Physique Nucléaire Et De L'instrumentation Associée Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Physique Nucléaire Et De L'instrumentation Associée Introduction FR0108546 # DEA-DAPNIA-RA-1997-98 A il. ..33/04 -DSM Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée Introduction Motivés par la curiosité pour les connaissances fondamentales et soutenus par des investissements impor- tants, les chercheurs du vingtième siècle ont fait des découvertes scientifiques considérables, sources de retombées économiques fructueuses. Une recherche ambitieuse doit se poursuivre. Organisé pour déve- lopper les grands programmes pour le nucléaire et par le nucléaire, le CEA est bien armé pour concevoir et mettre au point les instruments destinés à explorer, en coopération avec les autres organismes de recherche, les confins de l'infiniment petit et ceux de l'infinimenf grand. La recherche fondamentale évolue et par essence ne doit pas avoir de frontières. Le Département d'astrophysique, de physique des particules, de physique nucléaire et de l'instrumentation associée (Dapnia) a été créé pour abolir les cloisons entre la physique nucléaire, la physique des particules et l'as- trophysique, tout en resserrant les liens entre physiciens, ingénieurs et techniciens au sein de la Direction des sciences de la matière (DSM). Le Dapnia est unique par sa pluridisciplinarité. Ce regroupement a permis de lancer des expériences se situant aux frontières de ces disciplines tout en favorisant de nou- velles orientations et les choix vers les programmes les plus prometteurs. Tout en bénéficiant de l'expertise d'autres départements du CEA, la recherche au Dapnia se fait princi- palement au sein de collaborations nationales et internationales. Les équipes du Dapnia, de I'IN2P3 (Institut national de physique nucléaire et de physique des particules) et de l'Insu (Institut national des sciences de l'Univers) se retrouvent dans de nombreuses grandes collaborations internationales, chacun apportant ses compétences spécifiques afin de renforcer l'impact de nos contributions. Le CERN tient une place privilégiée en physique de particules et en physique hadronique. Tous nos programmes spatiaux sont cofinancés par le CNES (Centre national d'études spatiales). Cette plaquette présente une réactualisation de l'organisation du DAPNIA en dix services et rassemble sous forme de fiches les expériences et les développements expérimentaux effectuées au Dapnia en 1997 et 1998. La rosace des projets du Département, dessinée sur la couverture intérieure de la plaquette, montre la continuité entre les disciplines scientifiques du Dapnia depuis l'étude des composants les plus élémentaires de la matière jusqu'aux plus grandes structures de notre univers. In the twentieth century, research for fundamental knowledge, motivated by curiosity and supported by heavy investments, has produced numerous important scientific discoveries which have generated fruitful economic returns. An ambitious research programme must be carried on. The CEA, organised to endow France with the mastery of nuclear energy and with the best use of techniques derived from that activity, has the assets necessary to conduct research and develop tools in co-operation with other research organisations for exploring the universe both at infinitely small and infinitely large scales. Fundamental research is by essence without limits and should not be thwarted by interdisciplinary barriers. DAPNIA, Department of Astrophysics, Particle physics, Nuclear Physics and Associated Instrumentation, was created in 1991, as part of the Directorate of Matter Science (DSM), to encourage symbiosis between astrophysics, particle physics and nuclear physics and to pool the resources of technical support groups. DAPNIA has a unique multidisciplinary structure which has promoted the development of experiments at the borderlines between different fields of research and which favours necessary new directions in research and selection of the most promising programmes. Research in DAPNIA is always performed within national or international collaborations while taking advantage of other CEA department's expertise. Research