Identificación Y Estudio De Las Interacciones Virus-Célula Del Vesivirus De Conejo (Rav)

Total Page:16

File Type:pdf, Size:1020Kb

Identificación Y Estudio De Las Interacciones Virus-Célula Del Vesivirus De Conejo (Rav) UNIVERSIDAD DE OVIEDO DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR PROGRAMA DE DOCTORADO EN BIOLOGÍA FUNCIONAL Y MOLECULAR Identificación y estudio de las interacciones virus-célula del vesivirus de conejo (RaV) José Arrojo Fernández 2015 RESUMEN DEL CONTENIDO DE TESIS DOCTORAL 1.- Título de la Tesis Español: Identificación y estudio de las Inglés: Identifying and functionally interacciones virus-célula del vesivirus de characterizing viral-host interactions for rabbit conejo (RaV) vesivirus (RaV) 2.- Autor Nombre: JOSE ARROJO FERNANDEZ DNI/Pasaporte/NIE: Programa de Doctorado: Biología funcional y molecular (interdepartamental) Órgano responsable: BIOQUIMICA Y BIOLOGIA MOLECULAR RESUMEN (en español) Los calicivirus son virus RNA de cadena sencilla y polaridad positiva que actúan como F agentes patógenos en animales y humanos. El rango de huésped y el tropismo celular, O así como el desarrollo de la infección, dependen en gran medida de la interacción con R proteínas del huésped. - En la presente memoria de tesis doctoral se describen las estrategias desarrolladas para M la identificación de proteínas celulares que interaccionan con secuencias próximas a los A extremos 5’ y 3’ del genoma del RaV y con las proteínas virales NS5, NS6/7 y VP1 del T mismo virus. - Para el estudio de las interacciones RNA viral-proteína celular se desarrolló una V cromatografía de afinidad a RNA biotinilado utilizando extractos citoplasmáticos de O células susceptibles y permisivas a la infección por RaV, que fueron incubados con A RNAs sintéticos que presentaban secuencias de los extremos del genoma del virus. Las - proteínas purificadas se analizaron e identificaron por espectrometría de masas. En total 0 se consiguieron identificar 28 proteínas que presentaban diferente afinidad por 1 secuencias del extremo 3’ o 5’. 0 Para la identificación de las interacciones proteína viral-proteína celular se generaron - líneas celulares modificadas establemente que expresaran, de manera independiente, las B proteínas virales NS5, NS6/7 y VP1 de forma inducible y fusionadas a una etiqueta I peptídica (C-TAP) para la purificación por afinidad en tándem (TAP). Se purificaron S proteínas celulares unidas a NS5 y VP1, que fueron analizadas e identificadas por espectrometría de masas. En conjunto se identificaron 5 proteínas celulares capaces de interaccionar con VP1 y 3 con NS5. Al ser el RaV uno de los pocos modelos de calicivirus que puede ser propagado en cultivos celulares, se pudo estudiar la función de las proteínas PABP y hnRNPK en la infección. La proteína PABP, identificada por su interacción con secuencias próximas al extremo 3’ del genoma del RaV, fue silenciada en cultivos celulares y la posterior infección dio lugar a un descenso en el título viral, lo que indica un papel relevante de esta proteína celular en la propagación del virus. La proteína hnRNPK se identificó por su interacción con secuencias de la región 5’ del genoma del RaV, y el silenciamiento de su expresión causó un aumento del título viral, sugiriendo que esta proteína juega un papel negativo en la propagación del RaV. Con los resultados obtenidos en esta tesis doctoral se abren nuevas vías para el estudio de los procesos moleculares de replicación de RNA, traducción y formación de nuevas partículas virales en la infección por calicivirus, así como para el desarrollo de estrategias antivirales basadas en la acción de proteínas celulares durante la infección. RESUMEN (en Inglés) Caliciviruses are single-stranded, positive sense RNA viruses pathogenic to humans and other animals. Their host range and cellular tropism, as well as their infection