Cell-Specific Gene Expression: Pylorus Morphogenesis and Hedgehog-Regulated Enhancers

Total Page:16

File Type:pdf, Size:1020Kb

Cell-Specific Gene Expression: Pylorus Morphogenesis and Hedgehog-Regulated Enhancers CELL-SPECIFIC GENE EXPRESSION: PYLORUS MORPHOGENESIS AND HEDGEHOG-REGULATED ENHANCERS by Aaron Mark Udager A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2010 Doctoral Committee: Professor Deborah L. Gumucio, Chair Professor Gregory R. Dressler Professor Ronald J. Koenig Professor Linda C. Samuelson Associate Professor Deneen M. Wellik Assistant Professor Scott E. Barolo © Aaron Mark Udager 2010 To my wife Kara and my parents Mark and Anita ii ACKNOWLEDGEMENTS First, I’d like to thank my mentor Deb Gumucio. Over the past four years, you have given me freedom to explore and opportunities to succeed (as well as fail). Without a doubt, these experiences have made me a better scientist. I’ll always admire your love of science and the dedication you show to teaching students, supporting your employees, and maintaining a family. I know we’ll remain good friends in the future. Second, I’d like to thank the members of my thesis committee. You challenged me when I needed to be and provided critical feedback at several key junctures in this project. Our meetings over the past several years have been an important part of my growth as a scientist. Third, I need to thank the extensive contributions made to this project by our collaborators, both here at the University and abroad. I’d like to thank Drs. Doug Engel and Kim-Chew Lim in this department for providing Gata3lacZ/+ mice and sharing a number of other resources. I’d also like to thank Dr. Richard Harvey of the Victor Chang Cardiac Research Institute in Australia for generously providing Nkx2-5lacZ/+ mice. A special thanks to Dr. Scott Barolo and his post-doc Dr. Dave Parker, of this department, for their critical work on the Topo-TX project (see Chapter IV). iii I’d like to thank the administrative staffs of the Department of Cell and Developmental Biology, the Center for Organogenesis, and the Medical Scientist Training Program (MSTP). In particular, I’d like to recognize Ellen Elkin, Penny Morris, Kristen Hug, and Becky Pintar. I’d also like to thank the technical staffs of the Microscopy and Image Analysis Laboratory and the Morphology Core. In particular, I’d like to recognize Shelley Almburg, Marta Dzaman, and Maria Ripberger. I’d like to thank past and present members of the Gumucio lab: Åsa Kolterud for your help with X-gal staining; Xing Li for teaching me everything I know about microarrays; Chunbo Hu for your help with in situ hybridizations; Tracy Xiao for your help with the border project; and Neil Richards for your help with RT-PCR and all things cloning. I’d also like to recognize Katherine Gurdziel and Mridula Jayaraman for your past (and future!) contributions to the Topo-TX project. And thank you to Jierong Lang for your tremendous work in maintaining the mouse room; the lab would not be the same without you. I’d like to thank all of our lab managers over the past four years: Kathleen Portman, Wendy McKimpson, Xueming Tang, and in particular, Mike Czerwinski. I’d also like to acknowledge the undergraduate students that have worked with me: Mikey Thomas and Vivek Mendiratta. Thank you to my fellow graduate students (and/or post-docs), Anne Grosse, Kate Walton, Andrea Waite, and Will Zacharias, for personal as well as scientific discussions. A special thanks to Ajay Prakash for all of your help with the Gata3 project. It’s been a blast. I couldn’t imagine being happier anywhere else. iv Lastly, I need to thank my family and friends. A special thank you to my MSTP classmates, Jae Lee, Steve Philips, and Dan Wahl, for our all too infrequent happy hour trips. To my sister Andrea, her husband Scott, and their two little girls, Annaleigh and Charlotte: I love you guys! To my in-laws, Gene and Lisa: thank you for your love and support and for being good role models for an academic career! To my grandparents, Gen, Hal, Wilbur, and Gladys: thank you for your love and support. I wish you were all around to share these important life moments with me! To my parents, Mark and Anita: thank you for recognizing what I needed to succeed and doing everything you could to provide it. To my mom: thank you for instilling in me the idea that nothing but my best is good enough. To my dad: thank you for reminding me the importance of taking time to enjoy life. Finally, to my wife Kara, who was born with Infantile Hypertrophic Pyloric Stenosis: Thank you. Thank you for listening to my rambling science discussions on our long runs. Thank you for helping me to be a better person. Thank you for making the last three and a half years the best of my life. I wouldn’t be the same without you and neither would this thesis! v TABLE OF CONTENTS DEDICATION................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................ iii LIST OF FIGURES ......................................................................................................... ix LIST OF TABLES ........................................................................................................... xi ABSTRACT .................................................................................................................... xiii CHAPTER I. INTRODUCTION..................................................................................................1 I.1. Embryonic development of the early GI tract ........................................2 I.2. Establishing epithelial identity and morphology in the foregut .............6 I.3. Regulation of nutrient transport within the GI tract .............................11 I.4. Hh signaling in the late embryonic and adult GI tract .........................20 I.5. Hh regulation of gene expression ........................................................24 I.6. Summary and thesis outline .................................................................35 I.7. Attribution ............................................................................................37 I.8. Publication ...........................................................................................38 I.9. References ............................................................................................39 II. DYNAMIC PATTERNING AT THE PYLORUS: FORMATION OF AN EPITHELIAL INTESTINE-STOMACH BOUNDARY IN LATE FETAL LIFE .......................................................................................47 II.1. Introduction ..........................................................................................47 vi II.2. Materials and methods .........................................................................50 II.3. Results ..................................................................................................55 II.4. Discussion ............................................................................................67 II.5. Attribution ............................................................................................91 II.6. Publication ...........................................................................................92 II.7. References ............................................................................................93 III. GATA3 IS ESSENTIAL FOR SMOOTH MUSCLE STRUCTURES AT THE PYLORUS ............................................................99 III.1. Introduction ..........................................................................................99 III.2. Materials and methods .......................................................................102 III.3. Results ................................................................................................105 III.4. Discussion ..........................................................................................112 III.5. Attribution ..........................................................................................128 III.6. Publication .........................................................................................129 III.7. References ..........................................................................................130 IV. GENOME-WIDE CLUSTERING ANALYSIS OF GLI/CI BINDING SITES ACROSS DIVERGENT DROSOPHILA SPECIES REVEALS HEDGEHOG-REGULATED ENHANCERS .......134 IV.1. Introduction ........................................................................................135 IV.2. Materials and methods .......................................................................138 IV.3. Results ................................................................................................140 IV.4. Discussion ..........................................................................................148 IV.5. Attribution ..........................................................................................162 IV.6. Publication .........................................................................................163 IV.7. References ..........................................................................................164 V. CELL-SPECIFIC GENE EXPRESSION: MECHANISMS AND CONSEQUENCES ........................................................................................167 vii V.1. Evolutionary change and genetic redundancy in the GI tract ............167 V.2. The establishment and maintenance of differentiated gastric epithelium ..........................................................................................171
Recommended publications
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • 4L Eosinophilic Granuloma of Gastro-Intestinal Tract Caused by Herring Parasite Eustoma Rotundatum
