Petrology of the Rockport Quarry Limestone (Middle Devonian Traverse Group) Alpena, Presque Isle and Montmorency Counties, Michigan

Total Page:16

File Type:pdf, Size:1020Kb

Petrology of the Rockport Quarry Limestone (Middle Devonian Traverse Group) Alpena, Presque Isle and Montmorency Counties, Michigan Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1976 Petrology of the Rockport Quarry Limestone (Middle Devonian Traverse Group) Alpena, Presque Isle and Montmorency Counties, Michigan Charles Willard Cookman Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons, Mineral Physics Commons, and the Sedimentology Commons Recommended Citation Cookman, Charles Willard, "Petrology of the Rockport Quarry Limestone (Middle Devonian Traverse Group) Alpena, Presque Isle and Montmorency Counties, Michigan" (1976). Master's Theses. 614. https://scholarworks.wmich.edu/masters_theses/614 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. PETROLOGY OF THE ROCKPORT QUARRY LIMESTONE (MIDDLE DEVONIAN TRAVERSE GROUP) ALPENA, PRESQUE ISLE AND MONTMORENCY COUNTIES, MICHIGAN by Charles Willard Cookman A Thesis Submitted to the Faculty of the Graduate College in partial fulfillment of the Degree of the Master of Science Western Michigan University Kalamazoo, Michigan December 19 76 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT The basal unit of the dominantly carbonate Traverse Group, the Bell Shale, is gradationally overlain by the Rock- port Quarry Limestone which has a thickness of approximately 14 m. The Rockport Quarry Limestone is composed of a dark unrestricted marine subtidal organic-mud packstone facies, comprised of an algal-mat-bearing coral packstone subfacies and a shallower water crinoid-bryozoan grainstone subfacies; a shoal-forming stromatoporoid biolithite facies; and a la- goonal micrite facies comprised of a subtidal dense subfacies containing gastropods, ostracods, and calcispheres, and an intertidal to supratidal fenestral subfacies. The local fa­ cies tract reconstructed for the Rockport Quarry Limestone is interpreted to be analogous to the subtidal facies relation­ ships present today in and around Rodriguez Key and within the intertidal to supratidal environments at Andros Island and Shark Bay, Australia. At Rockport Quarry and Grand Lake, basal Rockport Quarry strata are comprised of extensive bio- lithites (3 x 1000 m in cross section) composed of laminate to tabulate stromatoporoid sheets interlaminated with subordi­ nate organic-mud packstone. Higher in the section at Rockport Quarry, the stromatoporoid biolithite facies is capped locally by a subtidal back-shoal biolithite-micrite transition facies containing what is thought to be the first recorded occurrence of calcareous algae in the Middle Devonian of Michigan. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iii Insoluble residues of the Bell Shale and organic-mud packstones from the Rockport Quarry Limestone are mineralogi- cally similar, but the residues from the Rockport Quarry Lime­ stone are darker due to disseminated pyrite and hydrocarbons. The dominant hydrocarbon grain type, 4 micron brown "micro­ spheres," are inferred to be the fossil unicell remnants of ancient subtidal algal mats. Diagenetic phenomenon observed within the Rockport Quarry Limestone indicate early marine cementation, neomorphism, so­ lution and compaction, followed by later local void formation and dolomitization. Extensive dolomite at Ocqueoc Falls pro­ bably reflects dolomitization along a local fracture system. Twenty-two taxa were encountered that were previously unrecorded in the literature for Rockport Quarry including: calcareous algae, cephalopod conchs, and trilobite fragments. Three families of stromatoporoids were differentiated. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Soma pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor. Michigan 48106 USA St John's Road. Tyler s Green High Wycombe. Bucks, England HP10 8HR Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MASTERS THESIS M-9 30 7 COOKMAN, Charles Willard PETROLOGY OF THE ROCKPORT QUARRY LIMESTONE (MIDDLE DEVONIAN TRAVERSE GROUP) ALPENA, PRESQUE ISLE AND MONTMORENCY COUNTIES, MICHIGAN. Western Michigan University, M.S., 1976 Geology Xerox University Microfilms, Ann Arbor, Michigan 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS It is a pleasure to acknowledge the advice and encour­ agement of my research advisor, Dr. W. David Kuenzi. Dr. Kuenzi introduced me to the problems of the Traverse Group of the northern lower peninsula of Michigan and suggested the study of the Rockport Quarry Limestone. I also thank Drs. Wm B. Harrison and W. T. Straw for providing comments and criti­ cism of the manuscript. Thanks are also expressed to Mr. Wm. Mantek of Consumers Power Co., Jackson, Michigan, and Mr. Irvin Kuehner of the Geological Survey Division of the Michi­ gan Department of Natural Resources who furnished well log data from the study area. The study was made possible by support from the Graduate Student Research Fund at Western Michigan University. Thanks are expressed to Dr. Lloyd J. Schmaltz and the Geology De­ partment at Western Michigan University for providing the in­ tellectual training and equipment necessary to carry out the study. Thanks are also expressed to Frank Allen and Lynn Toohey of the Western Michigan University Libraries who pro­ vided vital assistance in acquiring the research literature required. I am grateful to Mari Harrington for assistance in typin of the manuscript, and Judy Robinson for processing of photo­ graphs . iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS INTRODUCTION .............................................. 1 Previous Investigations .............................. 4 Methodology ............................................ 6 Terminology ......................................... 7 Petrography ......................................... 8 X-Ray Analysis and Other T e s t s ..................... 11 FACIES ........................................................17 General Statement ..................................... 17 Micrite Facies ................... - ...................... 19 Outcrop Description ................................ 19 Petrography............................................ 21 Dense Micrite Subfacies ....................... 23 Fenestral Subfacies ........................... 25 Relationships Between Subfacies of the Micrite F a c i e s .............................................. 28 Interpretation of the Micrite Facies ........... 29 Organic-Mcd Packstone Facies ......................... 31 Outcrop Description ................................ 31 Composition of the Dark Fraction ................... 35 Petrography......................................... 3 7 Coral Packstone Subfacies ..................... 40 Crinoid-Bryozoan Grainstone Subfacies .... 43 Interpretation of the PackstoneFacies .......... 47 Stromatoporoid Biolithite Facies ..................... 52 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VI Outcrop Description ................................ 52 Petrography............................................ 54 Interpretation of the Stromatoporoid Biolithite F a c i e s ................................................
