without a ridge (station 6), respectively. Loach d13C in irrigation ponds in September was similar to loach d13C in the paddy field in July at both sampling sites, indicating loach might have moved into irrigation pond from paddy field. Loach d15N in the watershed with livestock was significantly higher (average 18.2 %) in the irrigation ponds than loach d15N in the watershed with no livestock present (average 11.3 %), probably reflecting higher anthropogenic nitrogen inputs from livestock.
    [Show full text]
  • Ambush Predator’ Guild – Are There Developmental Rules Underlying Body Shape Evolution in Ray-Finned Fishes? Erin E Maxwell1* and Laura AB Wilson2
    Maxwell and Wilson BMC Evolutionary Biology 2013, 13:265 http://www.biomedcentral.com/1471-2148/13/265 RESEARCH ARTICLE Open Access Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? Erin E Maxwell1* and Laura AB Wilson2 Abstract Background: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.
    [Show full text]
  • The Secretion of Oxygen Into the Swim-Bladder of Fish III
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Worksheets and Post-Lab Activities for “Floating Fishes”
    Worksheets and post-lab activities for “Floating Fishes” Possible lesson outlines of this modular activity: This is the lesson as currently written. It begins with the physics of buoyancy before transitioning to fish biology and how it’s related to fisheries Activity Time required 1 Introduction and background 50 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min 4 Fishing expedition 50 min An alternative is to start with the fishing expedition in order to emphasize the ecological aspects. Activity Time required 1 Introduction and background 50 min 2 Fishing expedition 50 min 3 Boat Sinking Lab 50 min 4 Fish Buoyancy 50 min If an instructor is short on time and wishes to emphasize the interaction between biology and physics, they can omit the fisheries background. This could be completed within a 3-hr lab period. To save 50 minutes, one can also omit the boat sinking lab. Activity Time required 1 Introduction (omit information about overfishing) 30 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min Page 1 of 10 Worksheets and post-lab activities for “Floating Fishes” Sample Worksheet for Day 2: Boat Sinking Lab 1) Add marbles to your boat one by one. What is happening to your boat as you add more marbles?__Students will find that the marbles all roll to one side ______ How many marbles did it take to sink your boat? ______ answers will vary ______________ 2) Take out the marbles and add the first divider to your boat. Add one marble at a time to just one side of your boat.
    [Show full text]
  • Earliest Known Lepisosteoid Extends the Range of Anatomically Modern Gars to the Late Jurassic Received: 25 September 2017 Paulo M
    www.nature.com/scientificreports OPEN Earliest known lepisosteoid extends the range of anatomically modern gars to the Late Jurassic Received: 25 September 2017 Paulo M. Brito1, Jésus Alvarado-Ortega2 & François J. Meunier3 Accepted: 2 December 2017 Lepisosteoids are known for their evolutionary conservatism, and their body plan can be traced at Published: xx xx xxxx least as far back as the Early Cretaceous, by which point two families had diverged: Lepisosteidae, known since the Late Cretaceous and including all living species and various fossils from all continents, except Antarctica and Australia, and Obaichthyidae, restricted to the Cretaceous of northeastern Brazil and Morocco. Until now, the oldest known lepisosteoids were the obaichthyids, which show general neopterygian features lost or transformed in lepisosteids. Here we describe the earliest known lepisosteoid (Nhanulepisosteus mexicanus gen. and sp. nov.) from the Upper Jurassic (Kimmeridgian – about 157 Myr), of the Tlaxiaco Basin, Mexico. The new taxon is based on disarticulated cranial pieces, preserved three-dimensionally, as well as on scales. Nhanulepisosteus is recovered as the sister taxon of the rest of the Lepisosteidae. This extends the chronological range of lepisosteoids by about 46 Myr and of the lepisosteids by about 57 Myr, and flls a major morphological gap in current understanding the early diversifcation of this group. Actinopterygians, or ray-finned fishes, are the largest group among extant gnathostoms vertebrates. Today actinopterygians are represented by three major clades: Cladistia (bichirs and rope fsh), with at least 16 species, Chondrostei (sturgeons and paddle fshes), with about 30 species, and Neopterygii, formed by the Teleostei, with about 30,000 species and the Holostei with eight species: one halecomorph (bowfn) and 7 ginglymodians (gars)1.
    [Show full text]
  • A Case Study of Weatherfish (Misgurnus Fossilis)
    www.nature.com/scientificreports OPEN The role of detritivory as a feeding tactic in a harsh environment – a case study of weatherfsh Received: 31 July 2018 Accepted: 28 May 2019 (Misgurnus fossilis) Published: xx xx xxxx Kacper Pyrzanowski 1, Grzegorz Zięba 1, Małgorzata Dukowska1, Carl Smith1,2,3 & Mirosław Przybylski1 The weatherfsh (Misgurnus fossilis) is a species that is tolerant of unfavourable environmental conditions and can survive low dissolved oxygen concentrations and high water temperatures. Although this species occurs across almost the whole of Europe, and is protected in many countries, relatively little is known regarding its ecology. To determine the diet of weatherfsh, 120 individuals from an artifcial drainage canal in central Poland were collected in two seasons (spring and late summer) with contrasting abiotic condition (oxygen concentration, water temperature and transparency). Analysis of gut fullness showed that weatherfsh consumed a greater quantity of food in spring (0.92 ± 0.90) compared with summer (0.20 ± 0.26). Contrary to other cobitid taxa, weatherfsh fed actively during daytime in both seasons. An estimate of the importance of each dietary component indicated that the most important food categories were chironomids, copepods, Asellus aquaticus and detritus. SIMPER analysis indicated that these four categories together constituted over 65.8% of cumulative dissimilarity in the diet between seasons. Additionally, trophic niche breadth difered signifcantly between seasons. The study demonstrated that the weatherfsh is an opportunistic feeder, consuming large quantities of detritus despite possessing a gut morphology that is atypical of a detritivore. The quantity of detritus in the gut of weatherfsh was positively associated with fsh total length and varied seasonally, with a greater quantity of detritus in the diet in late summer.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]