Surveying by the Stars, Part II: Solar Observation (Hour-Angle Method) and Polaris Observation

Total Page:16

File Type:pdf, Size:1020Kb

Surveying by the Stars, Part II: Solar Observation (Hour-Angle Method) and Polaris Observation Surveying by the Stars, Part II: Solar Observation (Hour-Angle Method) and Polaris Observation Please obtain written permission from author/compiler Wayne Twigg, (copyright 2017 A.D.) before using for educational and instructional exercises. We Surveyors today record our measurements to [a supposed] accuracy of one second of arc. In fact, one second of arc subtends the width of a human hair at…….. Facts: Earth’s radius = 3,961± miles. At this place on the Earth’s surface, 1 second of Latitude = 101’±; 1 second of Longitude = 78’± “He must be blind who does not at once see, from the best and wisest structure of things, the infinite wisdom and goodness of their almighty Creator; and he must be mad who refuses to acknowledge them.” ….preface to the 2nd Edition of Sir Isaac Newton’s The Principia by Roger Cotes, Plumian Professor of Astronomy, Cambridge, England, 12 May 1713 Radio Station WWV broadcasts UTC time scale (Coordinated Universal Time). Available over shortwave radio at 2.5, 5, 10, 15 and 20 MHz. WWV telephone (303)499-7111. There is a time announcement delay of less than 30 ms (“land line”) and up to 150 ms (cell phone). To convert to UT1 (Survey Time), apply DUT correction in 0.1 seconds, which is encoded in the voice announcement as the number of double-ticks during the first 16 seconds of each minute; positive sign in seconds 1 – 8; negative sign in seconds 9 – 16. The Equator is perpendicular to the Poles. The Horizon is perpendicular to the Observer’s Zenith. Complementary angles: Latitude and Co-Latitude; Altitude and Zenith; Declination and Polar Distance. Angle Z is the angle west (or east) from the N. Pole. By definition, all meridians pass through both Poles. The “t” (a.k.a. meridian) angle is formed at the Pole. If LHA is < 180° (as shown), then “t” and LHA are =. In other words, Local Hour Angle (t) = Greenwich Hour Angle – West Longitude. Here is (Only a star teasing! chart to Every- help one can locate find the the Sun Sun). in the sky. Accuracy to 5 seconds of arc Minimum of 3 observations (but you can easily get 5) Needs both Latitude and Longitude Must be timed using Precise Time, such as tuning to Station WWV with a shortwave radio. Accuracy of time is critical. Does not need Vertical or Co-Vertical (a.k.a. Zenith) Angles Instrument leveling must be very precise; use a striding level if you can get one. Use Hour Angle Method when observing (1) between ½ hour after sunrise and 9:00 a.m. Local Standard Time, and (2) between 3:00 p.m. and ½ hour before sunset Local Standard Time. The closer it is to noontime, the faster the Sun moves and the steeper it is in the sky. Then you can’t see it through your scope anyway without a right angle eyepiece. ½ hour after sunrise to 9:00 a.m.; 3:00 p.m. to ½ hour before sunset Here is a DIRECT He puts Sun’s recommended image on the D&R sequence proper side of for sighting the the vertical Sun. cross-hair (as The Surveyor shown). The acquires the REVERSE instant the Sun Sun’s image on a “leads” onto the white card. He vertical hair’s focuses both point-of- image and tangency, he hits cross-hairs. “lap” button. Let’s practice with the stopwatch. ✓ Contact Station WWV by shortwave radio or cell phone (303)499-7111, but remember that switching may cause delay of 150 msec. Start stopwatch at exact minute (may need more than one call). ✓ Two-man crew: Instrumentman/Observer sets up instrument and acquires backsight Direct on Zero; then he turns to the sun, gets the white card ready and notifies Notekeeper when he has acquired the sun’s image and is ready to start readings. ✓ Notekeeper writes start time as hour and exact minute. He will record “lap” time for each observation. At end, he checks stopwatch against WWV and notes DUT as well as synchronous correction, if any. ✓ During the observation session, the Observer calls “Rea-a-a-a-d-y-y-y” “TICK” when sun’s image becomes tangent to the vertical crosshair. He reads the horizontal angle aloud to the Notekeeper. ✓ Immediately at “TICK”, the Notekeeper hits “lap” button and afterward writes the minutes, seconds and tenths of seconds. Subsequently he records the horizontal angle as he heard it from the Observer. ✓ Observer re-acquires sun’s image and again calls “TICK” at tangency. At “TICK”, the Notekeeper hits “lap” button, records minutes, seconds and tenths of seconds; he hits “lap” button again to continue stopwatch and again