teams of DAPNIA, IN2P3 (Institut National de Physique Nucléaire et de Physique des Particules) and INSU (Institut National des Sciences de l'Univers), working together within large international collaborations, reinforce their contributions through their spe- cific competencies. The CERN laboratory is a privileged partner in particle physics and hadronic physics. All our space experiments are co-financed by the CNES (Centre National d'Études Spatiales). This booklet presents the organisation of DAPNIA in ten services and lists all the experiments and instrumental developments for 1997 and 1998 in the form of summary sheets. The list of projects is pictured on the inner cover of the booklet and shows smooth transitions between all fields of research, from the study of the most elementary components of matter to the largest structures in the Universe. Joël Feltesse Chef du Dapnia / Head of DAPNIA Spin d" nucléon Saclay COMMISSARIAT À L'ÉNERGIE ATOMIQUIQUE DSM - DAPNIA DIRECTION DES SCIENCES OE LA WATIERE Niveau de contribution du DAPNIA dans l'expérience en terme de ressources humaines et financières, pour Etats extrêmes J les années 1997-1998 : de la matière nucléaire ..,<#*r Exceptionnel Modeste Nom de l'expérience Enjeux scientifiques de l'expérience r indiqués par les différentes couleurs Représentation en temps écoulé depuis la mise en chantier de l'expérience Année de la proposition E X P Expériences et développements techniques Experiments and technical developments C N C E S Légendes / Captions • 5 collaborateurs / Collaborators Dapnia. Stakes: Astrophysics. Dark matter. Neutrinos. Localization: Offshore of Toulon (F). Collaboration: E, F, GB, NL, Russia. Experiment name: ANTARES. Searched phenomena: High energy cosmic neutrinos. Neutrino oscillations. WIMP annihilations in ihe Earth core. Experimental signature: Muons induced by high energy neutrino interaction in the medium surrounding the detector. Probes: Detection of the Cherenkov light. Charged current v^, interactions. Instruments: Phototubes; lasers; currentmeters; tiltmeters; compasses; accelerometers; sonars. Measurement range: Above 100 GeV for cosmic neutrinos and dark matter search. Between 5 and 100 GeV for the search of oscillations. Construction of systems devoted to the measurement of the sea parameters. Assembling and tests of the optical modules. Digital electronics for the optical modules. Data acquisition electronics. Milestone dates Connection systems, cables. at Dapnia: Electronics. Site evaluation. 1996: First immersion of a mooring line to measure the Optical modules integration and tests. sea paraameters at 2 350 m depth. Software. 1998: Mechanical test of the first line at 2 350 m depth. Deployment of a submarine telecom cable. Scientific or technical outcomes: Tests of connections and disconnections with a manned submarine (Nou/ife). 2 theses in preparation. Involvement of Dapnia: Prospects: 97-98: tttftttt (37). Construction of a 0.1 km2 detector. Then try to increase the Project status on January 1 st, 1999: collaboration to achieve the km^ detector. Achievement of the first line of the detector. Organisation: Carrying out of several campaign of environmental para- meter measurements. Services involved: Scientific and technical responsibilities SPP/SIG ; SAp; SPhN; SPP; SED; SEI; SGPI. of Dapnia in the experiment: Contact Person: Technical coordination. L. Moscoso. Enjeux : Recherche de particules nouvelles (Higgs, supersymétrie|. Unification électrofaible. Saveurs des quarks. Quarks et gluons. Localisation : '•S Collisionneur LEP, CERN, Genève (CH|. Collaboration : A, CH, D, DK, E, F, GB, GR, I, Chine, USA. Nom de l'expérience : ALEPH. Phénomènes recherchés : Bosons de Higgs supersymélriques. Propriétés des bosons W el Z, Signature expérimentale : Evénements à quatre jets avec vertex séparés du point d'interaction et/ou leptons avec grande impulsion transverse par rapport au jet le contenant. Événements à 2 leptons, 2 leptons + 2 jets de hadrons, 4 jets de hadrons. Investigation ou sonde : LEP : collisions e+e de 2 x 45 à 2 x 100 GeV. Instruments : •'•Jj Détecteur de vertex en silicium. '•lit Détecteurs de traces (TPCJ. Calorimètres, chambres à muons, luminomètres. Domaine de mesure : Higgs : 0 à 107 GeV/c2 ; masse du W : 80 GeV/c2 à moins de 100 MeV/c2 (sfal. + syst.) Conception, construction du solénoïde supraconducteur, du calorimètre électromagnétique (ECAL) et du luminomètre (SiCAL). Conception et réalisation de cartes électroniques pour l'acquisition des données de l'ECAL et du SiCAL, ainsi que du superviseur de déclenchement. Dates jalons Direction de 2 groupes d'analyse. Responsabilités au comité exécutif d'ALEPH et au comité Projet au Dapnia : de sélection des orateurs. 