Observations on the Physiology of the Swim Bladder in Cyprinoid Fishes by H

Total Page:16

File Type:pdf, Size:1020Kb

Observations on the Physiology of the Swim Bladder in Cyprinoid Fishes by H OBSERVATIONS ON THE PHYSIOLOGY OF THE SWIM BLADDER IN CYPRINOID FISHES BY H. M. EVANS AND G. C. C. DAMANT. (Received 2.6th February 1928.) (With Five Text-figures.) THE swim bladder of fishes is primarily a hydrostatic organ and with rare exceptions contains or tends to contain the exact quantity of gas which is necessary to make the specific gravity of the whole fish equal to that of the water in which it is swimming, so that it can rest in mid-water tending neither to rise nor sink: this normal con- dition is called neutral buoyancy. Since gas is compressible and water is not, any increase of external or atmospheric pressure by acting through the non-rigid body walls will reduce the volume of gas in the swim bladder and cause the fish to sink in the water (condition of negative buoyancy). This condition can also be produced by aspirating some of the gas from the swim bladder or by attaching a small weight to the fish. When in a state of negative buoyancy produced by any of these treatments (provided that the interference has not been excessive), the fish will compensate (i.e. restore its neutral buoyancy) by introducing additional gas into its swim bladder. In fish with closed swim bladders (Physoclisti) it has long been known that this additional gas is mainly oxygen and is secreted into the swim bladder by organs known as red bodies or gas glands. Such organs are absent in many fishes whose swim bladders are furnished with ducts communicating with the exterior, and experiments which have been published on the method by which such fish compen- sate are inconclusive. Working with such Cyprinoids as Carp, Roach and Goldfish, which have a long pneumatic duct leading from the oesophagus to the posterior sac of the swim bladder, we find that when a condition of negative buoyancy is induced artificially they combat it by rising to the surface, taking air into the mouth and passing it thence to the swim bladder. If they are prevented from doing this an alternative remains, for we find that in spite of the absence of red bodies they can slowly secrete a gas rich in O2 into their swim bladders. The following experiments demonstrate these facts. When fish are observed in glass sided aquaria it is possible to judge with great exactness whether they are in neutral buoyancy and if not how far compensation has proceeded, provided that incautious movements or changes of illumination are not allowed to scare them into rapid excited swimming. Two small goldfish were placed in a corked glass bottle containing water (Fig. 1). The cork was pierced by a tube at which the experimenter sucked with his Physiology of the Swim Bladder in Cyprinoid Fishes 43 mouth till the reduction of atmospheric, pressure (by about 25 cm. Hg) was seen to cause the escape of a bubble or two of air from the swim bladder via the pneumatic duct and mouth. They were then quickly transferred to a glass aquarium (Fig. 2) where one was imprisoned under a bell-jar completely filled with water and so cut off from access to the surface while the other was left free to promenade and "take the air." The fish were much agitated and showed marked negative buoyancy, dropping "like stones" to the bottom at each temporary cessation of active swimming. After five minutes both were trying to reach the surface; the prisoner J) 1 Fig. 1. could only knock its head against the glass dome, but the free fish came to the sur- face and took gulps of air then dropping back to the bottom where it spat out a few bubbles, repeating the performance at short intervals. Some of the air remained inside for the negative buoyancy of this fish steadily diminished and had disappeared in ii hours. Meanwhile the prisoner retained its negative buoyancy, though after 24 hours it was thought to be somewhat less heavy than at the start; after 48 hours compensation had progressed further but the negative buoyancy was still so great that the fish rested on the bottom and fell there (though less heavily than at first) after each swimming effort had ceased. Air was now blown up under the bell-jar so as to form a large bubble at the top. 44 H. M. EVANS arid G. C, C. DAMANT The prisoner immediately swam up, gulped air in the same way as the free fish had done and, in less than two hours it had fully compensated and was resting com- fortably in mid-water (neutral buoyancy). In another type of experiment negative buoyancy was produced by puncturing the swim bladder and removing a certain