process, depend to a great extent on the interaction of viral components with host proteins. This doctoral dissertation describes the strategies followed to identify cellular proteins able to interact with sequences near the 5’ and 3’ ends of the RaV genome, as well as with the RaV proteins NS5, NS6/7 and VP1. In order to study the viral RNA–host cell protein interactions, affinity chromatography with biotinylated RNA, using cytoplasmic extracts of cultured cells susceptible and permissive to RaV infection, were used. These extracts were incubated with synthetic RNAs sequences corresponding the terminal ends of the viral genome. Proteins which co-purified with the RNA were analyzed and identified by mass spectrometry. In total 28 proteins, with different affinities for sequences of the 5’ or 3’ ends of the viral genome, were identified. For the identification of viral protein-host protein interactions, stable cell lines were developed for an inducible, and independent, expression of NS5, NS6/7 and VP1 viral proteins labeled with a peptide tag (C-TAP) for tandem affinity purification (TAP). Cellular proteins bound to NS5 and VP1 were purified and identified by mass spectrometry. Five cellular proteins were identified due to their interaction with VP1 and 3 with NS5. Furthermore, since RaV is one of the few calicivirus models that can be propagated in cultured cells, the role that the cellular proteins PABP and hnRNPK play during the infection process were studied. PABP, which interacts with sequences close to the 3’ end of the viral genome, was silenced in cultured cells, resulting in a decrease of the viral titer after infection, which suggests a relevant role of this protein in viral propagation. hnRNPK interacted with sequences in the 5’ region of the RaV genome. Cultured cells in which this protein had been silenced displayed an increase in the viral titer, suggesting that hnRNPK has a negative effect on RaV propagation. These results open new possibilities for the study of the molecular processes involved in RaV RNA replication and translation, as well as in the formation of new viral particles during calicivirus infection. They could also provide a basis for the development of antiviral strategies based on the action of cellular proteins during the infection process. SR. DIRECTOR DEL DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR ABREVIATURAS BSA Seroalbúmina bovina BVDV Virus de la diarrea viral bovina CBP Péptido de unión a calmodulina CCAR2 Proteína reguladora de la apoptosis y ciclo celular 2 cDNA Ácido desoxirribonucleico complementario CMV Citomegalovirus CTP Citosín-trifosfato DARS Sintetasa de aspartil-ARNt DDX3X Helicasa de ARN DDX3 DNA Ácido desoxirribonucleico DMEM Medio de Eagle modificado por Dulbecco DMSO Dimetilsulfóxido DTT 1,4-Ditiotreitol ECACC European Collection of Cell Cultures (Colección Europea de Cultivos celulares) EDTA Ácido etilén-diaminotetraacético EGTA Ácido etilén-glicoltetraacético eIF Factor de iniciación de la traducción en eucariotas EIF2AK2 Quinasa 2 del factor de inicio de la traducción EIF2A ELAV1 Proteína similar a ELAV FCV Calicivirus felino FITC Isotiocianato de fluoresceína Flp Recombinasa flipasa FRT Diana de recombinación para la flipasa G3BP Proteína de unión a la proteína activadora de Ras-GTPasa gRNA RNA genómico HCV Virus de la hepatitis C HDLBP Proteína de unión a HDL HEK 293T Human Embryonic Kidney cells (Línea celular de riñón de embrión humano) HeLa S3 Línea celular derivada de un adenocarcinoma humano HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid HIV Virus de la inmunodeficiencia humana hnRNPA/B Ribonucleoproteína heterogénea nuclear A/B hnRNPA0 Ribonucleoproteína heterogénea nuclear A0 hnRNPA1 Ribonucleoproteína heterogénea nuclear A1 hnRNPA2/B1 Ribonucleoproteína heterogénea nuclear A2/B1 hnRNPK Ribonucleoproteína heterogénea