1997 : prise de données à 183 GeV. Responsabilité du fonctionnement du SiCAL. 1998: prise de données à] 89 GeV. Retours scientifiques ou techniques : Collaboration : 1997-98:54 publications. 1983: début du projet. 1 thèse soutenue, 1 thèse en cours. 1989 : premières données à 2 x 45 GeV. Contributions majeures aux publications sur nos sujets de 1996-2000: phase 2 du LEP recherche. 6 présentations en conférences internationales. Engagement du Dapnia : Perspectives : 97-98: ***** (24], LEP à 200 GeV en 1999 et 2000. État de l'expérience au 1er janvier 1999 : Organisation : 1999 : préparation à la prise de données. Services associés : 1997-98 : analyse des données. SPP ; SED ; SEI ; SGPI ; SIG ; STCM. Responsabilités scientifiques et techniques Personnels)
Recommended publications
  • The X-Ray Universe 2011
    THE X-RAY UNIVERSE 2011 27 - 30 June 2011 Berlin, Germany A conference organised by the XMM-Newton Science Operations Centre, European Space Astronomy Centre (ESAC), European Space Agency (ESA) ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Matthias Ehle, Cristina Hernandez, Jan-Uwe Ness, Norbert Schartel and Martin Stuhlinger Organising Committees Scientific Organising Committee Giorgio Matt (Universit`adegli Studi Roma Tre, Italy) Chair Norbert Schartel (XMM-Newton SOC, Madrid, ESA) Co-Chair M. Ali Alpar (Sabanci University, Istanbul, Turkey) Didier Barret (Centre d’Etude Spatiale des Rayonnements, Toulouse, France) Ehud Behar (Technion Israel Institute of Technology, Haifa, Israel) Hans B¨ohringer (MPE, Garching, Germany) Graziella Branduardi-Raymont (University College London-MSSL, Dorking, UK) Francisco J. Carrera (Instituto de F´ısicade Cantabria, Santander, Spain) Finn E. Christensen (Danmarks Tekniske Universitet, Copenhagen, Denmark) Anne Decourchelle (Commissariat `al’´energie atomique et aux ´energies alternatives, Saclay, France) Jan-Willem den Herder (SRON, Utrecht, The Netherlands) Rosario Gonzalez-Riestra (XMM-Newton SOC, Madrid, ESA) Coel Hellier (Keele University, UK) Stefanie Komossa (MPE, Garching, Germany) Chryssa Kouveliotou (NASA/Marshall Space Flight Center, Huntsville, Alabama, USA) Kazuo Makishima (University of Tokyo, Japan) Sera Markoff (University of Amsterdam, The Netherlands) Brian McBreen (University College Dublin, Ireland) Brian McNamara (University of Waterloo, Canada)
    [Show full text]
  • Widespread and Hidden Active Galactic Nuclei in Star-Forming Galaxies at Redshift >0.3 Stéphanie Juneau, Mark Dickinson, Frédéric Bournaud, David M
    Widespread and hidden active galactic nuclei in star-forming galaxies at redshift >0.3 Stéphanie Juneau, Mark Dickinson, Frédéric Bournaud, David M. Alexander, Emanuele Daddi, James R. Mullaney, Benjamin Magnelli, Jeyhan S. Kartaltepe, Ho Seong Hwang, S. P. Willner, et al. To cite this version: Stéphanie Juneau, Mark Dickinson, Frédéric Bournaud, David M. Alexander, Emanuele Daddi, et al.. Widespread and hidden active galactic nuclei in star-forming galaxies at redshift >0.3. The Astro- physical Journal, American Astronomical Society, 2013, 764, pp.176. 10.1088/0004-637X/764/2/176. cea-00825844 HAL Id: cea-00825844 https://hal-cea.archives-ouvertes.fr/cea-00825844 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astrophysical Journal, 764:176 (19pp), 2013 February 20 doi:10.1088/0004-637X/764/2/176 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3 Stephanie´ Juneau1,2, Mark Dickinson3,Fred´ eric´ Bournaud1, David M. Alexander4, Emanuele Daddi1, James R. Mullaney4, Benjamin Magnelli5, Jeyhan S. Kartaltepe3, Ho Seong Hwang6,S.P.Willner6,AlisonL.Coil7, David J.
