PNPI Scientific Highlights 2014

Total Page:16

File Type:pdf, Size:1020Kb

PNPI Scientific Highlights 2014 Scientific editors: Redactors: Victor L. Aksenov Alena M. Arkhipova Svetlana V. Sarantseva Elena Yu. Orobets Maria A. Kamenskaya Editors: Tatiana S. Zharova (translation) Vladimir V. Voronin Victor Т. Kim Technical editing and design: Andrey L. Konevega Tatiana A. Parfeeva Geliy F. Mikheev Victor Yu. Petrov Layout composition: Victor V. Sarantsev Kristina D. Kashkovskaya Sergey R. Friedmann Anastasiya B. Kudryavtseva Gleb V. Frolov Yury P. Chernenkov Publisher: Petersburg Nuclear Physics Institute NRC “Kurchatov Institute” Publishing Office Orlova Roscha, Gatchina, Leningrad District, Russian Federation PNPI Scientific Highlights 2014 (164 pages) contains a number of short overview reports of the main research results of PNPI NRC “Kurchatov Institute” achieved in 2014. The links for the leading Russian and foreign scientific journals containing the full versions of each paper are listed below each article. Printed on Konica Minolta bizhub PRO C1060L ISBN 978-5-86763-366-0 Copyright © 2015 PNPI NRC “Kurchatov Institute” Table of contents 5 Preface 9 Research Divisions 25 Theoretical and Mathematical Physics 43 Research Вased on the Use of Neutrons, Synchrotron Radiation and Muons 59 Research Based on the Use of Protons and Ions. Neutrino Physics 77 Molecular and Radiation Biophysics Nuclear Medicine (Isotope Production, Beam Therapy, 95 Nano- and Biotechnologies for Medical Purposes) 103 Nuclear Reactor and Accelerator Physics 119 Applied Research and Developments 129 Basic Installations 149 Management and Research PNPI Scientific Highlights 2014 5 Preface B.P. Konstantinov Petersburg Nuclear Physics There are five research divisions sharing a common Institute of National Research Centre “Kurchatov infrastructure at PNPI: Institute” (PNPI) is a multidisciplinary research centre. – Theoretical Physics Division; It leads fundamental and applied research in fields – Neutron Research Division; of particle and high energy physics, nuclear physics, – High Energy Physics Division; condensed matter physics, molecular and radiation – Molecular and Radiation Biophysics Division; biophysics. – Knowledge Transfer Division. Scientific works of PNPI researchers have been PNPI, as well as other NRC “Kurchatov Institute” awarded with Lenin and State Prizes, National Awards institutes, takes an active part in various international of the Russian Federation Government, Academic Pri- projects and collaborates actively within its main zes. Since the establishment of the Institute, three PNPI research areas with largest international research employees were elected as full members and seven centres: as corresponding members of the Russian Academy – The European Organization for Nuclear Research of Sciences. PNPI currently employs 1 912 employees, (CERN, Switzerland); including 511 researchers, 76 full Doctors of Science – The European Centre for Neutron Science, and 263 first degree Doctors of Science (Candidates The Institute Laue–Langevin (ILL, France); of Science). At the moment, one of its employees is – DESY Research Centre (Germany); a full member and two are corresponding members of – Paul Scherrer Institute (PSI, Switzerland); the Russian Academy of Sciences. – Joint Institute for Nuclear Research (JINR, In 2010, upon the initiative of Mikhail V. Kovalchuk, Russia) PNPI joined actions with several research institutions and others. participating in the pilot project on creation of the PNPI possesses two main operating installations: National Research Centre “Kurchatov Institute” (Joint WWR-M research reactor (first criticality reached Research Programme). In September 2011, control over in December 1959, power start-up in the end of 1961), PNPI transited from the Russian Academy of Sciences and 1 GeV proton synchrocyclotron (power start-up to National Research Centre “Kurchatov Institute”. in 1970). In the framework of the Joint Research Programme, Works on project development of a new reac- PNPI carries out research in the following areas: tor – the PIK reactor – have been launched in 1969. – Fundamental and applied research carried The construction started in 1976. After the Chernobyl out with the use of neutrons (this area of research is nuclear accident, the reactor project was subject coordinated by PNPI); to a detailed revision and was to be modified with – Theoretical and mathematical physics; regard to the new safety standards