    BsrrmsH 2 May 1964 MEDICAL JOURNAL 1141 4L Eosinophilic Granuloma of Gastro-intestinal Tract Caused by Herring Parasite Eustoma rotundatum B. STERRY ASHBY,* M.B., F.R.C.S.; P. J. APPLETONt M.B., B.S. IAN DAWSON,4 M.D., M.R.C.P. Brit. med.JY., 1964, 1, 1141-1145 For over 25 years sporadic reports have been appearing in the came from many countries in many different parts of the world. literature of cases of eosinophilic granuloma arising in various The essential details of these cases are recorded in Table I parts of the gastro-intestinal tract. Kaiiser (1937) described and Fig. 1. the first cases. In a search of the literature, which although The one feature common to all these case reports is the extensive is not claimed to be exhaustive, 47 papers were microscopical appearance of the lesion. No matter which part found, describing a total of 89 cases. They occurred through- of the alimentary tract is involved, the histological description out the alimentary tract from pharynx to rectum, though the is the same-an oedematous connective-tissue stroma with an majority were in the stomach and small intestine, and they increase of capillaries and lymphatics, and showing a massive diffuse eosinophil-cell infiltration, usually confined to the sub- * Surgical Registrar, Westminster Hospital and Medical School London. the muscularis mucosae and t House-Surgeon, Westminster Hospital and Medical School, Iondon. mucosa but sometimes splitting t Reader in Pathology, Westminster Hospital and Medical School, spreading into the muscle layer. The mucosa is almost always London. intact.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
    UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii
    [Show full text]
  • Studies of the Function of the Human Pylorus : and Its Role in The
    +.1 Studúes OlTlæ Ftrnctíon OJTIrc Humanfolonts And,Iß R.ole InTlæ Riegulø;tíon OÍ Cústríß Drnptging David R. Fone Departments of Medicine and Gastroenterology, Royal Adelaide Hospital University of Adelaide August 1990 Table of Contents TABLE OF CONTENTS . SUMMARY vil DECLARATION...... X DED|CAT|ON.. .. ... xt ACKNOWLEDGMENTS xil CHAPTER 1 ANATOMY OF THE PYLORUS 1.1 INTRODUCTION.. 1 1.2 MUSCULAR ANATOMY 2 1.3 MUCOSAL ANATOMY 4 1.4 NEURALANATOMY 1.4.1 Extrinsic lnnervation of the Pylorus 5 1.4.2 lntrinsic lnnervation of the Pylorus 7 1.5 INTERSTITIAL CELLS OF CAJAL 8 1.6 CONCLUSTON 9 CHAPTER 2 MEASUREMENT OF PYLORIC MOTILITY 2.1 INTRODUCTION 10 2.2 METHODOLOG ICAL CHALLENGES 2.2.1 The Anatomical Mobility of the Pylorus . 10 2.2.2 The Narrowness of the Zone of Pyloric Contraction 12 2.3 METHODS USED TO MEASURE PYLORIC MOTILITY 2.3.1 lntraluminal Techniques 2.3.1.1 Balloon Measurements. 12 t 2.3 1.2 lntraluminal Side-hole Manometry . 13 2.3 1.9 The Sleeve Sensor 14 2.3 1.4 Endoscopy. 16 2.3 1.5 Measurements of Transpyloric Flow . 16 2.3 'I .6 lmpedance Electrodes 16 2.3.2 Extraluminal Techniques For Recording Pyl;'; l'¡"r¡iit¡l 2.3.2.'t Strain Gauges . 17 2.3.2.2 lnduction Coils . 17 2.3.2.3 Electromyography 17 2.3.3 Non-lnvasive Approaches For Recording 2.3.3.1 Radiology :ï:: Y:1":'1 18 2.3.9.2 Ultrasonography . 1B 2.3.3.3 Electrogastrography 19 2.3.4 ln Vitro Studies of Pyloric Muscle 19 2.4 CONCLUSTON.
    [Show full text]
  • Nbde Part 2 Decks and Remembed-Arroz Con Mango
    ARROZ CON MANGO Dear friends, these are remembered/repeated questions (RQs) and answers I COPIED and PASTED from different discussions on Facebook. I feel sorry because I couldn’t organize the file the way I wanted but I hope it helps. Probably you’ll find some wrong answers in this file, but PLEASE … DO NOT CRITICIZE! Find out the right answer, learn it, share it, PASS your test and BE HAPPY J I wish you all the best GOD BLESS YOU! PAITO 1. All of the following are adverse effects of opioids except? diarrhea and somnolence 2. Advantage of osteogenesis distraction is? less relapse, large movements 3. An investigation that is not accurate but consistent is: reliability 4. Remineralized enamel is rough and cavitation? Dark hard and opaque 5. Characteristics of a child with autism - repetitive action, sensitive to light and noise 6. S,z,che sounds : Teeth barely touching – True 7. Something about bio-transformation, more polar and less lipid soluble? - True 8. How much of he population has herpes? 80% - (65-90% worldwide; 80-85% USA) More than 3.7 billion people under the age of 50 – or 67% of the population – are infected with herpes simplex virus type 1 (HSV-1), according to WHO's first global estimates of HSV-1 infection published today in the journal PLOS ONE. 9. Steps of plaque formation: pellicle, biofilm, materia alba, plaque 10. Dose of hydrocortisone taken per year that will indicate have adrenal insufficiency and need supplement dose for surgery - 20 mg 2 weeks for 2 years 11. Rpd clasp breakage due to what? Work hardening 12.
    [Show full text]
  • Test Catalogue August 2019
    Test Catalogue August 2019 www.centogene.com/catalogue Table of Contents CENTOGENE CLINICAL DIAGNOSTIC PRODUCTS AND SERVICES › Whole Exome Testing 4 › Whole Genome Testing 5 › Genome wide CNV Analysis 5 › Somatic Mutation Analyses 5 › Biomarker Testing, Biochemical Testing 6 › Prenatal Testing 7 › Additional Services 7 › Metabolic Diseases 9 - 21 › Neurological Diseases 23 - 47 › Ophthalmological Diseases 49 - 55 › Ear, Nose and Throat Diseases 57 - 61 › Bone, Skin and Immune Diseases 63 - 73 › Cardiological Diseases 75 - 79 › Vascular Diseases 81 - 82 › Liver, Kidney and Endocrinological Diseases 83 - 89 › Reproductive Genetics 91 › Haematological Diseases 93 - 96 › Malformation and/or Retardation Syndromes 97 - 107 › Oncogenetics 109 - 113 ® › CentoXome - Sequencing targeting exonic regions of ~20.000 genes Test Test name Description code CentoXome® Solo Medical interpretation/report of WES findings for index 50029 CentoXome® Solo - Variants Raw data; fastQ, BAM, Vcf files along with variant annotated file in xls format for index 50028 CentoXome® Solo - with CNV Medical interpretation/report of WES including CNV findings for index 50103 Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with sWGS 50104 large CNVs through sWGS Medical interpretation/report of WES in index, package including genome wide analyses of structural/ CentoXome® Solo - with aCGH 750k 50122 large CNVs through 750k microarray Medical interpretation/report of WES in index, package including genome