nuclear K hnRNPL Ribonucleoproteína heterogénea nuclear L hnRNPQ Ribonucleoproteína heterogénea nuclear Q hnRNPU Ribonucleoproteína heterogénea nuclear U Hpi Horas post-infección Hpt Horas post-transfección HPV Virus del papiloma humano HSC70 Proteína del choque térmico semejante a 71kDa HSP90 Proteína del choque térmico de 90kDa i HSPA1A Proteína del choque térmico de 70kDa 1A HSPA1B Proteína del choque térmico de 70kDa 1B HuNoV Norovirus humano HuR Antígeno humano R IBV Virus de la bronquitis infecciosa aviar ICTV International Committee on Taxonomy of Viruses (Comité internacional de taxonomía de virus) IGF2BP3 Proteína de unión al ARNm del factor de crecimiento similar a insulina 3 IgG Inmunoglobulina G ILF Factor de unión al enhancer de interleukina IPTG Isopropil-β-D-tiogalactopiranósido IRES Internal ribosome entry site (sitio de entrada interna al ribosoma) JEV Virus de la encefalitis japonesa LARS Sintetasa de leucil-ARNt LB Medio de cultivo de Luria-Bertani LC Péptido líder de la cápsida MARS Sintetasa de metionil-ARNt MHV Virus de la hepatitis murina MNV Norovirus murino Moi Multiplicidad de infección MOPS Ácido 3-(N-morfolino)-proponasulfónico mRNA Ácido ribonucleico mensajero MTT 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide NCBI National Center for Biotechnology Information (Centro Nacional para la Información Biotecnológica) NF Factor nuclear NDV Virus de la enfermedad de Newcastle NS Proteína no estructural NTPs Nucleósidos trifosfato NV Virus Norwalk ORF Open reading frame (fase abierta de lectura) PABP Proteína de unión a poli-A PBS Tampón fosfato salino PCBP Proteína de unión a poli-C PCR Polymerase chain reaction (reacción en cadena de la polimerasa) PEC Calicivirus entérico porcino PKR Proteína quinasa activada por RNA Pol Polimerasa Pro Proteasa pro-pol Proteasa-polimerasa PTBP1 Proteína de unión a secuencias de poli-pirimidinas-1 Q-PCR PCR cuantitativa RaV Vesivirus de conejo RHDV Virus de la enfermedad hemorrágica del conejo RLR Rig-like receptor (Receptores tipo-RIG-I) RNA Ácido ribonucleico RNP Ribonucleoproteína
Recommended publications
  • Downloads/Global-Burden-Report.Pdf (Accessed on 20 December 2017)
    viruses Review The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut Vicente Monedero 1, Javier Buesa 2 and Jesús Rodríguez-Díaz 2,* ID 1 Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA, CSIC), Av Catedrático Agustín Escardino, 7, 46980 Paterna, Spain; [email protected] 2 Departament of Microbiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-96-386-4903; Fax: +34-96-386-4960 Received: 31 January 2018; Accepted: 22 February 2018; Published: 24 February 2018 Abstract: Rotavirus (RV) and norovirus (NoV) are the major etiological agents of viral acute gastroenteritis worldwide. Host genetic factors, the histo-blood group antigens (HBGA), are associated with RV and NoV susceptibility and recent findings additionally point to HBGA as a factor modulating the intestinal microbial composition. In vitro and in vivo experiments in animal models established that the microbiota enhances RV and NoV infection, uncovering a triangular interplay between RV and NoV, host glycobiology, and the intestinal microbiota that ultimately influences viral infectivity. Studies on the microbiota composition in individuals displaying different RV and NoV susceptibilities allowed the identification of potential bacterial biomarkers, although mechanistic data on the virus–host–microbiota relation are still needed. The identification of the bacterial and HBGA interactions that are exploited by RV and NoV would place the intestinal microbiota as a new target for alternative therapies aimed at preventing and treating viral gastroenteritis. Keywords: rotavirus; norovirus; secretor; fucosyltransferase-2 gene (FUT2); histo-blood group antigens (HBGAs); microbiota; host susceptibility 1.