until 1991. The – Fundamental interdisciplinary research in nano- construction was resumed but the funds were not and biosciences based on X-ray, synchrotron and allocated regularly, interruptions took place and neutron radiation; the construction schedules were broken frequently. – Fundamental and applied research carried out Nevertheless, thanks to the hard work of PNPI with the use of protons and ions; neutrino physics; employees led by PNPI directors, academician – Nuclear reactor and accelerator physics; Vladimir A. Nazarenko (1934–2006) from 1994 to 2006 – Nuclear medicine (isotope production, beam and professor Vladimir M. Samsonov from 2006 to therapy, nano- and biotechnologies for medical 2012, the PIK reactor complex had survived, but the purposes). prospects of the project completion were clouded. 6 Research Divisions The situation changed dramatically after the tran- in order to comply with increased safety require- sition of control over PNPI from the Russian Academy ments for nuclear installations; and preparation of Sciences to National Research Centre “Kurchatov of the complex for exploitation. As a result, Institute”. PNPI funding was stabilized through the the power start-up of the reactor should take place provision of regular funds from the government in 2018 followed by it being put into operation with of the Russian Federation allocated for the reactor 12 operation experiential stations in 2019. Two stations facility construction and doubled by the programme of will be transferred from the WWR-M reactor, seven joined actions of institutions participating in the pilot stations were provided by Helmholtz Research Centre project on creation of the National Research Centre Geesthacht, Germany, in 2012 and now are in the “Kurchatov Institute”. The construction of the second stage of adjustment and adaptation. Three stations and the third PIK reactor start-up complexes was will be transferred from the European Centre for completed in December 2013. Works on adjustment, Neutron Science, Institut Laue–Langevin (ILL, Gre- testing and accreditation of systems in accordance noble, France). The latter stations belong to PNPI NRC with atomic energy use standards will begin in 2015, “Kurchatov Institute” and currently are being used to as well as processing of a clearance for different conduct experiments at the ILL reactor. stages of reactor power start-up and its launch into Furthermore, the project on equipping the PIK operation. reactor complex with advanced research experimental In November 2014, the RF State Expert Evaluation stations started to be developed in 2014. 11 working Department has approved two projects on moder- groups consisting of NRC “Kurchatov Institute” nization and reconstruction of engineering sys- employees and our colleagues from research tems planned to be put into operation in 2014–2019. centres of Russia and Europe were established in Within these projects, following actions are to be the framework of this project. More than 50 scientists conducted: construction of a facility for isotope took part in the conceptualization work. The topic purification of heavy-water in the reflector, which of concept formation was discussed at 12 national is essential for the PIK reactor start-up; upgrading and international workshops. In accordance with of constructed facilities, technological systems and the general concept, working groups have provided engineering infrastructure of the PIK reactor complex conceptual and engineering recommendations PNPI Scientific Highlights 2014 7 essential for the project work implementation, The International Advisory Committee on Photon construction and creation of 20 experimental stations and Neutron Research of NRC “Kurchatov Institute” within the framework of investment project “Creation will act as an international expert council, co-chaired of the PIK reactor instrumentation”. by Professor H. Dosh (DESY, Germany), and the The International Centre for Neutron Research corresponding member of the Russian Academy (ICNR) is planned to be established on basis of of Sciences Mikhail V. Kovalchuk (NRC “Kurchatov the PIK reactor facility. Germany is PNPI strategic Institute”). Professor S. Shmidt (FZ Jülich, Germany) partner in establishment of ICNR. An agreement with was elected to be the Chairman of the Subcommittee Forschungszentrum Juelich, the research centre that on Neutron Sciences. The first meeting of the Sub- coordinates the involvement of German research