Recommended publications
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine
    DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOLOGY OF THE CRAIG QUADRANGLE, ALASKA By G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine Open-File Report 83-91 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and strati graphic nomenclature Menlo Park, California 1983 Geology of the Craig Quadrangle, Alaska By G. D. Eberlein, Michael Churkin, Jr., Claire Carter, H. C. Berg, and A. T. Ovenshine Introduction This report consists of the following: 1) Geologic map (1:250,000) (Fig. 1); includes Figs. 2-4, index maps 2) Description of map units 3) Map showing key fossil and geochronology localities (Fig. 5) 4) Table listing key fossil collections 5) Correlation diagram showing Silurian and Lower Devonian facies changes in the northwestern part of the quadrangle (Fig. 6) 6) Sequence of Paleozoic restored cross sections within the Alexander terrane showing a history of upward shoaling volcanic-arc activity (Fig. 7). The Craig quadrangle contains parts of three northwest-trending tectonostratigraphic terranes (Berg and others, 1972, 1978). From southwest to northeast they are the Alexander terrane, the Gravina-Nutzotin belt, and the Taku terrane. The Alexander terrane of Paleozoic sedimentary and volcanic rocks, and Paleozoic and Mesozoic plutonic rocks, underlies the Prince of Wales Island region southwest of Clarence Strait. Supracrustal rocks of the Alexander terrane range in age from Early Ordovician into the Pennsylvanian, are unmetamorphosed and richly fossiliferous, and aopear to stratigraphically overlie pre-Middle Ordovician metamorphic rocks of the Wales Group (Eberlein and Churkin, 1970).
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Introduction Paxton Quarry
    Geological Society of America Centennial Field Guide— limestones followed by deep-water anaerobic black North-Central Section, 1987 shales of a euxinic basin. Devonian shelf-basin, Michigan Basin, Alpena, Michigan Raymond C Gutschick, Department of Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556- 1020 INTRODUCTION This chapter cites two localities, Paxton Quarry and Partridge Point (Fig. 1), and combines field observations from both to illustrate important stratigraphic relations and principles. Focus is on litho- and biostratigraphy of Middle and Late Devonian rocks as they relate to the Michigan Basin (Fig. 2). Black organic-rich shales deserve our attention due to Figure 2. Chart to relate the chrono- and biostratigraphy of the their energy potential a source rocks and fracture rock sequence in the Paxton Quarry and Partridge Point area reservoirs for petroleum and natural gas. The Paxton to standard accepted stratigraphic nomenclature. Chart shows relationship of the Antrim Shale to other widespread Late Quarry offers the opportunity to examine an exceptional Devonian black shale units for parts of the United States and exposure of black shale (large area in Fig. 3; thick Canada. In the conodont zonation column, Si stands for section in Fig. 4) as part of the formational sheet that Siphonodella; P,, Polygnathus, A., Ancyrognathus, and S., continues into the Michigan Basin subsurface. These Schmidtognathus; other zones refer to species of special rocks offer a challenge to observe and test their Palmatolepis. physical, chemical, and organic composition and structure to decipher origin, paleoenvironments, diagenesis, history, and economic value. A spectacular PAXTON QUARRY display of numerous, large calcareous concretions, in situ and free of shale matrix, is present in the quarry.