quantity of gas. Roach were placed in a large tank in which there was a constant flow of water. A vertical wire netting par- tition divided the tank into two equal compartments one of which was provided with a wire netting cover resting about one inch below the surface of the water. The fish confined in this half are called non-access fish because they cannot reach the surface or gulp air while the fish in the other half are called free-access fish. Fig. 2. The puncture was made in all the experiments at a point 2 scales above the lateral line at a distance of 7 lateral line organs posterior to the head. This corresponds with the centre of the anterior sac. They were punctured with the needle, of a hypodermic syringe and approximately 2 c.c. of gas removed from the swim bladder of each. Eight of them were then placed in the free-access and seven in the non-access com- partment of the tank. All showed marked negative buoyancy. After two hours three of the free-access fish were partially compensated and were observed to be swimming on the surface at frequent intervals with \ inch of the head exposed; they gulped air and spat out froth. After seven hours all the free-access fish were poised freely in the tank and swam without effort in a condition of neutral buoyancy while the non-access fish were observed to be swimming up to the wire netting and then coming down tail firsts still showing marked negative buoyancy and resting hori- zontally on the bottom or at an acute angle with their tails touching it. After 24 hours three non-access and three free-access fish were killed and the Physiology of the Swim Bladder in Cyprinoid Fishes 45 gas from their swim bladders collected over water and carefully measured when it was found that each of the free-access fish contained more gas per gramme of body weight than did any of the non-access fish, the average difference being between 3 and 4 cc. in the case of 100 gm. fish. The subsequent history of the remaining fish was as follows. After 29 hours the four non-access fish were still in negative buoyancy and trying to reach the surface; at one moment all four were swimming upwards in an almost vertical attitude. The fish with free access naturally remained in neutral buoyancy. After 48 hours two of the four non-access fish appeared to be nearly, if not quite, compensated; all four could move more freely and no longer swam obliquely with the head pointing upwards. After 72 hours two were in neutral buoyancy but two still tended to rest on the bottom. After 112 hours all four had neutral buoyancy. Summing up, we see that of four fish without access to the surface two required between two and three days to compensate and two required more than four days, while all eight of those with access to the surface compensated within seven hours. Further experiments showed that the period of compensation in non-access fish is variable and may be much longer; we have cases in which neutral buoyancy was not attained till the 16th, 28th and even the 48th day. The following experiment was devised to study more closely the feeble and variable power of compensation which the foregoing had shown us was possessed by Cyprinoids prevented from gulping air. In it negative buoyancy was produced by a more natural method than aspiration and means were provided for measuring the progress of compensation with some accuracy. Three goldfish were confined in a large aspirating bottle supplied at its base with running water from a tap. After passing through the bottle the water escaped through a discharge pipe which could be raised or lowered so as to vary the hydrostatic pressure within the bottle between nine feet of water as a maximum and six inches which was the depth of the con- tainer. With no access to air {i.e. when the aspirating bottle was completely filled with water (Fig. 3, A) the fish under pressures of a few feet of water showed negative buoyancy and uneasiness with the usual signs of wanting to gulp air. After half an hour the discharge tube was lowered and the pressure reduced to normal, whereupon two of the fish started to float upwards with positive buoyancy showing that they had already partly compensated towards the increased pressure. By similar experiments it is found that compensation goes on slowly and in about six hours fish can compensate to five feet of water pressure, but in two experiments where the fish were left under a head of eight feet of water for 24 and 48 hours respectively they remained in negative buoyancy, though by lowering the pressure it was found that they had compensated to five feet but apparently could carry the process no further in the time.