    [Show full text]
  • Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner
    Henning H¨unteler Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner — 2007 — Kernphysik Development and Evaluation of a Multiwire Proportional Chamber for a High Resolution Small Animal PET Scanner Diplomarbeit von Henning H¨unteler Westf¨alische Wilhelms-Universit¨at M¨unster Institut f¨ur Kernphysik — Februar 2007 — Contents 1 Introduction 7 2 Positron Emission Tomography 9 2.1 The β-Decay ............................... 10 2.1.1 Different Types of Radioactive Decay . 10 2.1.2 Different Types of β-Decays ................... 11 2.1.3 The β-Spectrum ......................... 13 2.2 Tracer ................................... 16 2.3 Mean Range and Annihilation of Positrons in Matter . .... 18 2.3.1 PositronRangeinMatter . 18 2.3.2 PositronAnnihilation. 22 2.4 Interactions ofGammaRadiationinMatter . .. 23 2.4.1 PhotoelectricEffect. 23 2.4.2 ComptonEffect.......................... 25 3 Multiwire Proportional Chambers 33 3.1 BasicsonProportionalCounters. 35 3.1.1 ProportionalCountersTubes . 35 3.1.2 GasAmplification. 36 3.1.3 FillGases ............................. 39 3.2 MultiwireProportionalChambers . 43 3.2.1 Geometry of Multiwire Proportional Chambers . 43 3.2.2 ReadoutMethods. .. .. 46 3 4 Contents 4 Motivation for an MWPC Small Animal PET 51 4.1 Reasons for the Construction of a Small Animal PET Detector.... 51 4.2 Motivation for the Development of an MWPC-based PET Detector . 54 4.2.1 Advantages of Scintillation Crystals . .. 54 4.2.2 Advantages of Multiwire Proportional Chambers . ... 55 4.2.3 Conclusions ............................ 56 5 Determination of the Optimal Converter Thickness 57 5.1 Theoretical Determination of the Optimal Converter Thickness . 58 5.2 Experimental Determination of the Optimal Converter Thickness .
    [Show full text]
  • Topical Review Solenoid-Free Plasma Start-Up in Spherical Tokamaks
    Home Search Collections Journals About Contact us My IOPscience Solenoid-free plasma start-up in spherical tokamaks This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 Plasma Phys. Control. Fusion 56 103001 (http://iopscience.iop.org/0741-3335/56/10/103001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.125.233.17 This content was downloaded on 06/01/2015 at 20:20 Please note that terms and conditions apply. Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion 56 (2014) 103001 (19pp) doi:10.1088/0741-3335/56/10/103001 Topical Review Solenoid-free plasma start-up in spherical tokamaks R Raman1 and V F Shevchenko2 1 William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA 2 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK E-mail: [email protected] Received 15 June 2014, revised 20 August 2014 Accepted for publication 1 September 2014 Published 22 September 2014 Abstract The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity.
    [Show full text]
  • Spectroscopic Characterisation of New Accreting Intermediate-Mass Pre-Main Sequence Stars
    Spectroscopic Characterisation of New Accreting Intermediate-Mass Pre-Main Sequence Stars Shima Ujjani Shivashankara Submitted in accordance with the requirements for the degree of Master of Science by Research The University of Leeds School of Physics and Astronomy November 2019 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledge- ment. The right of Shima Ujjani Shivashankara to be identified as Author of this work has been asserted by Shima Ujjani Shivashankara in accordance with the Copyright, Designs and Patents Act 1988. 1 Acknowledgements I am extremely grateful to Olja Pani´c, my supervisor, and thank you for your expert guidance and more importantly for keeping me motivated throughout. To my co-supervisor, Ren´eOudmaijer thank you for your constant support, patience and knowledge you shared with me. I would like to extend my thanks to my fellow students in the Leeds Astrophysics group for creating a friendly environment. In particular, thanks to James Miley and Miguel Vioque for the useful discussions. I thank Chumpon Wichittanakom who has greatly helped in my studies. Important special thanks to my parents for always being there for me, motivating me and supporting me, both emotionally and financially. Without your love and encouragement I wouldn’t reach this far. Thank you. Abstract The thesis presents the spectroscopic study of the stellar parame- ters, accretion rates and IR excess of Herbig Ae/Be stars.