    [Show full text]
  • 1080314078.Pdf
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA FACULTAD DE AGRONOMIA POSGRADO CONJUNTO COMPLEJO RESPIRATORIO FELINO: FACTORES DE RIESGO Y DETECCIÓN MOLECULAR DE AGENTES INFECCIOSOS SELECTOS EN GATOS DEL AREA METROPOLITANA DE MONTERREY, NUEVO LEON. Por Irma Luz Pinales Hernández Como requisito parcial para obtener el Grado de MAESTRIA EN CIENCIA ANIMAL Noviembre 2020 COMPLEJO RESPIRATORIO FELINO: FACTORES DE RIESGO Y DETECCIÓN MOLECULAR DE AGENTES INFECCIOSOS SELECTOS EN GATOS DEL ÁREA METROPOLITANA DE MONTERREY, NUEVO LEÓN. COMITÉ DE TESIS: DR. RAMIRO AVALOS RAMÍREZ DIRECTOR DE TESIS DR. JOSÉ C. SEGURA CORREA DRA. SIBILINA CEDILLO ROSALES DIRECTOR EXTERNO CO-DIRECTOR DRA. DIANA ELISA ZAMORA ÁVILA DR. JUAN JOSÉ ZARATE RAMOS CO-DIRECTOR CO-DIRECTOR AGRADECIMIENTOS Quiero agradecer al Dr. Ramiro Avalos Ramírez por aceptar ser mi asesor, guiarme y apoyarme durante todo este tiempo, a pesar de lo mucho que tenía por aprender, él siempre estuvo presente en cada error para ayudarme a salir adelante. A la Dra. Sibilina, el Dr. Jaime Escareño, por siempre brindarme su apoyo ante cualquier duda y facilitarme material cuando se llegó a necesitar. Agradezco a cada uno de mis compañeros de generación y del laboratorio que siempre tuvieron alguna palabra de aliento o alguna enseñanza que compartir, durante estos dos años han sido parte importante de la culminación de este proyecto. A las técnicas laboratoristas, Leslee y Cynthia, que, a pesar de no tener la responsabilidad de colaborar, siempre estuvieron dispuestas a apoyarme, y siempre supieron resolver las dudas que tuve durante estos años. Al Dr. José Gonzales, que siempre tuvo las palabras correctas para alentarme a seguir adelante y vencer todos los miedos o dudas que llegue a tener.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Discovery of Novel Virus Sequences in an Isolated and Threatened Bat Species, the New Zealand Lesser Short-Tailed Bat (Mystacina Tuberculata) Jing Wang,1 Nicole E
    Journal of General Virology (2015), 96, 2442–2452 DOI 10.1099/vir.0.000158 Discovery of novel virus sequences in an isolated and threatened bat species, the New Zealand lesser short-tailed bat (Mystacina tuberculata) Jing Wang,1 Nicole E. Moore,1 Zak L. Murray,1 Kate McInnes,2 Daniel J. White,3 Daniel M. Tompkins3 and Richard J. Hall1 Correspondence 1Institute of Environmental Science & Research (ESR), at the National Centre for Biosecurity & Richard J. Hall Infectious Disease, PO Box 40158, Upper Hutt 5140, New Zealand [email protected] 2Department of Conservation, 18–32 Manners Street, PO Box 6011, Wellington, New Zealand 3Landcare Research, Private Bag 1930, Dunedin, New Zealand Bats harbour a diverse array of viruses, including significant human pathogens. Extensive metagenomic studies of material from bats, in particular guano, have revealed a large number of novel or divergent viral taxa that were previously unknown. New Zealand has only two extant indigenous terrestrial mammals, which are both bats, Mystacina tuberculata (the lesser short- tailed bat) and Chalinolobus tuberculatus (the long-tailed bat). Until the human introduction of exotic mammals, these species had been isolated from all other terrestrial mammals for over 1 million years (potentially over 16 million years for M. tuberculata). Four bat guano samples were collected from M. tuberculata roosts on the isolated offshore island of Whenua hou (Codfish Island) in New Zealand. Metagenomic analysis revealed that this species still hosts a plethora of divergent viruses. Whilst the majority of viruses detected were likely to be of dietary origin, some putative vertebrate virus sequences were identified.
    [Show full text]
  • Glycosphingolipids As Receptors for Non-Enveloped Viruses
    Viruses 2010, 2, 1011-1049; doi:10.3390/v2041011 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Glycosphingolipids as Receptors for Non-Enveloped Viruses Stefan Taube †, Mengxi Jiang † and Christiane E. Wobus * Department of Microbiology and Immunology, University of Michigan Medical School, 5622 Medical Sciences Bldg. II, 1150 West Medical Center Dr., Ann Arbor, MI 48109, USA; E-Mails: [email protected] (S.T.); [email protected] (M.J.) † These authors contributed equally to the work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-734-647-9599; Fax: +1-734-764-3562. Received: 2 March 2010; in revised form: 09 April 2010 / Accepted: 13 April 2010 / Published: 15 April 2010 Abstract: Glycosphingolipids are ubiquitous molecules composed of a lipid and a carbohydrate moiety. Their main functions are as antigen/toxin receptors, in cell adhesion/recognition processes, or initiation/modulation of signal transduction pathways. Microbes take advantage of the different carbohydrate structures displayed on a specific cell surface for attachment during infection. For some viruses, such as the polyomaviruses, binding to gangliosides determines the internalization pathway into cells. For others, the interaction between microbe and carbohydrate can be a critical determinant for host susceptibility. In this review, we summarize the role of glycosphingolipids as receptors for members of the non-enveloped calici-, rota-, polyoma- and parvovirus families. Keywords: non-enveloped virus; glycosphingolipid; receptor; calicivirus; rotavirus; polyomavirus; parvovirus 1. Introduction Viruses come in many different flavors and are often broadly classified based on their nucleic acid content (DNA versus RNA virus), capsid symmetry (icosahedral, helical, or complex), and the presence or absence of a lipid envelope (enveloped versus non-enveloped).