Recommended publications
  • O2 Secretion in the Eye and Swimbladder of Fishes
    1641 The Journal of Experimental Biology 209, 1641-1652 Published by The Company of Biologists 2007 doi:10.1242/jeb.003319 Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes Michael Berenbrink School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK e-mail: [email protected] Accepted 12 March 2007 Summary The ability of some fishes to inflate their compressible value of haemoglobin. These changes predisposed teleost swimbladder with almost pure oxygen to maintain neutral fishes for the later evolution of swimbladder oxygen buoyancy, even against the high hydrostatic pressure secretion, which occurred at least four times independently several thousand metres below the water surface, has and can be associated with increased auditory sensitivity fascinated physiologists for more than 200·years. This and invasion of the deep sea in some groups. It is proposed review shows how evolutionary reconstruction of the that the increasing availability of molecular phylogenetic components of such a complex physiological system on a trees for evolutionary reconstructions may be as important phylogenetic tree can generate new and important insights for understanding physiological diversity in the post- into the origin of complex phenotypes that are difficult to genomic era as the increase of genomic sequence obtain with a purely mechanistic approach alone. Thus, it information in single model species. is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an Glossary available online at avascular, metabolically active retina. Evolution of this http://jeb.biologists.org/cgi/content/full/210/9/1641/DC1 system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of Key words: oxygen secretion, Root effect, rete mirabile, choroid, haemoglobin (the Root effect) and in the specific buffer swimbladder, phylogenetic reconstruction.
    [Show full text]
  • Notes on the Swim-Bladder Physiology of Cod (Gadus Morhua) Investigated from the Underwater Laboratory "Helgoland"
    Helgol~inder wiss. Meeresunters. 29, 460-463 (1977) Notes on the swim-bladder physiology of cod (Gadus morhua) investigated from the underwater laboratory "Helgoland" G. SUNDNES, B. GULLIKSEN ~X~ J. MORK Biological stasjon; Trondheim, Norway ABSTRACT: In situ sampling of gas from cod swim-bladders took place during a fortnight's saturation mission with the underwater laboratory "Helgoland" in May-June I975. These samples were compared to those done by the conventional method of transporting the fish to the surface for sampling. Based upon these in-situ measurements, the mean O2-concentration was 55.7 °/0 in buoyant cod at 15 m depth. Repeated sampling of the same fish showed a change in gas composition. Compared to the conventional method of transporting fish for sampling to the surface, in-situ sampling gave results with less variation, and indicated that surface-sampling does not give the correct gas composition of buoyant fish at depth of catch. INTRODUCTION Physiological investigations of fish swim-bladder have usually been performed near the surface, i.e. at about one atmosphere pressure. It means that fish were usually brought to the surface from their natural habitat of high water pressure to reduced pressure before experiments were performed and samples taken. Even in experiments with fish in pressure chambers, the gas samples of the swim-bladder were taken at one atmosphere pressure. Gas sampIes from fish at the depth of buoyancy have rarely been reported. The development of the underwater laboratory has given marine biologists a better opportunity to work under hydrostatic pressure whereby fish are kept under "natural" experimental conditions.
    [Show full text]
  • The Secretion of Oxygen Into the Swim-Bladder of Fish III
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory.
    [Show full text]
  • Worksheets and Post-Lab Activities for “Floating Fishes”
    Worksheets and post-lab activities for “Floating Fishes” Possible lesson outlines of this modular activity: This is the lesson as currently written. It begins with the physics of buoyancy before transitioning to fish biology and how it’s related to fisheries Activity Time required 1 Introduction and background 50 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min 4 Fishing expedition 50 min An alternative is to start with the fishing expedition in order to emphasize the ecological aspects. Activity Time required 1 Introduction and background 50 min 2 Fishing expedition 50 min 3 Boat Sinking Lab 50 min 4 Fish Buoyancy 50 min If an instructor is short on time and wishes to emphasize the interaction between biology and physics, they can omit the fisheries background. This could be completed within a 3-hr lab period. To save 50 minutes, one can also omit the boat sinking lab. Activity Time required 1 Introduction (omit information about overfishing) 30 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min Page 1 of 10 Worksheets and post-lab activities for “Floating Fishes” Sample Worksheet for Day 2: Boat Sinking Lab 1) Add marbles to your boat one by one. What is happening to your boat as you add more marbles?__Students will find that the marbles all roll to one side ______ How many marbles did it take to sink your boat? ______ answers will vary ______________ 2) Take out the marbles and add the first divider to your boat. Add one marble at a time to just one side of your boat.