    [Show full text]
  • An Ancient Massive Quiescent Galaxy Found in a Gas-Rich Z~ 3 Group
    Draft version July 29, 2021 Typeset using LATEX twocolumn style in AASTeX62 An ancient massive quiescent galaxy found in a gas-rich z ∼ 3 group Boris S. Kalita,1 Emanuele Daddi,1 Chiara D'Eugenio,1 Francesco Valentino,2, 3 R. Michael Rich,4 Carlos Gomez-Guijarro´ ,1 Rosemary T. Coogan,5 Ivan Delvecchio,6 David Elbaz,1 James D. Neill,7 Annagrazia Puglisi,8 and Veronica Strazzullo9, 6, 10 1CEA, Irfu, DAp, AIM, Universit`eParis-Saclay, Universit`ede Paris, CNRS, F-91191 Gif-sur-Yvette, France 2Cosmic Dawn Center (DAWN), Copenhagen, Denmark 3Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200, Copenhagen, Denmark 4Department of Physics & Astronomy, Univ. of California Los Angeles, PAB 430 Portola Plaza, Los Angeles, CA 90095-1547, USA 5Max-Planck-Institut f¨urExtraterrestrische Physik (MPE), Giessenbachstr.1, 85748 Garching, Germany 6INAF|Osservatorio Astronomico di Brera, via Brera 28, I-20121, Milano, Italy 71 California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125, USA 8Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham, UK 9University of Trieste, Piazzale Europa, 1, 34127 Trieste TS, Italy 10INAF - Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131, Trieste, Italy (Received June 01, 2021; Revised July 13, 2021; Accepted July 22, 2021) Submitted to ApJL ABSTRACT Deep ALMA and HST observations reveal the presence of a quenched massive galaxy within the z = 2:91 galaxy group RO-1001. With a mass-weighted stellar age of 1:6 ± 0:4 Gyr this galaxy is 11 one of the oldest known at z ∼ 3, implying that most of its 10 M of stars were rapidly formed at z > 6{8.
    [Show full text]
  • ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification
    ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification Summer 2004 REU Igor Vaynman Undergraduate California Institute of Technology John Parsons Kamal Benslama Mentors Columbia University August 16, 2004 Abstract The ATLAS detector is being built in CERN at the LHC. It is a gen- eral purpose detector that will be used for a variety of experiments, such as searching for the Higgs Boson. The electromagnetic calorimeter is a component of ATLAS responsible for measuring the energy deposited by e+, e−, and γ. This paper presents a study of the resolution of the E-M calorimeter using data simulated by GEANT 4. Also included is a study in the use of Neural Networks to classify particles, specifically e−/π±, using data from the E-M calorimeter. 1 Igor Vaynman Summer 2004 REU Report 1 Introduction 1.1 The ATLAS Detector The Large Hadron Collider currently being built in CERN will be able to collide protons at 14 TeV, and the ATLAS detector is being built to detect the result of such high energy collisions. Potentially, the detector will be able to find evidence for the Higgs Boson. The detector is built in multiple layers in order to detect all possible flavors of particles and thus accurately reconstruct the original event. The innermost layer measures the momentum of charged particles by applying a magnetic field and calculating the resulting curvature of the tracks using pixel detectors. Next is the electromagnetic calorimeter, which measures the energy of electrons, photons, and positrons, followed by the hadronic calorimeter which obtains the energy of protons, pions, and other heavier particles.