    [Show full text]
  • Caliciviridae
    ICTV VIRUS TAXONOMY PROFILE Vinjé et al., Journal of General Virology 2019;100:1469–1470 DOI 10.1099/jgv.0.001332 ICTV ICTV Virus Taxonomy Profile: Caliciviridae Jan Vinjé1,*, Mary K. Estes2, Pedro Esteves3, Kim Y. Green4, Kazuhiko Katayama5, Nick J. Knowles6, Yvan L’Homme7, Vito Martella8, Harry Vennema9, Peter A. White10 and ICTV Report Consortium Abstract The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4–8.3 kb. The most clinically impor- tant representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-envel- oped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv. global/ report/ caliciviridae. Table 1. Characteristics of members of the family Caliciviridae Typical member: Norwalk virus (M87661), species Norwalk virus, genus Norovirus Virion Non-enveloped with icosahedral symmetry, 27–40 nm in diameter Genome Single-stranded, positive-sense genomic RNA of 7.4–8.3 kb, with a 5′-terminal virus protein, genome-linked (VPg) and 3′-terminal poly(A) Replication Cytoplasmic Translation From genome-sized (non-structural proteins) and 3′-terminal subgenomic (structural proteins) mRNAs Host range Mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), birds (Bavovirus, Nacovirus), fish (Minovirus, Salovirus) Taxonomy Realm Riboviria; more than ten genera VIRION GENOME Calicivirus virions are 27–40 nm in diameter, non-enveloped Caliciviruses have a single-stranded, positive-sense genomic with icosahedral symmetry (Table 1).
    [Show full text]
  • Guía Docente
    FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA Denominación: MICROBIOLOGÍA E INMUNOLOGÍA Código: 101463 Plan de estudios: GRADO DE VETERINARIA Curso: 2 Denominación del módulo al que pertenece: FORMACIÓN BÁSICA COMÚN Materia: MICROBIOLOGÍA E INMUNOLOGÍA Carácter: BASICA Duración: ANUAL Créditos ECTS: 12.0 Horas de trabajo presencial: 120 Porcentaje de presencialidad: 40.0% Horas de trabajo no presencial: 180 Plataforma virtual: Uco-Moodle DATOS DEL PROFESORADO Nombre: GARRIDO JIMENEZ, MARIA ROSARIO (Coordinador) Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CANO TERRIZA, DAVID Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: GÓMEZ GASCÓN, LIDIA Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CABALLERO GÓMEZ, JAVIER MANUEL Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 REQUISITOS Y RECOMENDACIONES Requisitos previos establecidos en el plan de estudios Ninguno Recomendaciones Ninguna especificada COMPETENCIAS CE23 Estudio de los microorganismos que afectan a los animales y de aquellos que tengan una aplicación industrial, biotecnológica o ecológica. CE24 Bases y aplicaciones técnicas de la respuesta inmune. INFORMACIÓN SOBRE TITULACIONES www.uco.es DE LA UNIVERSIDAD DE CORDOBA facebook.com/universidadcordoba @univcordoba uco.es/grados MICROBIOLOGÍA E INMUNOLOGÍA PÁG. 1 / 14 Curso 2020/21 FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE OBJETIVOS Los siguientes objetivos recogen las recomendaciones de la OIE para la formación del veterinario: 1.