records the horizontal angle as he heard it from the Observer. ✓ Repeat for eight more observations (or at least, sufficient for three complete D&R sets). ✓ Notekeeper stops stopwatch at moment of final observation and records last set of minutes and seconds. He then notes the daily hourly time and makes sure that the subtraction of his start time and his ending time equals the duration of the session’s set of minutes and seconds. Observer makes a Reverse backsight check. Field Notes: Hour-Angle Sunshot This Observer has made 3 D-R sets on the sun. He also noted the DUT correction as well as a stopwatch correction. Back in the office, both corrections are applied and the angle sets averaged. Note the Lat/Long of the observation station, also the magnetic bearing to the backsight. This poor Having an survey schlupp HP-41 at the who observed in time, he then the field then keyed EKSI’s computed his program into it own sun shots and used it to in the office. He calculate all decided to six observa- compute each tions. field observation This sheet separately and represents the then average calculations the results. for Observa- Notice that the tion No. 1, angle right is the with average same as the first of the six angle right from shown below. the field notes. First, you have to find it! (Also, remember compass and co-latitude). Polaris, a circumpolar star, traces a 1°± arc around the North Pole. During its counter-clockwise circumpolar path, it is directly aligned with True North at “Upper Culmination” and at “Lower Culmination” when it is exactly on line between the Surveyor’s Zenith (Meridian) and the North Pole. Then all the Surveyor has to do is sight it. However, it is moving quickly then, being at Culmination only for an instant. It is easier for the Surveyor to track it when it is near Eastern or Western Elongation (90° from Culmination). It crosses every Meridian once during each Sidereal Day. The distance around the circle from the Surveyor’s Meridian to Polaris is called the Local Hour Angle (LHA). The distance around the circle from the Greenwich (or Prime) Meridian to Polaris is called the Greenwich Hour Angle (GHA). This is the angle that is/was published in the EKSI Ephemeris. We are here at 39°29’± North Latitude. The Co-Altitude (90° minus angle up from Horizon) to Polaris is approximately 50°41’. …is the conical wobbling movement of Earth’s axis that causes a 23.4º circle (the angle of the Ecliptic) to be scribed onto the Celestial Sphere. Astronomers theorize that precession has a period of 26,000 years. If any of you are still surveying in the Year 27985 A.D., you will have to sight the star Vega (in the constellation Lyra) as the North Pole, instead of Polaris. Here in 2017 A.D., wasn’t it considerate of God to give us Land Surveyors here in the Northern Hemisphere the star Polaris to aim at? Professor a short- Porter W. wave radio. McDonnell, Jr. from his He also 1975 class on wants two Celestial sets D&R, Observations with first at Penn State B.S. from Mont Alto. close to 0° Note that and the he has this second B.S. form set up from close for the use of to 90°. This is one …it notes the of the Local computation Magnetic sheets from Declination the and also Appalachian computes Chapter’s the Mapping Polaris Angle for observation conversion of 2003. of the True This sheet North not only Azimuth to computes MD Grid the North Azimuth. bearing to the backsight…. Here’s one possibility: https://celnav.de/longterm.htm This long term almanac calculates Greenwich Hour Angle (GHA) and Declination for the Sun and Polaris. However, you need to calculate DT by the formula DT = 32.183 sec. + (TAI-UTC) – DUT1 For this, use the USNO Multiyear Interactive Computer Almanac (MICA) or consult the USNO website Any other questions or comments? of grateful indebtedness to the following Land Surveying giants for the use of their instructions, programs and data Robert E. Angle, LS Professor Porter McDonnell, Penn State University, Mont Alto Campus Professor Jim Mask, Catonsville Community College Dr. R. Ben Buckner, Ohio State University Drs. Elgin, Knowles & Senne (EKSI) for their Celestial Observation Handbook and Ephemeris U.S. Naval Observatory (USNO) Our profession of Land Surveying is intimately connected with the sky’s celestial bodies and their movements. There is very much that we have not mentioned in these presentations, but what we have seen should be enough to challenge you to perform your own celestial measurements from this constantly moving, constantly changing platform of observation we call “Earth”. Now let’s all go outside and perform a sun shot!.