    [Show full text]
  • 2010 IPP Submission to the Canadian
    IPP Submission to the NSERC Subatomic Physics Long Range Planning Committee September 30, 2010 IPP LRP Brief Preparatory Group∗ Executive Summary: The Canadian particle physics community has continued to grow in numbers and scientific output over the last five years and is making substantial, internationally recognised, contributions in several areas. We review significant accomplishments of Canadian researchers, and offer a vision of the priorities for the community for the next five years. We identify four “essential” projects for the particle physics commu- nity in Canada over the next five years: ATLAS, DEAP, SNO+, and T2K. We identify four additional projects that have the potential to achieve essential status within the Canadian community over this time period: EXO, PICASSO, SuperB, and SuperCDMS. A long-term solution for funding SNOLAB oper- ations outside the NSERC SAP envelope is identified as the most critical structural issue for Canadian particle physics. We draw attention to the failure of the SAP envelope to grow in proportion to the growth of the community, funding limitations on TRIUMF’s ability to support new particle physics initiatives, and exploring a formal relationship between Canada and CERN. The IPP welcomes improved coordina- tion between the different funding mechanisms available to particle physics researchers in Canada. This would be an important first step to addressing many of the structural issues discussed here. ∗Including the current members of IPP Council: J. Farine (Laurentian), H. Logan (Carleton), R. Moore (Alberta), S. Oser (UBC), S. Robertson (McGill/IPP), R. Sobie (Victoria/IPP), W.Trischuk-Chair (Toronto); with the addition of N. Smith (SNO- LAB).
    [Show full text]
  • UST 1 Stellarator and Status of the 3D Printed UST 2 Stellarator* on Leave of Absence Vicente from NFL, Queral CIEMAT L 1 Outline
    UST_1 stellarator and Status of the 3D printed UST_2 stellarator Vicente M. Queral * Talk given in Columbia University, New York, NY, USA 1st October 2013 TM UST_1 stellarator and status of the 3D printed UST_2 stellarator* On leave of absence Vicente from NFL, Queral CIEMAT L 1 Outline Background Basic UST_1 and UST_2 data Design, construction and results in UST_1 ▪ Conceptual design of UST_1 ▪ Engineering design. Development of a construction method ▪ Validation of the construction method and design ▪ Results and conclusions Status of the 3D printed UST_2 stellarator ▪ Experimental validation of engineering concepts ▪ Conceptual design ▪ UST_2 engineering design. Fabrication tests ▪ Future work UST_1 stellarator and status of the 3D printed UST_2 stellarator Vicente Queral L 2 Background ► I am on a leave of absence period from the National Fusion Laboratory, CIEMAT, Spain. ► I worked in CIEMAT for almost 5 years, in Remote Handling, for IFMIF (International Fusion Materials Irradiation Facility), ITER and DEMO. ► Up to now, I have developed the work on stellarators on my own, with personal funds (for three years before CIEMAT work, at nights and weekends during CIEMAT work, and now 1.5 years during the leave of absence), with some help and contribution from CIEMAT. ► The work is R&D and innovation in engineering, focused in new construction methods for stellarators. It is not focused on physics and plasma experiments. UST_1 stellarator and status of the 3D printed UST_2 stellarator Vicente Queral L 3 Basic UST_1 data UST_1 modular stellarator • UST_1 stellarator was designed, built and operated from 2005 to 2007 in my personal laboratory. • Cost of the whole facility ~ 3000 € (many 2nd hand pieces).
    [Show full text]
  • Physics and Computational Simulations of Plasma Burn-Through for Tokamak Start-Up
    Imperial College London Department of Physics Physics and Computational Simulations of Plasma Burn-through for Tokamak Start-up Hyun-Tae Kim Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London, July 2013 Abstract This thesis will discuss the fundamental process of high temperature plasma formation, con- sisting of the Townsend avalanche phase and the subsequent plasma burn-through phase. By means of the applied electric field, the gas is partially ionized by the avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from inter- action with the plasma facing components. The parallel transport to the surrounding walls is determined by the so called connection length in the plasma. Previously, plasma burn-through was simulated with the assumptions of constant particle con- finement time and impurity fraction. In the new plasma burn-through simulator, called the DYON code, the treatment of particle confinement time is improved with a transonic ambipo- lar model for parallel transport, by using the effective connection length determined by the magnetic field lines, and Bohm diffusion model for perpendicular transport. In addition, the dynamic evolution of impurity content is calculated in a self-consistent way, using plasma wall interaction models. The recycling of the particles at the walls is also modelled. For a specific application, the recent installation of a beryllium wall at Joint European Torus (JET) enabled to investigate the effects of plasma facing components on plasma formation and build-up of plasma current in the device.
