MULTIWIRE GASEOUS DETECTORS: Basics and State-of-the-art 1 Archana SHARMA2 Department of Physics, University of Maryland, College Park, MD 20742, USA Contents I Introduction and Historical Overview II Single Wire Proportional Chamber (SWPC) Principle of Operation Primary and Total ionization Modes of Operation Energy Resolution and Escape Peak III Multiwire Proportional Chambers (MWPC) Principle of Operation Angular distribution of the avalanche and charge induction Performance of a position sensitive MWPC Read-out techniques Simple Derivatives of MWPCs IV Drift and Diffusion of electrons 31/05/2000 No Magnetic Field With Magnetic Field open-2000-131 V Large Volume Tracking Drift Chamber and derivatives Time Projection Chamber Effects of pollutants and contaminants on operation Pad Response Function Gating Gas Detector Aging VI Limitations and Future Perspectives of Wire Chambers 1 Based on Lectures given at the ICFA School on Instrumentation in High Energy Physics, Istanbul, Turkey, June 28-July 10 1999 and IIIrd SERC School on EHEP, BARC, Mumbai, India, Feb 1-15, 2000 2 Presently at CERN, Geneva Switzerland, Mailing Address CERN, CH 1211, Geneva Switzerland, e-mail
[email protected] 1 2 I Introduction and Historical Overview The subject of gaseous detectors for detecting ionizing radiation has always been a fascinating one since the last several decades. Radiation is a far-reaching tool to study the fine structure of matter and the forces between elementary particles. Instruments to detect radiation find their applications in several fields of research. To investigate matter, three types of radiation are available: photons, neutrons and charged particles. Each of them has its own way to interact with material, and with the sensitive volume of the detector.