    [Show full text]
  • Taxonomy Bovine Ephemeral Fever Virus Kotonkan Virus Murrumbidgee
    Taxonomy Bovine ephemeral fever virus Kotonkan virus Murrumbidgee virus Murrumbidgee virus Murrumbidgee virus Ngaingan virus Tibrogargan virus Circovirus-like genome BBC-A Circovirus-like genome CB-A Circovirus-like genome CB-B Circovirus-like genome RW-A Circovirus-like genome RW-B Circovirus-like genome RW-C Circovirus-like genome RW-D Circovirus-like genome RW-E Circovirus-like genome SAR-A Circovirus-like genome SAR-B Dragonfly larvae associated circular virus-1 Dragonfly larvae associated circular virus-10 Dragonfly larvae associated circular virus-2 Dragonfly larvae associated circular virus-3 Dragonfly larvae associated circular virus-4 Dragonfly larvae associated circular virus-5 Dragonfly larvae associated circular virus-6 Dragonfly larvae associated circular virus-7 Dragonfly larvae associated circular virus-8 Dragonfly larvae associated circular virus-9 Marine RNA virus JP-A Marine RNA virus JP-B Marine RNA virus SOG Ostreid herpesvirus 1 Pig stool associated circular ssDNA virus Pig stool associated circular ssDNA virus GER2011 Pithovirus sibericum Porcine associated stool circular virus Porcine stool-associated circular virus 2 Porcine stool-associated circular virus 3 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 Wallerfield virus AKR (endogenous) murine leukemia virus ARV-138 ARV-176 Abelson murine leukemia virus Acartia tonsa copepod circovirus Adeno-associated virus - 1 Adeno-associated virus - 4 Adeno-associated virus - 6 Adeno-associated virus - 7 Adeno-associated virus - 8 African elephant polyomavirus
    [Show full text]
  • Archives of Virology
    Archives of Virology Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) --Manuscript Draft-- Manuscript Number: Full Title: Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) Article Type: Virology Division News: Virus Taxonomy/Nomenclature Keywords: virus taxonomy; virus phylogeny; virus nomenclature; International Committee on Taxonomy of Viruses; International Code of Virus Classification and Nomenclature Corresponding Author: Arcady Mushegian National Science Foundation McLean, Virginia UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: National Science Foundation Corresponding Author's Secondary Institution: First Author: Andrew M.Q. King First Author Secondary Information: Order of Authors: Andrew M.Q. King Elliot J Lefkowitz Arcady R Mushegian Michael J Adams Bas E Dutilh Alexander E Gorbalenya Balázs Harrach Robert L Harrison Sandra Junglen Nick J Knowles Andrew M Kropinski Mart Krupovic Jens H Kuhn Max Nibert Luisa Rubino Sead Sabanadzovic Hélène Sanfaçon Stuart G Siddell Peter Simmonds Arvind Varsani Francisco Murilo Zerbini Andrew J Davison Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Order of Authors Secondary Information: Funding Information: Medical Research Council Dr Andrew J Davison (MC_UU_12014/3) Nederlandse Organisatie voor
    [Show full text]
  • Development of New Molecular Methods for the Diagnosis and the Study of Viral Diseases of Fish
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN SCIENZE VETERINARIE Ciclo XXVII Settore Concorsuale di afferenza: 07/H3 Settore Scientifico disciplinare: VET/05 TITOLO TESI Development of new molecular methods for the diagnosis and the study of viral diseases of fish Presentata da: Ana Cristina de Aguiar Saldanha Pinheiro Coordinatore Dottorato Relatore Prof. Carlo Tamanini Dott.ssa Sara Ciulli Esame finale anno 2015 CONTENTS ABSTRACT 1 CHAPTER I - Viral diseases of fish: molecular methods for diagnosis 4 1.1 Introduction 5 1.2 Fish Viruses 7 1.2.1 RNA Viruses of Fish 8 1.2.1.1 Rhabdoviridae 8 1.2.1.2 Paramyxoviridae 11 1.2.1.3 Orthomyxoviridae 12 1.2.1.4 Picornaviridae 13 1.2.1.5 Nodaviridae 14 1.2.1.6 Nidovirales 16 1.2.1.7 Togaviridae 17 1.2.1.8 Caliciviridae 18 1.2.1.9 Retroviridae 19 1.2.1.10 Reoviridae 22 1.2.1.11 Birnaviridae 23 1.2.2 DNA Viruses of Fish 25 1.2.2.1 Iridoviridae 25 1.2.2.2 Herpesviridae 26 1.2.2.3 Adenoviridae 28 1.3 Molecular tools for viral fish diseases diagnosis 29 1.3.1 Conventional Polymerase chain reaction 30 1.3.2 Reverse transcriptase polymerase chain reaction 33 1.3.3 Nested PCR and Semi-Nested PCR 35 1.3.4 Multiplex PCR 36 1.3.5 Real-Time PCR 37 1.3.6 Loop-mediated isothermal amplification 43 1.3.7 Microarray Technology 47 1.3.8 Nucleic acid sequence based amplification 48 1.4 Conclusion 50 1.5 References 51 CHAPTER II 80 Development and application of a Real Time PCR assay for the detection and quantification of lymphocystis disease virus 80 2.1 Abstract 81 2.2 Introduction 82 2.3 Material and Methods 84 2.3.1 Fish samples 84 2.3.2 Virological analysis 85 2.3.3 DNA extraction 86 2.3.4 Conventional PCR, sequencing, cloning and standard preparation of DNA 86 2.3.5.