Recommended publications
  • Basic Principles of Celestial Navigation James A
    Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig.
    [Show full text]
  • Capricious Suntime
    [Physics in daily life] I L.J.F. (Jo) Hermans - Leiden University, e Netherlands - [email protected] - DOI: 10.1051/epn/2011202 Capricious suntime t what time of the day does the sun reach its is that the solar time will gradually deviate from the time highest point, or culmination point, when on our watch. We expect this‘eccentricity effect’ to show a its position is exactly in the South? e ans - sine-like behaviour with a period of a year. A wer to this question is not so trivial. For ere is a second, even more important complication. It is one thing, it depends on our location within our time due to the fact that the rotational axis of the earth is not zone. For Berlin, which is near the Eastern end of the perpendicular to the ecliptic, but is tilted by about 23.5 Central European time zone, it may happen around degrees. is is, aer all, the cause of our seasons. To noon, whereas in Paris it may be close to 1 p.m. (we understand this ‘tilt effect’ we must realise that what mat - ignore the daylight saving ters for the deviation in time time which adds an extra is the variation of the sun’s hour in the summer). horizontal motion against But even for a fixed loca - the stellar background tion, the time at which the during the year. In mid- sun reaches its culmination summer and mid-winter, point varies throughout the when the sun reaches its year in a surprising way.
    [Show full text]
  • The Correct Qibla
    The Correct Qibla S. Kamal Abdali P.O. Box 65207 Washington, D.C. 20035 [email protected] (Last Revised 1997/9/17)y 1 Introduction A book[21] published recently by Nachef and Kadi argues that for North America the qibla (i.e., the direction of Mecca) is to the southeast. As proof of this claim, they quote from a number of classical Islamic jurispru- dents. In further support of their view, they append testimonials from several living Muslim religious scholars as well as from several Canadian and US scientists. The consulted scientists—mainly geographers—suggest that the qibla should be identified with the rhumb line to Mecca, which is in the southeastern quadrant for most of North America. The qibla adopted by Nachef and Kadi (referred to as N&K in the sequel) is one of the eight directions N, NE, E, SE, S, SW, W, and NW, depending on whether the place whose qibla is desired is situated relatively east or west and north or south of Mecca; this direction is not the same as the rhumb line from the place to Mecca, but the two directions lie in the same quadrant. In their preliminary remarks, N&K state that North American Muslim communities used the southeast direction for the qibla without exception until the publication of a book[1] about 20 years ago. N&K imply that the use of the great circle for computing the qibla, which generally results in a direction in the north- eastern quadrant for North America, is a new idea, somehow original with that book.
    [Show full text]
  • Positional Astronomy Coordinate Systems
    Positional Astronomy Observational Astronomy 2019 Part 2 Prof. S.C. Trager Coordinate systems We need to know where the astronomical objects we want to study are located in order to study them! We need a system (well, many systems!) to describe the positions of astronomical objects. The Celestial Sphere First we need the concept of the celestial sphere. It would be nice if we knew the distance to every object we’re interested in — but we don’t. And it’s actually unnecessary in order to observe them! The Celestial Sphere Instead, we assume that all astronomical sources are infinitely far away and live on the surface of a sphere at infinite distance. This is the celestial sphere. If we define a coordinate system on this sphere, we know where to point! Furthermore, stars (and galaxies) move with respect to each other. The motion normal to the line of sight — i.e., on the celestial sphere — is called proper motion (which we’ll return to shortly) Astronomical coordinate systems A bit of terminology: great circle: a circle on the surface of a sphere intercepting a plane that intersects the origin of the sphere i.e., any circle on the surface of a sphere that divides that sphere into two equal hemispheres Horizon coordinates A natural coordinate system for an Earth- bound observer is the “horizon” or “Alt-Az” coordinate system The great circle of the horizon projected on the celestial sphere is the equator of this system. Horizon coordinates Altitude (or elevation) is the angle from the horizon up to our object — the zenith, the point directly above the observer, is at +90º Horizon coordinates We need another coordinate: define a great circle perpendicular to the equator (horizon) passing through the zenith and, for convenience, due north This line of constant longitude is called a meridian Horizon coordinates The azimuth is the angle measured along the horizon from north towards east to the great circle that intercepts our object (star) and the zenith.