committee on Neutron Sciences is planned to be held centres in ICNR establishment in Gatchina, was signed in the beginning of March 2015. in 2014. The PIK reactor, as well as the ILL reactor and Joint meeting of PNPI NRC “Kurchatov Institute” the ESS neutron spallation source being constructed and “NIIEFA” JSC (“D.V. Efremov Institute of Electro- at the moment in Sweden, is included as a research physical Apparatus” JSC) top management was base in Strategic Plans for Development of Neutron held on December 23rd, 2014. The head of the PNPI Sciences in Europe. The PIK reactor research and Accelerator Department, Evgeny M. Ivanov, announced instrumentation programmes are being built in that
Recommended publications
  • Physique Nucléaire Et De L'instrumentation Associée Introduction
    FR0108546 # DEA-DAPNIA-RA-1997-98 A il. ..33/04 -DSM Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée Introduction Motivés par la curiosité pour les connaissances fondamentales et soutenus par des investissements impor- tants, les chercheurs du vingtième siècle ont fait des découvertes scientifiques considérables, sources de retombées économiques fructueuses. Une recherche ambitieuse doit se poursuivre. Organisé pour déve- lopper les grands programmes pour le nucléaire et par le nucléaire, le CEA est bien armé pour concevoir et mettre au point les instruments destinés à explorer, en coopération avec les autres organismes de recherche, les confins de l'infiniment petit et ceux de l'infinimenf grand. La recherche fondamentale évolue et par essence ne doit pas avoir de frontières. Le Département d'astrophysique, de physique des particules, de physique nucléaire et de l'instrumentation associée (Dapnia) a été créé pour abolir les cloisons entre la physique nucléaire, la physique des particules et l'as- trophysique, tout en resserrant les liens entre physiciens, ingénieurs et techniciens au sein de la Direction des sciences de la matière (DSM). Le Dapnia est unique par sa pluridisciplinarité. Ce regroupement a permis de lancer des expériences se situant aux frontières de ces disciplines tout en favorisant de nou- velles orientations et les choix vers les programmes les plus prometteurs. Tout en bénéficiant de l'expertise d'autres départements du CEA, la recherche au Dapnia se fait princi- palement au sein de collaborations nationales et internationales. Les équipes du Dapnia, de I'IN2P3 (Institut national de physique nucléaire et de physique des particules) et de l'Insu (Institut national des sciences de l'Univers) se retrouvent dans de nombreuses grandes collaborations internationales, chacun apportant ses compétences spécifiques afin de renforcer l'impact de nos contributions.
    [Show full text]
  • Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner
    Henning H¨unteler Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner — 2007 — Kernphysik Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner Diplomarbeit von Henning H¨unteler Westf¨alische Wilhelms-Universit¨at M¨unster Institut f¨ur Kernphysik — Februar 2007 — Contents 1 Introduction 7 2 Positron Emission Tomography 9 2.1 The β-Decay ............................... 10 2.1.1 Different Types of Radioactive Decay . 10 2.1.2 Different Types of β-Decays ................... 11 2.1.3 The β-Spectrum ......................... 13 2.2 Tracer ................................... 16 2.3 Mean Range and Annihilation of Positrons in Matter . .... 18 2.3.1 PositronRangeinMatter . 18 2.3.2 PositronAnnihilation. 22 2.4 Interactions ofGammaRadiationinMatter . .. 23 2.4.1 PhotoelectricEffect. 23 2.4.2 ComptonEffect.......................... 25 3 Multiwire Proportional Chambers 33 3.1 BasicsonProportionalCounters. 35 3.1.1 ProportionalCountersTubes . 35 3.1.2 GasAmplification. 36 3.1.3 FillGases ............................. 39 3.2 MultiwireProportionalChambers . 43 3.2.1 Geometry of Multiwire Proportional Chambers . 43 3.2.2 ReadoutMethods. .. .. 46 3 4 Contents 4 Motivation for an MWPC Small Animal PET 51 4.1 Reasons for the Construction of a Small Animal PET Detector.... 51 4.2 Motivation for the Development of an MWPC-based PET Detector . 54 4.2.1 Advantages of Scintillation Crystals . .. 54 4.2.2 Advantages of Multiwire Proportional Chambers . ... 55 4.2.3 Conclusions ............................ 56 5 Determination of the Optimal Converter Thickness 57 5.1 Theoretical Determination of the Optimal Converter Thickness . 58 5.2 Experimental Determination of the Optimal Converter Thickness .