    [Show full text]
  • Particle Detectors
    Particle Detectors Summer Student Lectures 2007 Werner Riegler, CERN, [email protected] History of Instrumentation ↔ History of Particle Physics The ‘Real’ World of Particles Interaction of Particles with Matter, Tracking detectors Photon Detection, Calorimeters, Particle Identification Detector Systems W. Riegler/CERN 1 Detectors based on Ionization Gas Detectors: • Transport of Electrons and Ions in Gases • Wire Chambers • Drift Chambers • Time Projection Chambers Solid State Detectors • Transport of Electrons and Holes in Solids • Si- Detectors • Diamond Detectors W. Riegler/CERN Gas Detectors 2 Gas Detectors with internal Electron Multiplication • Principle: At sufficiently high electric fields (100kV/cm) the electrons gain energy in excess of the ionization energy secondary ionzation etc. etc. • Elektron Multiplication: – dN = N α dx α…’first Townsend Coefficient’ – N(x) = N0 exp (αx) α= α(E), N/ N0 = A (Amplification, Gas Gain) – N(x)=N0 exp ( (E)dE ) – In addition the gas atoms are excited emmission of UV photons can ionize themselves photoelectrons – NAγ photoeletrons → NA2 γ electrons → NA2 γ2 photoelectrons → NA3 γ2 electrons – For finite gas gain: γ < A-1, γ … ‘second Townsend coefficient’ W. Riegler/CERN Gas Detectors 3 Wire Chamber: Electron Avalanche Wire with radius (10-25m) in a tube of radius b (1-3cm): Electric field close to a thin wire (100-300kV/cm). E.g. V0=1000V, a=10m, b=10mm, E(a)=150kV/cm Electric field is sufficient to accelerate electrons to energies which are sufficient to produce secondary ionization electron avalanche signal. b a b Wire W. Riegler/CERN Gas Detectors 4 Gas Detectors with internal Electron Multiplication From L.
    [Show full text]
  • Soltan Institute for Nuclear Studies Annual Report 1995
    ISSN 1232-5309 SOLTAN INSTITUTE FOR NUCLEAR STUDIES INSTYTUT PROBLEMdW JADROWYCH im. A. SOtTANA PL9701895 ANNUAL REPORT 1995 Otwock - Swierk 19 9 6 ISSN 1232-5309 SOLTAN INSTITUTE FOR NUCLEAR STUDIES ANNUAL REPORT 1995 Editors: E. Infeld M. Jaskdla P. Zuprariski PL-05-400 OTWOCK-SWIERK, POLAND Tel: 048-22-779 8948 Telex: 813244 IBJ swpl Fax: 048-22-779 3481 E-mail: [email protected] Otwock - Swierk 1996 Technical Editor: Krystyna Traczyk Technical Staff: Jolanta Falkowska Danuta Szczepaniak The Report was printed using a Word Perfect 6,0 word processor on a PC 486/40 and a Hewlett Packard LaserJet 5P SINS Annual Report 1995 1 ABSTRACT: This report surveys our activities in the following fields: nuclear, particle and cosmic ray physics, plasma and thermonuclear research and techniques, nuclear electronics, accelerator techniques and physics, as well as ionizing radiation detection and spectrometry techniques, developmental work and implementations resulting from chosen trends in nuclear physics* 1. STRESZCZENIE: Raport roczny Instytutu Problemdw Jqdrowych im. A.Sottana przedstawia zwi$zfy przeglqd badan teoretycznych, doswiadczalnych, technologicznych i technicznych z dziedziny fizyki jqdrowej, promieniowania kosmicznego, fizyki czqstek elementarnych, fizyki plazmy, elektroniki jqdrowej, detektorow gazowych i pdfprzewodnikowych, fizyki i techniki akceleratorow, fizyki oslon przed promieniowaniem i mikrodozymetrii" 1. *) This work was supported in part by the State Committee for Scientific Research in Poland, Decision Nr 621/E-78/S/95 **) Badania byiy finansowane glownie przez Komitet Badan Naukowych w Polsce wedfug Decyzji Nr 621/E-78/S/95 2 SINS Annual Report 1995 CONTENTS FOREWORD............................................................................................................................................. 3 I. GENERAL INFORMATION........................................................................................................ 5 II. MANAGEMENT OF THE INSTITUTE..............................
    [Show full text]