    [Show full text]
  • Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1990 Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan Brendan Ciaran Curran Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Curran, Brendan Ciaran, "Reservoir Geology of the Dundee Limestone, West Branch Field, Michigan" (1990). Master's Theses. 1053. https://scholarworks.wmich.edu/masters_theses/1053 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RESERVOIR GEOLOGY OF THE DUNDEE LIMESTONE, WEST BRANCH FIELD, MICHIGAN by Brendan Ciaran Curran A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Geology Western Michigan University Kalamazoo, Michigan December 1990 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RESERVOIR GEOLOGY OF THE DUNDEE LIMESTONE, WEST BRANCH FIELD, MICHIGAN Brendan Ciaran Curran, M.S. W estern Michigan University, 1990 West Branch field is a low-relief, NW-SE-trending anticline near the center of the Michigan basin. Since 1934, the Dundee Limestone (Middle Devonian) has produced over 12 million barrels of oil from this field. From core studies, six depositional facies types were recognized in the Dundee. These are dominated by bioclastic carbonate sand facies deposited in normal- marine shelf settings. Although burial cements have occluded some porosity, carbonate sand facies have retained significant primary interparticle porosity and are the most important reservoir rocks.
    [Show full text]
  • Detroit River Group in the Michigan Basin
    GEOLOGICAL SURVEY CIRCULAR 133 September 1951 DETROIT RIVER GROUP IN THE MICHIGAN BASIN By Kenneth K. Landes UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Washington, D. C. Free on application to the Geological Survey, Washington 25, D. C. CONTENTS Page Page Introduction............................ ^ Amherstburg formation................. 7 Nomenclature of the Detroit River Structural geology...................... 14 group................................ i Geologic history ....................... ^4 Detroit River group..................... 3 Economic geology...................... 19 Lucas formation....................... 3 Reference cited........................ 21 ILLUSTRATIONS Figure 1. Location of wells and cross sections used in the study .......................... ii 2. Correlation chart . ..................................... 2 3. Cross sections A-«kf to 3-G1 inclusive . ......................;.............. 4 4. Facies map of basal part of Dundee formation. ................................. 5 5. Aggregate thickness of salt beds in the Lucas formation. ........................ 8 6. Thickness map of Lucas formation. ........................................... 10 7. Thickness map of Amherstburg formation (including Sylvania sandstone member. 11 8. Lime stone/dolomite facies map of Amherstburg formation ...................... 13 9. Thickness of Sylvania sandstone member of Amherstburg formation.............. 15 10. Boundary of the Bois Blanc formation in southwestern Michigan.
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • Conodonts Frorn the Genesee Formation in Western New York
    ·U.S: BUREAu Of MINES P.O. BOX 550 IUNEAU, AlASK} OQ9( ' Conodonts frorn the Genesee Formation in Western New York GEOLOGICAL SURVEY PROFESSIONAL PAPER 1032-B \ Conodonts from the Genesee Formation in Western New York By JOHN W. HUDDLE, assisted by JOHN E. REPETSKI STRATIGRAPHY AND CONODONTS OF THE GENESEE FORMATION (DEVONIAN) IN WESTERN AND CENTRAL NEW YORK GEOLOGICAL SURVEY PROFESSIONAL PAPER 1032-B Conodonts from the Genesee Formatz"on z"n western New York, first descrz"bed by G.]. Hz"nde z"n 1879 and W. L. Bryant z·n 1921, are redescrz"bed, and the b£ostrat£graph£c zones are determz"ned UNITED STATES GOVERNMENT PRINTING OFFICE,WASHINGTON 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secreta·ry GEOLOGICAL SURVEY Doyle G. Frederick, Acting Director Library of Congress Cataloging in Publication Data Huddle, John Warfield, 1907-1975 Conodonts from the Genesee Formation in western New York. (Stratigraphy and conodonts of the Genesee Formation (Devonian) in western and central New York) (Geological Survey professional paper ; 1032-B) Bibliography: p. Supt. of Docs. No.: I 19.16:1032-B 1. Conodonts. 2. Paleontology-Devonian. 3. Paleontology-New York (State) I. Title. II. Series. III. Series: United States. Geological Survey. Professional paper ; 1032-B. QE899.H83 557.3'08s [562] 77-608125 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 FOREWORD After John Huddle's death in late November 1975, I was asked to serve as author's representative in the completion of this report. In September 1975, Huddle had completed.
    [Show full text]
  • Hydrodynamic Character of the Dundee Limestone in the Central Michigan Basin
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1986 Hydrodynamic Character of the Dundee Limestone in the Central Michigan Basin Ann Carol Little Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Hydrology Commons Recommended Citation Little, Ann Carol, "Hydrodynamic Character of the Dundee Limestone in the Central Michigan Basin" (1986). Master's Theses. 1330. https://scholarworks.wmich.edu/masters_theses/1330 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. HYDRODYNAMIC CHARACTER OF THE DUNDEE LIMESTONE IN THE CENTRAL MICHIGAN BASIN by Ann Carol Little A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Geology Western Michigan University Kalamazoo, Michigan August 1986 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. HYDRODYNAMIC CHARACTER OF THE DUNDEE LIMESTONE IN THE CENTRAL MICHIGAN BASIN Ann Carol Little Western Michigan University, 1986 The Middle Devonian Dundee Limestone underlies most of the Lower Peninsula of Michigan. A potentiometric surface constructed of the formation, utilizing pressure data was compared to local and regional structure, permeability trends, specific gravity of the brines, oil accumulations, and surficial topography. The data were distributed mainly in the central basin area, with information becoming more sparse around the basin margins. This created difficulties in the determination of the extent of control imparted by each of the factors, in flow direction.
    [Show full text]