    [Show full text]
  • On the Choice of Average Solar Zenith Angle
    2994 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 71 On the Choice of Average Solar Zenith Angle TIMOTHY W. CRONIN Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts (Manuscript received 6 December 2013, in final form 19 March 2014) ABSTRACT Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both clear-sky and cloud albedo are increasing functions of the solar zenith angle, one can choose an absorption- weighted zenith angle that reproduces the spatial- or time-mean absorbed solar radiation. Calculations are performed for a pure scattering atmosphere and with a more detailed radiative transfer model and show that the absorption-weighted zenith angle is usually between the daytime-weighted and insolation-weighted zenith angles but much closer to the insolation-weighted zenith angle in most cases, especially if clouds are re- sponsible for much of the shortwave reflection. Use of daytime-average zenith angle may lead to a high bias in planetary albedo of approximately 3%, equivalent to a deficit in shortwave absorption of approximately 22 10 W m in the global energy budget (comparable to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that have used general circulation models with spatially constant insolation have underestimated the global-mean zenith angle, with a consequent low bias in planetary albedo of ap- 2 proximately 2%–6% or a surplus in shortwave absorption of approximately 7–20 W m 2 in the global energy budget.
    [Show full text]
  • M-Shape PV Arrangement for Improving Solar Power Generation Efficiency
    applied sciences Article M-Shape PV Arrangement for Improving Solar Power Generation Efficiency Yongyi Huang 1,*, Ryuto Shigenobu 2 , Atsushi Yona 1, Paras Mandal 3 and Zengfeng Yan 4 and Tomonobu Senjyu 1 1 Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan; [email protected] (A.Y.); [email protected] (T.S.) 2 Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-city, Fukui 910-8507, Japan; [email protected] 3 Department of Electrical and Computer Engineering, University of Texas at El Paso, TX 79968, USA; [email protected] 4 School of Architecture, Xi’an University of Architecture and Technology, Shaanxi, Xi’an 710055, China; [email protected] * Correspondence: [email protected] Received: 25 November 2019; Accepted: 3 January 2020; Published: 10 January 2020 Abstract: This paper presents a novel design scheme to reshape the solar panel configuration and hence improve power generation efficiency via changing the traditional PVpanel arrangement. Compared to the standard PV arrangement, which is the S-shape, the proposed M-shape PV arrangement shows better performance advantages. The sky isotropic model was used to calculate the annual solar radiation of each azimuth and tilt angle for the six regions which have different latitudes in Asia—Thailand (Bangkok), China (Hong Kong), Japan (Naha), Korea (Jeju), China (Shenyang), and Mongolia (Darkhan). The optimal angle of the two types of design was found. It emerged that the optimal tilt angle of the M-shape tends to 0. The two types of design efficiencies were compared using Naha’s geographical location and sunshine conditions.
    [Show full text]
  • Lunar Motion Motion A
    2 Lunar V. Lunar Motion Motion A. The Lunar Calendar Dr. Bill Pezzaglia B. Motion of Moon Updated 2012Oct30 C. Eclipses 3 1. Phases of Moon 4 A. The Lunar Calendar 1) Phases of the Moon 2) The Lunar Month 3) Calendars based on Moon b). Elongation Angle 5 b.2 Elongation Angle & Phase 6 Angle between moon and sun (measured eastward along ecliptic) Elongation Phase Configuration 0º New Conjunction 90º 1st Quarter Quadrature 180º Full Opposition 270º 3rd Quarter Quadrature 1 b.3 Elongation Angle & Phase 7 8 c). Aristarchus 275 BC Measures the elongation angle to be 87º when the moon is at first quarter. Using geometry he determines the sun is 19x further away than the moon. [Actually its 400x further !!] 9 Babylonians (3000 BC) note phases are 7 days apart 10 2. The Lunar Month They invent the 7 day “week” Start week on a) The “Week” “moon day” (Monday!) New Moon First Quarter b) Synodic Month (29.5 days) Time 0 Time 1 week c) Spring and Neap Tides Full Moon Third Quarter New Moon Time 2 weeks Time 3 weeks Time 4 weeks 11 b). Stone Circles 12 b). Synodic Month Stone circles often have 29 stones + 1 xtra one Full Moon to Full Moon off to side. Originally there were 30 “sarson The cycle of stone” in the outer ring of Stonehenge the Moon’s phases takes 29.53 days, or ~4 weeks Babylonians measure some months have 29 days (hollow), some have 30 (full). 2 13 c1). Tidal Forces 14 c). Tides This animation illustrates the origin of tidal forces.