    [Show full text]
  • Particle Detectors
    Particle Detectors Summer Student Lectures 2007 Werner Riegler, CERN, [email protected] History of Instrumentation ↔ History of Particle Physics The ‘Real’ World of Particles Interaction of Particles with Matter, Tracking detectors Photon Detection, Calorimeters, Particle Identification Detector Systems W. Riegler/CERN 1 Detectors based on Ionization Gas Detectors: • Transport of Electrons and Ions in Gases • Wire Chambers • Drift Chambers • Time Projection Chambers Solid State Detectors • Transport of Electrons and Holes in Solids • Si- Detectors • Diamond Detectors W. Riegler/CERN Gas Detectors 2 Gas Detectors with internal Electron Multiplication • Principle: At sufficiently high electric fields (100kV/cm) the electrons gain energy in excess of the ionization energy secondary ionzation etc. etc. • Elektron Multiplication: – dN = N α dx α…’first Townsend Coefficient’ – N(x) = N0 exp (αx) α= α(E), N/ N0 = A (Amplification, Gas Gain) – N(x)=N0 exp ( (E)dE ) – In addition the gas atoms are excited emmission of UV photons can ionize themselves photoelectrons – NAγ photoeletrons → NA2 γ electrons → NA2 γ2 photoelectrons → NA3 γ2 electrons – For finite gas gain: γ < A-1, γ … ‘second Townsend coefficient’ W. Riegler/CERN Gas Detectors 3 Wire Chamber: Electron Avalanche Wire with radius (10-25m) in a tube of radius b (1-3cm): Electric field close to a thin wire (100-300kV/cm). E.g. V0=1000V, a=10m, b=10mm, E(a)=150kV/cm Electric field is sufficient to accelerate electrons to energies which are sufficient to produce secondary ionization electron avalanche signal. b a b Wire W. Riegler/CERN Gas Detectors 4 Gas Detectors with internal Electron Multiplication From L.
    [Show full text]
  • Design and Construction of the Spirit Tpc
    DESIGN AND CONSTRUCTION OF THE SPIRIT TPC By Suwat Tangwancharoen A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Physics-Doctor of Philosophy 2016 ABSTRACT DESIGN AND CONSTRUCTION OF THE SPIRIT TPC By Suwat Tangwancharoen The nuclear symmetry energy, the density dependent term of the nuclear equation of state (EOS), governs important properties of neutron stars and dense nuclear matter. At present, it is largely unconstrained in the supra-saturation density region. This dissertation concerns the design and construction of the SπRIT Time Projection Chamber (SπRIT TPC) at Michigan State University as part of an international collaborations to constrain the symmetry energy at supra-saturation density. The SπRIT TPC has been constructed during the dissertation and transported to Radioactive Isotope Beam Factory (RIBF) at RIKEN, Japan where it will be used in conjunction with the SAMURAI Spectrometer. The detector will measure yield ratios for pions and other light charged particles produced in central collisions of neutron-rich heavy ions such as 132Sn + 124Sn. The dissertation describes the design and solutions to the problem presented by the measurement. This also compares some of the initial fast measurement of the TPC to calculation of the performance characteristics. ACKNOWLEDGMENTS The design and construction of the SAMURAI Pion-Reconstruction and Ion Tracker Time Projection Chamber (SπRIT TPC) involved an international collaboration to study and constrain the symmetry energy term in the nuclear equation of state (EOS) at twice supra- saturation density. The TPC design and construction as well as many additional aspects of the project were supported financially by the U.S.