    [Show full text]
  • Swim Bladder and Scales in Fishes
    Swim Bladder and Scales in fishes Zoology (Hons.) 2nd SEM DC3 Unit 5 Swim Bladder: The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ that contributes to the ability of many bony fish to control their buoyancy, and thus to stay at their current water depth without having to waste energy in swimming. The swim bladder functions as a resonating chamber, to produce or receive sound. The swim bladder is evolutionarily homologous to the lungs. Darwin reasoned that the lung in air-breathing vertebrates had derived from a more primitive swim bladder. The gas/tissue interface at the swim bladder produces a strong reflection of sound, which is used in sonar equipment to find fish. Depending on the presence of the duct (ductus pneumaticus) between the swim bladder and the oesophagus the swim bladder can be divided into 2 broad categories: 1) Physostomous and 2) Physoclistous type. Structure and function The swim bladder normally consists of two gas-filled sacs located in the dorsal portion of the fish, although in a few primitive species, there is only a single sac. It has flexible walls that contract or expand according to the ambient pressure. The walls of the bladder contain very few blood vessels and are lined with guanine crystals, which make them impermeable to gases. By adjusting the gas pressurising organ using the gas gland or oval window the fish can obtain neutral buoyancy and ascend and descend to a large range of depths. Due to the dorsal position it gives the fish lateral stability.
    [Show full text]
  • Shark Biology Buoyancy by Bill Andrake
    Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy - Based on Webisode 45 - Shark Biology Grade Level: 6-8 Time: Four (45-50 minute) class periods Introduction Science Standards Jonathan narrates an educational segment National Science Education Standards about the biology of sharks. They represent Physical Science: a very diverse group of animals from the • Motions and Forces plankton grazing Whale and Basking sharks Life Science: to some of the most formidable of predators in • Diversity and adaptations of organisms the sea, Great White and Tiger sharks. They are evolutionarily advanced animals and are Ocean Literacy Principles incredibly well adapted for their place in ocean • Principle #5: The ocean supports a great diversity ecosystems. of life and ecosystems. In this video, differences between sharks Objectives and their bony cousins are highlighted and celebrated. One such difference is in each group’s ability to control their vertical position • To understand buoyancy; why things float or sink. in the water. Bony fish have a swim bladder • For students to learn how fish are able to control that they can inflate and deflate to control their buoyancy. buoyancy. Sharks on the other hand must swim and control their depth with their fins. • To learn how sharks have evolved alternative It’s like the bony fish are hot air balloons with strategies for controlling their depth in the sea. a propulsion system and sharks are airplanes, moving forward to stay aloft. So how does buoyancy work? Why can bony fish control buoyancy and why do sharks lack this ability? This lesson looks at the science behind the principle of buoyancy.
    [Show full text]
  • Swim Bladder and Its Modifications Swim Bladder
    Swim Bladder and its modifications Swim Bladder Swim bladder also known as air bladder or gas bladder is a characteristic structure in most of the osteichthyes It situated between the alimentary canal and kidneys and sac like in appearance It contain air and develop as a small outgrowth from wall of the gut Structural Modification In primitive bony fish, Polypterus it is in the form of bilobed sac having smooth wall. The right lobe is larger than the left and the two are joined at the proximal ends before opening into the pharynx by an aperture (glottis) provided with muscular sphincter In Lepidosteus (Holostei) the bladder is single elongated sac which open into gut by glottis. The wall of sac is not smooth but shows alveoli arranged in two rows In Dipnoi, Neoceratodus, Protopterus and Lepidosiren the bladder resembles the lung of an amphibian. The wall of bladder is highly vascular and shows numerous alveoli that are further divided into the smaller sacculi. Their bladder is modified for aerial respiration Structural Modification in teleost Gas bladder is present in most teleost but it is absent in several order of fishes such as Pleuronectiformes, Echeneiformes, Giganturiformes, Saccopharyngiformes, Pegasifformes and Symbranchiformes Teleost species in which bladder is present , it may be oval, tubular fusiform, heart shaped, horse-shoe shaped or dumb bell shaped In Cyprinidae (Labeo, Cirrhinus, Catla) the air bladder is divided into two inter connecting chambers In several sound producing fishes, the air bladder has finger like caecal outgrouth. In Gadus a pair of such caeca extend into the head region of the fish.