    [Show full text]
  • Using the SFA Star Charts and Understanding the Equatorial Coordinate System
    Using the SFA Star Charts and Understanding the Equatorial Coordinate System SFA Star Charts created by Dan Bruton of Stephen F. Austin State University Notes written by Don Carona of Texas A&M University Last Updated: August 17, 2020 The SFA Star Charts are four separate charts. Chart 1 is for the north celestial region and chart 4 is for the south celestial region. These notes refer to the equatorial charts, which are charts 2 & 3 combined to form one long chart. The star charts are based on the Equatorial Coordinate System, which consists of right ascension (RA), declination (DEC) and hour angle (HA). From the northern hemisphere, the equatorial charts can be used when facing south, east or west. At the bottom of the chart, you’ll notice a series of twenty-four numbers followed by the letter “h”, representing “hours”. These hour marks are right ascension (RA), which is the equivalent of celestial longitude. The same point on the 360 degree celestial sphere passes overhead every 24 hours, making each hour of right ascension equal to 1/24th of a circle, or 15 degrees. Each degree of sky, therefore, moves past a stationary point in four minutes. Each hour of right ascension moves past a stationary point in one hour. Every tick mark between the hour marks on the equatorial charts is equal to 5 minutes. Right ascension is noted in ( h ) hours, ( m ) minutes, and ( s ) seconds. The bright star, Antares, in the constellation Scorpius. is located at RA 16h 29m 30s. At the left and right edges of the chart, you will find numbers marked in degrees (°) and being either positive (+) or negative(-).
    [Show full text]
  • Astronomy: Space Systems
    Solar system SCIENCE Astronomy: Space Systems Teacher Guide Patterns in the night sky Space exploration Eclipses CKSci_G5Astronomy Space Systems_TG.indb 1 27/08/19 8:07 PM CKSci_G5Astronomy Space Systems_TG.indb 2 27/08/19 8:07 PM Astronomy: Space Systems Teacher Guide CKSci_G5Astronomy Space Systems_TG.indb 1 27/08/19 8:07 PM Creative Commons Licensing This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You are free: to Share—to copy, distribute, and transmit the work to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation (www.coreknowledge.org) made available through licensing under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial—You may not use this work for commercial purposes. Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page: https://creativecommons.org/licenses/by-nc-sa/4.0/ Copyright © 2019 Core Knowledge Foundation www.coreknowledge.org All Rights Reserved. Core Knowledge®, Core Knowledge Curriculum Series™, Core Knowledge Science™, and CKSci™ are trademarks of the Core Knowledge Foundation.