    [Show full text]
  • A Liquid-Filled Proportional Counter
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title A LIQUID-FILLED PROPORTIONAL COUNTER Permalink https://escholarship.org/uc/item/4ks063nh Author Muller, Richard A. Publication Date 2008-12-02 eScholarship.org Powered by the California Digital Library University of California UCRL-208'11 Preprint Q. ~ ~ROPOR,TIONAL'~OOUNTER .'!.- A UQUID-FILLElJ TWO-WEEK LOAN COpy This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Diuision, Ext. 5545 c:: Q ~ H L ! N ~ LAWRENCE RADIATION LABOR1\TORY ,.,. UNIVERSITrT of CALIFORNIA Bf~I{KELI~Y P -1- UCRL-20811 ~~ A UQUID-FILLED PROPORTIONAL COUNTER Richard A. Muller University of California Space Sciences Laboratory Berkeley, California 94720 and Stephen E. Derenzo, Gerard Smadja, Dennis B. Smith, Robert G. Smits, Haim Zaklad, and Luis W. Alvarez " Lawrence Radiation Laboratory, Univer sity of California Berkeley, California 94720 June 1971 We report properties of single-wire proportional chambers and multiple-wire ionization chamber s filled with liquid xenon. 6 Proportional multiplication is seen for anode fields > 10 volts/ cm (anode-cathode voltage> 1 kV for a 3.5-fl.-diam anode wire). The efficiency for detecting ionizing radiation is ::::: 1000/0. The 7 time resolution of the chambers is ±10- sec. We attained a spatial re solution of ± 15 fl. with a multiwire ionization chamber, considerably better than that of any other real-time particle detector. Conventional spark chambersand multiwire proportional counter s are unable to achieve a spatial resolution much better than ±200 fl.. This limit appear s to be caused by a combination of electron diffusion (::::: 500 fl.
    [Show full text]
  • MULTIWIRE GASEOUS DETECTORS: Basics and State-Of-The-Art 1
    MULTIWIRE GASEOUS DETECTORS: Basics and State-of-the-art 1 Archana SHARMA2 Department of Physics, University of Maryland, College Park, MD 20742, USA Contents I Introduction and Historical Overview II Single Wire Proportional Chamber (SWPC) Principle of Operation Primary and Total ionization Modes of Operation Energy Resolution and Escape Peak III Multiwire Proportional Chambers (MWPC) Principle of Operation Angular distribution of the avalanche and charge induction Performance of a position sensitive MWPC Read-out techniques Simple Derivatives of MWPCs IV Drift and Diffusion of electrons 31/05/2000 No Magnetic Field With Magnetic Field open-2000-131 V Large Volume Tracking Drift Chamber and derivatives Time Projection Chamber Effects of pollutants and contaminants on operation Pad Response Function Gating Gas Detector Aging VI Limitations and Future Perspectives of Wire Chambers 1 Based on Lectures given at the ICFA School on Instrumentation in High Energy Physics, Istanbul, Turkey, June 28-July 10 1999 and IIIrd SERC School on EHEP, BARC, Mumbai, India, Feb 1-15, 2000 2 Presently at CERN, Geneva Switzerland, Mailing Address CERN, CH 1211, Geneva Switzerland, e-mail [email protected] 1 2 I Introduction and Historical Overview The subject of gaseous detectors for detecting ionizing radiation has always been a fascinating one since the last several decades. Radiation is a far-reaching tool to study the fine structure of matter and the forces between elementary particles. Instruments to detect radiation find their applications in several fields of research. To investigate matter, three types of radiation are available: photons, neutrons and charged particles. Each of them has its own way to interact with material, and with the sensitive volume of the detector.
    [Show full text]
  • Beam and Detectors
    Beam and detectors Beamline for Schools 2020 Note If you have participated in BL4S in the past, you may have read earlier versions of this document. Please note that in 2020 the BL4S experiments will take place at DESY, Hamburg, Germany. The conditions of the beam are different between the two facilities and are different from what CERN was offering until 2018. Please read this document carefully to understand if your experiment is feasible under the new conditions. Preface All the big discoveries in science have started by curious minds asking simple ques- tions: How? Why? This is how you should start. Then you should investigate with the help of this document whether your question could be answered with the available equipment (or with material that you can provide) and the particle beams of Beamline for Schools at DESY. As your proposal takes shape, you will be learning a lot about particle physics, detectors, data acquisition, data analysis, statistics and much more. You will not be alone during this journey: there is a list of volunteer physicists who are happy to interact with you and to provide you with additional information and advice. Remember: It is not necessary to propose a very ambitious experiment to succeed in the Beamline for Schools competition. We are looking for exciting and original ideas! 2 Contents Introduction4 The Beamline for Schools...........................4 Typical equipment................................4 Trigger and readout...............................5 The Beam Lines6 General.....................................6 Bending magnets.............................6 Collimator.................................6 DESY II Test Beam Facility...........................7 Beam generation.............................7 Beam composition.............................7 The DESY test beam areas........................9 The BL4S detectors 10 Scintillation counter..............................