    [Show full text]
  • Teleost Fishes (The Teleostei)
    OEB 130: BIOLOGY OF FISHES Lecture 4: Overview of ray-finned fish diversity (Actinopterygii) Announcements 1 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) Please be on time at 2pm! 4. Lab sections done: first lab this week tomorrow! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours to come Announcements 2 8 pages of general information on fish external anatomy and characters to help you learn some basic external fish anatomy and terminology – the last slides in the uploaded lecture Powerpoint file for today. Please look at these before lab this week, but no need to bring them in with you. Scanned from: Hastings, P. A., Walker, H. J. and Galland, G. R. (2014). Fishes: A guide to their diversity: Univ. of California Press. Next Monday: prepare to draw/diagram in lecture (colored pencils/pens will be useful) Lecture outline Lecture outline: 1. Brief review of the phylogeny and key traits so far 2. Actinopterygian clade: overview and introduction to key groups and selected key traits 3. Special focus on: 1. Fin ray structure and function 2. Lung and swimblader evolution 3. Early diversity of teleost fishes Selected key shared derived characters (synapomorphies) Review from last lecture Chondrichthyes (sharks and rays and ratfishes): 1. Dentition: multiple rows of unattached teeth 2.
    [Show full text]
  • Associated Microbiota in Rainbow Trout (Oncorhynchus Mykiss)
    www.nature.com/scientificreports OPEN In-depth analysis of swim bladder- associated microbiota in rainbow trout (Oncorhynchus mykiss) Received: 30 May 2018 Alejandro Villasante1, Carolina Ramírez1, Héctor Rodríguez2, Natalia Catalán1, Osmán Díaz1, Accepted: 23 May 2019 Rodrigo Rojas3, Rafael Opazo1 & Jaime Romero 1 Published: xx xx xxxx Our knowledge regarding microbiota associated with the swim bladder of physostomous, fsh with the swim bladder connected to the esophagus via the pneumatic duct, remains largely unknown. The goal of this study was to conduct the frst in-depth characterization of the swim bladder-associated microbiota using high-throughput sequencing of the V4 region of the 16 S rRNA gene in rainbow trout (Oncorhynchus mykiss). We observed major diferences in bacterial communities composition between swim bladder-associated microbiota and distal intestine digesta microbiota in fsh. Whilst bacteria genera, such as Cohnella, Lactococcus and Mycoplasma were more abundant in swim bladder- associated microbiota, Citrobacter, Rhodobacter and Clavibacter were more abundant in distal intestine digesta microbiota. The presumptive metabolic function analysis (PICRUSt) revealed several metabolic pathways to be more abundant in the swim bladder-associated microbiota, including metabolism of carbohydrates, nucleotides and lipoic acid as well as oxidative phosphorylation, cell growth, translation, replication and repair. Distal intestine digesta microbiota showed greater abundance of nitrogen metabolism, amino acid metabolism, biosynthesis of unsaturated fatty acids and bacterial secretion system. We demonstrated swim bladder harbors a unique microbiota, which composition and metabolic function difer from microbiota associated with the gut in fsh. In teleost species, the swim bladder is a unique gas-flled organ crucial for regulation of buoyancy, equilibrium and position of fsh in the water column by modulating whole-body density1,2.