    [Show full text]
  • Azimuth and Altitude – Earth Based – Latitude and Longitude – Celestial
    Basics of Celestial Navigation - stars • Coordinate systems – Observer based – azimuth and altitude – Earth based – latitude and longitude – Celestial – declination and right ascension (or sidereal hour angle) • Relationship among three – star pillars • Motions of the stars in the sky • Major star groupings Comments on coordinate systems • All three are basically ways of describing locations on a sphere – inherently two dimensional – Requires two parameters (e.g. latitude and longitude) • Reality – three dimensionality – Height of observer – Oblateness of earth, mountains – Stars at different distances (parallax) • What you see in the sky depends on – Date of year – Time – Latitude – Longitude – Which is how we can use the stars to navigate!! Altitude-Azimuth coordinate system Based on what an observer sees in the sky. Zenith = point directly above the observer (90o) Nadir = point directly below the observer (-90o) – can’t be seen Horizon = plane (0o) Altitude = angle above the horizon to an object (star, sun, etc) (range = 0o to 90o) Azimuth = angle from true north (clockwise) to the perpendicular arc from star to horizon (range = 0o to 360o) Note: lines of azimuth converge at zenith The arc in the sky from azimuth of 0o to 180o is called the local meridian Point of view of the observer Latitude Latitude – angle from the equator (0o) north (positive) or south (negative) to a point on the earth – (range = 90o = north pole to – 90o = south pole). 1 minute of latitude is always = 1 nautical mile (1.151 statute miles) Note: It’s more common to express Latitude as 26oS or 42oN Longitude Longitude = angle from the prime meridian (=0o) parallel to the equator to a point on earth (range = -180o to 0 to +180o) East of PM = positive, West of PM is negative.
    [Show full text]
  • Astronomy 113 Laboratory Manual
    UNIVERSITY OF WISCONSIN - MADISON Department of Astronomy Astronomy 113 Laboratory Manual Fall 2011 Professor: Snezana Stanimirovic 4514 Sterling Hall [email protected] TA: Natalie Gosnell 6283B Chamberlin Hall [email protected] 1 2 Contents Introduction 1 Celestial Rhythms: An Introduction to the Sky 2 The Moons of Jupiter 3 Telescopes 4 The Distances to the Stars 5 The Sun 6 Spectral Classification 7 The Universe circa 1900 8 The Expansion of the Universe 3 ASTRONOMY 113 Laboratory Introduction Astronomy 113 is a hands-on tour of the visible universe through computer simulated and experimental exploration. During the 14 lab sessions, we will encounter objects located in our own solar system, stars filling the Milky Way, and objects located much further away in the far reaches of space. Astronomy is an observational science, as opposed to most of the rest of physics, which is experimental in nature. Astronomers cannot create a star in the lab and study it, walk around it, change it, or explode it. Astronomers can only observe the sky as it is, and from their observations deduce models of the universe and its contents. They cannot ever repeat the same experiment twice with exactly the same parameters and conditions. Remember this as the universe is laid out before you in Astronomy 113 – the story always begins with only points of light in the sky. From this perspective, our understanding of the universe is truly one of the greatest intellectual challenges and achievements of mankind. The exploration of the universe is also a lot of fun, an experience that is largely missed sitting in a lecture hall or doing homework.
    [Show full text]
  • A LETTER of AL-B-Irijnl HABASH AL-Viisib's ANALEMMA for THE
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 1 (1974), 3-11 A LETTEROF AL-B-iRijNl HABASHAL-ViiSIB’S ANALEMMAFOR THE QIBLA BY ENS, KENNEDY, AMERICAN UNIV, OF BEIRUT AND BROWN UNIVERSITY AND YUSUF ‘ID, DEBAYYAH CAMP, LEBANON SUMMARIES Given the geographical coordinates of two points on the earth's surface, a graphical construction is described for determining the azimuth of the one locality with respect to the other. The method is due to a ninth-century astronomer of Baghdad, transmitted in a short Arabic manuscript reproduced here, with an English translation. A proof and commentary have been added by the present authors. Etant don&es les coordin6es gkographiques de deux points sur le globe terrestre, les auteurs dkrient une construction graphique pour trouver l'azimuth d'un point par rapport 2 l'autre. La mbthode est contenue dans un bref manuscrit, ici transcrit avec copie facsimilaire et traduction anglaise, d'un astronome de Baghdad du ne,uvibme sikle. Les auteurs ajoutent une demonstration et un commentaire. 1. INTRODUCTION This paper presents a hitherto unpublished writing by the celebrated polymath of Central Asia, Abii al-Rayhgn Muhammad b. Ahmad al-BiGi, the millenial anniversary of whose birth was commemorated in 1973. For information on his life and work the reaaer may consult item [3] in the bibliography. 4 E.S. Kennedy, Y. ‘Id HM1 The unique manuscript copy of the text is Cod.. Or. 168(16)* in the collection of the Bibliotheek der Rijksuniversiteit of Leiden.
    [Show full text]