    [Show full text]
  • Particle Detectors
    C4: Particle Physics Major Option Particle Detectors Author: William Frass Lecturer: Dr. Roman Walczak Michaelmas 2009 1 Contents 1 Introduction 4 1.1 The aims of particle detectors..................................4 1.2 Momentum determination....................................4 1.3 Energy determination......................................5 1.4 Spatial resolution.........................................5 1.5 Temporal resolution.......................................5 1.6 Typical spatial and temporal resolutions for common detectors...............5 2 Gaseous ionisation detectors6 2.1 Principle of operation......................................6 2.2 Applied detector voltage.....................................7 2.3 Detectors working in the ionisation region: ionisation chambers...............8 2.4 Detectors working in the proportional region.........................9 2.4.1 Proportional chambers..................................9 2.4.2 Multi-wire proportional chambers (MWPCs)..................... 11 2.4.3 Drift chambers...................................... 11 2.4.4 Time projection chambers (TPCs)........................... 13 2.4.5 Brief history of improvements to the proportional chamber............. 14 2.5 Detectors working in the Geiger-M¨ullerregion......................... 14 2.5.1 Geiger-M¨ullertubes................................... 14 2.5.2 Multi-wire chambers (MWCs).............................. 14 2.6 Detectors working in the continuous discharge region: spark chambers........... 15 3 Solid state detectors 16 3.1 Silicon semiconductor
    [Show full text]
  • Vvirechamber
    AT9900102 VViRECHAMBER |lnstitute for High Energy Physics of the Austrian Academy of Sciences February 23-27,1998 30-29 PATRONAGE The Federal Minister of Science and Transport The President of the Austrian Academy of Sciences The Rector of the University of Technology, Vienna The Rector of the University of Vienna The European Physical Society OPENING The President of the Austrian Council of Rectors P. Skalicky INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE J.E. Augustin, A. Breskin, G. Charpak, S. Denisov, G. Feofiiov, G. Fliigge, H.J. Hilke, S. Iwata, A. Menzione, J. Vavra ORGANIZING COMMITTEE W. Bartl, M. Krammer, G. Neuhofer, M. Regler, A. Taurok U. Kwapil (Secretary) Institute for High Energy Physics of the Austrian Academy of Sciences SPONSORS Bundesministerium fiir Wissenschaft und Verkehr The European Commission KongreBbiiro des Wiener Tourismusverbandes Technische Universitat Wien COMMERCIAL SPONSORS AUSTRIAN AIRLINES Bank Austria AG Cambridge University Press, Cambridge - United Kingdom Creditanstalt AG HAMAMATSU Photonics GmbH, Herrsching - Germany HECUS M. BRAUN GmbH, Graz - Austria Dr. B. STRUCK, Tangstedt (Hamburg) - Germany WIENER, Plein & Baus GmbH, C.A.E.N. S.p.A., Burscheid - Germany TABLE OF CONTENTS PROGRAMME OVERVIEW (opening, talks, poster sessions, lunch and coffee breaks, social events) INFORMATION V (accommodation, booking office, lunch, mail, money exchange) PROCEEDINGS VII (information for authors) RECEPTION Vm (offered by the Mayor of Vienna) CONCERT K CONFERENCE DINNER "HEURIGER" X (typical Austrian wine-tasting evening) ABSTRACTS Short talks 1 Poster session A 53 Poster session B 77 LIST OF AUTHORS 101 LIST OF PARTICIPANTS 111 TECHNICAL CONTRIBUTIONS 116 PROGRAMME OVERVIEW MONDAY, 23 February 14.15 h OPENING Rector Magnificus P.