    [Show full text]
  • VS-Regulated Livestock and Poultry Pathogens (Partial List)
    VS-regulated livestock and poultry pathogens (partial list, Revised 10/31/2019) Absidia corymbifera Acremonium strictum Acinetobacter spp. ** Actinobacillus pleuropneumoniae Actinomyces bovis Aedes mosquito Aedes mosquito eggs Aeromonas hydrophila Aeromonas spp. ** African horse sickness (only the excluded select agent*) African swine fever (only the excluded select agent*) Akabane virus Alcaligenes faecalis Amblyomma spp. - tick Amidostomum anseri Amycolaptosis spp. ** Anaplasma centrale Anaplasma marginale Anaplasma phagocytophilum Anopheles mosquito eggs Anopheles mosquitos Argas spp. - tick Arthrobacter equi Arthrobacter spp. ** Ascaridia dissimilis Ascaridia galli Ascaris suum Aspergillus spp. ** Avian adenovirus Avian encephalomyelitis virus Avian hepatitis E virus Avian herpesvirus Avian infectious bronchitis virus Avian influenza H7N9 attenuated vaccine Avian influenza H7N9 wild type Avian influenza virus (high pathogenic) (only the excluded select agent*) Avian Influenza virus (low pathogenic) Avian leukosis virus (retrovirus) Avian metapneumoviruses Avian mycoplasma spp. ** Avian myelocytomatosis Avian nephritis virus 1,2 (astrovirus) Avian paramyxovirus serotypes 2-9 Avian pneumovirus type C (Colorado strain) Avian polyoma virus Avian pox virus Avian reticuloendothelial virus (REV) Avian rotavirus Avian viral arthritis virus (Tenosynovitis; Avian reovirus; Orthoreovirus) Avibacterium paragallinarum Babesia bigemina Babesia bovis Babesia caballi Babesia divergens Babesia major Babesia motasi Babesia ovis Babesia perroncitoi Babesia
    [Show full text]
  • Supplemental Material.Pdf
    SUPPLEMENTAL MATERIAL A cloud-compatible bioinformatics pipeline for ultra-rapid pathogen identification from next-generation sequencing of clinical samples Samia N. Naccache1,2, Scot Federman1,2, Narayanan Veerarghavan1,2, Matei Zaharia3, Deanna Lee1,2, Erik Samayoa1,2, Jerome Bouquet1,2, Alexander L. Greninger4, Ka-Cheung Luk5, Barryett Enge6, Debra A. Wadford6, Sharon L. Messenger6, Gillian L. Genrich1, Kristen Pellegrino7, Gilda Grard8, Eric Leroy8, Bradley S. Schneider9, Joseph N. Fair9, Miguel A.Martinez10, Pavel Isa10, John A. Crump11,12,13, Joseph L. DeRisi4, Taylor Sittler1, John Hackett, Jr.5, Steve Miller1,2 and Charles Y. Chiu1,2,14* Affiliations: 1Department of Laboratory Medicine, UCSF, San Francisco, CA, USA 2UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA 3Department of Computer Science, University of California, Berkeley, CA, USA 4Department of Biochemistry, UCSF, San Francisco, CA, USA 5Abbott Diagnostics, Abbott Park, IL, USA 6Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA 7Department of Family and Community Medicine, UCSF, San Francisco, CA, USA 8Viral Emergent Diseases Unit, Centre International de Recherches Médicales de Franceville, Franceville, Gabon 9Metabiota, Inc., San Francisco, CA, USA 10Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México 11Division of Infectious Diseases and International Health and the Duke Global Health
    [Show full text]