    [Show full text]
  • Swim Bladder
    SWIM BLADDER Swim bladder is an endodermal outgrowth from the oesophagus, shortly behind the pharynx. It resembles a lung in structure and function in some primitive fishes. However, it is not called a lung because in most of the cases, its primary roll is not respiratory. A swim bladder may be single or double. It may open into the oesophagus, dorsally or ventrally or not at all. It may be very small or quite large, extending through the entire length of the coelom. It often lies above the gut, directly beneath the vertebral column. It is retroperitoneal, i.e., the peritoneum is present only on the ventral side. The swim bladder generally opens by a pneumatic duct into the oesophagus through an aperture called glottis. The fishes with such an open swim bladder are described as physostomous. In fishes where the swim bladder is closed, they are described as physoclistous. Comparative Anatomy of Swim Bladder 1. Placoderms (now extinct): In placoderms, e.g., in Bothriolepis, the posterior pair of pharyngeal pouches extended ventrally and probably functioned as pneumatic organs. These pouches thus represent the swim bladders or primitive lungs. 2. Chondrichthyes (cartilaginous fishes): Swim bladder is lacking in all chondrichthyes. It probably disappeared early during evolution. A temporary rudiment is however formed during development in many species. 3. Latimeria (living fossil with bony Skelton) : In Latimeria, the swim bladder is a small tube, just 5-7.5 cm long. It extends as a filament upto the end of the coelom. It is connected to the underside of the oesophagus. It is a vestigial organ.
    [Show full text]
  • Fish Friendly Practices for Recreational Angling
    Fish Friendly Angling Techniques: The Use and Benefits of Circle Hooks FISH FRIENDLY PRACTICES FOR How does a circle hook differ What species can a What is a circle hook? from a traditional hook? circle hook catch? RECREATIONAL ANGLING A circle hook is a type of fish hook A circle hook is designed to have Circle hooks can catch almost all which is sharply curved back in a a point turned sharply in toward species of fish. (They work best when circular shape. It has become widely the shank to form an oval shape. Its used with either live bait (croaker, popular among anglers in recent unique shape prevents the hook from minnow, or shrimp) or dead bait (cut years because it hooks a much higher catching the gut cavity or throat and crab or baitfish). percentage of fish and is rarely typically embeds itself in the jaw or swallowed. corner of the fish’s mouth. What are the best Why use circle hooks? fishing methods when using How do I use a circle hook? circle hooks? Many undersized or out of season With a few exceptions, use traditional When using a circle hook, there is only fish do not survive after their release saltwater fishing methods when one thing to remember: Do not set the because of poor handling practices. fishing with circle hooks. Circle hooks hook! A fish will set the hook when it Research shows that circle hooks are widely used by recreational anglers grabs the bait; then, apply pressure increase the survival rate of released when fishing with live bait, dead bait, by reeling.
    [Show full text]
  • Swim Bladder and Posterior Lateral Line Nerve of the Nurseryfish
    JOURNAL OF MORPHOLOGY 260:193–200 (2004) Swim Bladder and Posterior Lateral Line Nerve of the Nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae) Kent E. Carpenter,1* Tim M. Berra,2 and Julian M. Humphries Jr.3 1Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529-0266 2Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Mansfield, Ohio 44906 3Department of Geological Sciences, The University of Texas at Austin, Austin, Texas 78712 ABSTRACT The morphology of the swim bladder and and the inner ear as hearing “specialists.” They sug- inner ear of the nurseryfish, Kurtus gulliveri, appear gest that even without mechanical coupling the adapted for enhanced pressure wave reception. The sac- swim bladder can enhance hearing for “nonspecial- cule is enlarged and surrounded by very thin bone and two ists.” Yan et al. (2000), however, found no experi- large fontanelles that would present reduced resistance to mental evidence for enhanced hearing in nonspecial- pressure waves. The swim bladder is elaborate, with six ist fishes and suggested that the swim bladder may dorsolaterally projecting pairs of lobes that are tightly encased in ribs and an additional caudally projecting pair not serve as an accessory auditory organ in teleosts of lobes encased in the first hemal spine. The ribs and that lack mechanical coupling with the inner ear. musculature surrounding the swim bladder laterally are Hearing specializations help define several major very thin, so that four or five “rib windows” are readily teleostean lineages and are also found indepen- apparent on back-lit specimens. This swim bladder–rib dently in widely divergent taxonomic groups.
    [Show full text]