    [Show full text]
  • Liquid-Xenon-Filled Wire Chambers
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title LIQUID-XENON-FILLED WIRE CHAMBERS Permalink https://escholarship.org/uc/item/9765w096 Authors Derenzo, S.E. Flagg, R. Louie, S.G. et al. Publication Date 2008-06-27 eScholarship.org Powered by the California Digital Library University of California Presented at the XVI Inter-Confere"'''' LBL-1321 :'Energy Physics, Univ. of Chicago, _~ i .... i September 6, 1972 RECEIVED LAWRENCE R.40!ATION· lA80RATORY r' ?'~ ,,,,",., J """- >\:;'I utlJJ ! ( LiBRARY AND DOCUMENTS SECTtON I ..J1QUID-XENON-FILLED WIRE CHAMBERS ,~ '. -".,:,:',.:,';--'-',,' S. E.Deren~o;R. Flagg,S.G.Louie, iF. G. Mariam, T. S. Mast A.J. Schw-emin;'R,c. G~SI'Uits, H. Zaklad, L. W. Alvarez, and R. A. Muller .t " September 1972 ") 'J For Reference Not to be taken from this room ".) for the U. S. Atomic Energy '1 6mmission under Contract W -7405 -ENG-48 -1- -2 - LIQUlD-XENON-FILLED WIRE CHAMBERS':' Single-Wire ChaITlbers S. E. Derenzo, R. Flagg, S. G. Louie, F. G Mariam, t We have been operating liquid xenon-filled single-wire propor­ T. S. Mast, A. J. Schwemin, R. G. Smits, H. Zaklad, and L. W. Alvarez tional chambers for two years. (2,3) Figure 1 shows our single-wire Lawrence Berkeley Laboratory University of California chaITlber design, and Fig. 2 shows the pulse height of the 279-keV Berkeley, California 94720 photopeak as a function of operating voltage for 2.9-, 3.5-, and 5.0-tJ. and anode wires. The chamber counts well and the pulse-height curves R. A. Muller are reproducible to ± 100/0 every time the chamber is filled.
    [Show full text]
  • Title Development of Advanced Compton Imaging Camera with Gaseous Electron Tracker and First Flight of Sub-Mev Gamma-Ray Imaging
    Development of advanced Compton imaging camera with Title gaseous electron tracker and first flight of sub-MeV gamma-ray imaging loaded-on-balloon experiment( Dissertation_全文 ) Author(s) Takada, Atsushi Citation 京都大学 Issue Date 2007-07-23 URL https://doi.org/10.14989/doctor.k13323 Right Type Thesis or Dissertation Textversion author Kyoto University \fifiil IM 1474 Development of Advanced Compton Imaging Camera with Gaseous Electron Tracker and First Flight of Sub-MeV Gamma-Ray Imaging Loaded-on-Balloon Experiment Atsushi Takada Development of Advanced Compton Imaging Camera with Gaseous Electron Tracker and First Flight of Sub-MeV Gamma-Ray Imaging Loaded-on-Balloon Experiment Atsushi Takada Department of Physics, Faculty of Science, Kyoto University Kitashirakawa 0iwake-cho, Sakyo-kze, Kyoto, 606-8502, Japan [email protected] This thesis was submitted to the Department of Physics, Graduate School of Science, Kyoto University on May 8, 2007 in partial fulfillment of the requirements for the degTee of Doctor of Philosophy in physics. Abstract For a MeV gamma-ray telescope in the next generation , we developed an Electron [I]racking Compton Camera, which consists of a tracker and an absorber. The camera obtains the energy and the direction of both the scattered gamma-ray and the recoil electron, and determines both the energy and the direction of the incident gamma-ray, photon by photon. Also this camera rejects the backgrounds using the kinematics of Compton scattering. We use a pa-TPC as the tracker and the GSO:Ce pixel scintillator arrays as the absorbers. A pa-TPC is a gaseous time projection chamber, which has a high gas gain of 2 Å~ 104 and a good position resolution of nw 500 pam.
    [Show full text]
  • Summary and Outlook of the International Workshop on Aging
    1 Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001) M. Titov∗ , M. Hohlmann, C. Padilla, N. Tesch Abstract High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors. I. Introduction Aging effects in proportional wire chambers, a permanent degradation of operating characteristics under sustained irradiation, has been and still remains the main limitation to their use in high-rate experiments [1]. Although the basic phenomenology of the aging process has been described in an impressive variety of experimental data, it is nevertheless difficult to understand any present aging measurement at a microscopic level and/or to extrapolate it to other operating conditions.
    [Show full text]