Astronomy 113 Laboratory Manual
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF WISCONSIN - MADISON Department of Astronomy Astronomy 113 Laboratory Manual Fall 2011 Professor: Snezana Stanimirovic 4514 Sterling Hall [email protected] TA: Natalie Gosnell 6283B Chamberlin Hall [email protected] 1 2 Contents Introduction 1 Celestial Rhythms: An Introduction to the Sky 2 The Moons of Jupiter 3 Telescopes 4 The Distances to the Stars 5 The Sun 6 Spectral Classification 7 The Universe circa 1900 8 The Expansion of the Universe 3 ASTRONOMY 113 Laboratory Introduction Astronomy 113 is a hands-on tour of the visible universe through computer simulated and experimental exploration. During the 14 lab sessions, we will encounter objects located in our own solar system, stars filling the Milky Way, and objects located much further away in the far reaches of space. Astronomy is an observational science, as opposed to most of the rest of physics, which is experimental in nature. Astronomers cannot create a star in the lab and study it, walk around it, change it, or explode it. Astronomers can only observe the sky as it is, and from their observations deduce models of the universe and its contents. They cannot ever repeat the same experiment twice with exactly the same parameters and conditions. Remember this as the universe is laid out before you in Astronomy 113 – the story always begins with only points of light in the sky. From this perspective, our understanding of the universe is truly one of the greatest intellectual challenges and achievements of mankind. The exploration of the universe is also a lot of fun, an experience that is largely missed sitting in a lecture hall or doing homework. The primary goal of theses labs is to bring you closer to the reality of astronomical research, and in so doing to the experience of science. Of course, this would be best done at night with real telescopes, but the vagaries of Madison weather make this impractical with large classes. Fortunately, computer simulation software does remarkably well in recreating the experience of working at telescopes, including some of the largest in the world. That having been said, the lab does include voluntary night viewing sessions at Washburn observatory giving you a taste of the wonders of the night sky. These labs are designed to provide you with opportunities to explore and discover. Always remember that this is your exploration – different students will follow different paths, all of which can lead to interesting results. Don’t be afraid to try things out and to experiment. Trial and error is a valid way to explore a new environment and you cannot break the software (if you do, it’s not your fault – just get your instructor to restart the software and you will be good to go again). The organizational details for this lab can be found in the lab syllabus and on the web: http://www.astro.wisc.edu/~sstanimi/ast_113_fall11.html Be inquisitive and collaborate You are always welcome to give us feedback and suggestions about this lab. And don’t ever hesitate to ask if you have a question: You are the best judge of what you have and have not understood. The goal of this lab is for you to learn. The best way to reach that goal is to ask questions – either to your lab 4 partners or to your instructor. You will find that asking questions is often the best way to approach a problem, and every scientific endeavor; every research project (in Astronomy and all other sciences) begins with a question. The labs in Astronomy 113 are best done in groups. For that reason, you will team up with at least one other lab member (but no more than 3) to go through the lab together. This is another good analogy to real world astronomical research: Most projects in astronomy require collaborations between people with different expertise. You will find that you reach a much deeper level of understanding of something after trying to explain it to somebody else and after you have discussed a question with somebody else. As you go through the lab, discuss the questions in the manual and try to explain your answers to these questions to your lab partner and to listen to their explanation. The only time collaboration in the lab is not allowed is, of course, during the quizzes. Computers: As mentioned above, most of this lab is computer based. Sterling 3517 provides a number of iMac computers. The labs are very easy to operate and the software is very user friendly. Your instructor will help you with all computer related questions – the computers are only a tool to bring you closer to real astronomical observations. Your time in the lab is best spent exploring the questions and tasks in the lab manual, rather than fighting with the computer. Again, if you have trouble with the operation of the computers, ask your instructor or lab partners – the earlier the better (to get you going again so you can finish the lab in time, or even ahead of time). Final thought: Remember: This lab is a chance for you to explore and to get a taste of what astronomical research is like. Use all the resources you have available – the regular lab hours, the open labs/office hours, the web, E-mail, our mail boxes, your home computers, your text books and notes from Astronomy 100 or 103, and whatever else you can think of. Most importantly, though: Have fun and enjoy the hands on tour through our universe! 5 6 ASTRONOMY 113 Laboratory Celestial Rhythms: An Introduction to the Sky Introduction and Goals The sky is a beautiful and fascinating stage upon which celestial dances are performed nightly. The sky is also our window on the Universe; mankind's first cosmological inquiries were inspired by these motions of the heavens. Over the centuries we have become more and more disconnected from the sky, even as our understanding of the Universe becomes greater. The goal of this lab is to reintroduce you to the sky, and to develop in you a deeper knowledge of its arrangement and motions. Of course, this lab would best be done under the real night sky. Unfortunately we cannot guarantee clear skies in Madison, nor do we have the luxury of many years or the wherewithal to fly to distant lands. However, we do have the virtual reality of Voyager, an electronic planetarium providing a rich array of observing opportunities. We encourage you to explore with Voyager beyond the instructions of the lab. Don't worry if you go off on an exploration and get "lost" -- the TA can easily bring you back to any point in the lab. And you are encouraged to ask questions during the lab about anything you may find. Format The format of the text in this lab is designed to clearly distinguish different purposes: Text in normal font guides you through the lab. • Text in bold provides instructions for operating Voyager. Underlined text identifies key words or concepts to be learned. Text in italics is supplementary information for your pleasure. Q1: Questions in boxes must be answered in your lab book. 7 Before You Come to Class ... Read the lab completely. Your time in the lab is best used observing the "sky", not reading this manual. Bring to class this lab manual, your lab book, a pencil or erasable pen, a straight edge, and a scientific calculator. A pre-lab is due at the beginning of the second lab session (i.e., the second week of this lab). Schedule This lab is designed to be completed in three lab sessions. You should be well into if not completed Section 4 in the first lab session, through at least Section 6 in the second lab section, and then complete the lab in the third lab session. 8 Section 1: Sunset It is dusk, and the Sun has just set. You are standing in a meadow, looking toward the northern horizon. Above you is the sky (no stars yet!) and below you is the ground. Curiously, there are letters on the horizon indicating which direction you are facing (north, south, east and west). You turn your head to look in different directions: • Move the horizontal scrollbar with the left and right arrows, or by dragging the scrollbar tab. (Note that when you grab the scrollbar tab, a compass appears to show the present direction.) You can also maneuver on the sky with the arrows on the keyboard. • Return to looking north. As the sky gets darker, more and more stars appear in the sky: • Turn on the stars. (Display menu to Stars; select Show Stars, then click OK) Now you tilt your head back to look at the stars overhead: • Move the vertical scrollbar with the up and down arrows, and by grabbing the scroll bar. When you grab the scroll bar, an indicator appears, showing the angle above the horizon at which you are looking. • Find the point in the sky marked "zenith." The zenith is the point directly overhead. Of course, you will never see it marked in the real night sky! • Lower your head (move the vertical scrollbar) so that the "North" is just above the bottom of the screen. Section 2: Figures in the Sky At first glance, the stars appear to be scattered at random in the sky. But it is the nature of humans to organize, and archeological records show that all civilizations have seen patterns in the stars, or constellations. The stars were thought to be in the realm of the gods, and often the constellations were linked to religion and myth.