    [Show full text]
  • NKX2-6 Mutation Predisposes to Familial Atrial Fibrillation
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 34: 1581-1590, 2014 NKX2-6 mutation predisposes to familial atrial fibrillation JUN WANG1,2, DAI-FU ZHANG1, YU-MIN SUN2, RUO-GU LI3, XING-BIAO QIU3, XIN-KAI QU3, XU LIU3, WEI-YI FANG3 and YI-QING YANG3-5 1Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120; 2Department of Cardiology, Jing-An District Central Hospital, Shanghai 200040; 3Department of Cardiology, 4Cardiovascular Research Laboratory and 5Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China Received May 31, 2014; Accepted October 10, 2014 DOI: 10.3892/ijmm.2014.1971 Abstract. Atrial fibrillation (AF) is the most common form of introduction of Q181H into NKX2-5 significantly decreased its sustained cardiac arrhythmia and is associated with substan- transcriptional activity at the atrial natriuretic factor promoter. tially increased morbidity and mortality rates. Aggregating The present study firstly associates genetically defective evidence demonstrates that genetic defects are involved in NKX2-6 with enhanced susceptibility to AF, providing novel the pathogenesis of AF and a number of AF-associated genes insight into the molecular mechanisms underlying AF and have been identified. Nevertheless, AF is a genetically hetero- suggesting potential strategies for the antenatal prophylaxis and geneous disorder and the genetic components underpinning personalized treatment of AF. AF in an overwhelming majority of patients remain unclear. In this study, the entire coding exons and splice junction sites Introduction of the NK2 homeobox 6 (NKX2-6) gene, which encodes a homeodomain transcription factor important for cardiovascular Atrial fibrillation (AF), a supraventricular tachyarrhythmia development, were sequenced in 150 unrelated patients with characterized by chaotic atrial electrical activity and conse- lone AF, and a novel heterozygous NKX2-6 mutation, p.Q175H, quently ineffective atrial contraction, is the most common type was identified in an index patient.
    [Show full text]
  • Xo GENE PANEL
    xO GENE PANEL Targeted panel of 1714 genes | Tumor DNA Coverage: 500x | RNA reads: 50 million Onco-seq panel includes clinically relevant genes and a wide array of biologically relevant genes Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4
    [Show full text]
  • Surgical Anatomy of the Infratemporal Fossa Surgical Anatomy of the Infratemporal Fossa
    Surgical Anatomy of the Infratemporal Fossa Surgical Anatomy of the Infratemporal Fossa John D.Langdon Professor and Head of Department Department of Oral and Maxillofacial Surgery King’s College London, UK Barry K.B.Berkovitz Reader in Anatomy Division of Anatomy, Cell and Human Biology King’s College London, UK Bernard J.Moxham Professor of Anatomy and Head of Teaching in Biosciences Cardiff School of Biosciences Cardiff University, UK MARTIN DUNITZ © 2003 Martin Dunitz, a member of the Taylor & Francis Group First published in the United Kingdom in 2003 by Martin Dunitz, Taylor & Francis Group plc, 11 New Fetter Lane, London EC4P 4EE Tel.: +44 (0) 20 7583 9855 Fax.: +44 (0) 20 7842 2298 E-mail: [email protected] Website: http://www.dunitz.co.uk This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher or in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P OLP. Although every effort has been made to ensure that all owners of copyright material have been acknowledged in this publication, we would be glad to acknowledge in subsequent reprints or editions any omissions brought to our attention.
    [Show full text]
  • ODONTOGENTIC INFECTIONS Infection Spread Determinants
    ODONTOGENTIC INFECTIONS The Host The Organism The Environment In a state of homeostasis, there is Peter A. Vellis, D.D.S. a balance between the three. PROGRESSION OF ODONTOGENIC Infection Spread Determinants INFECTIONS • Location, location , location 1. Source 2. Bone density 3. Muscle attachment 4. Fascial planes “The Path of Least Resistance” Odontogentic Infections Progression of Odontogenic Infections • Common occurrences • Periapical due primarily to caries • Periodontal and periodontal • Soft tissue involvement disease. – Determined by perforation of the cortical bone in relation to the muscle attachments • Odontogentic infections • Cellulitis‐ acute, painful, diffuse borders can extend to potential • fascial spaces. Abscess‐ chronic, localized pain, fluctuant, well circumscribed. INFECTIONS Severity of the Infection Classic signs and symptoms: • Dolor- Pain Complete Tumor- Swelling History Calor- Warmth – Chief Complaint Rubor- Redness – Onset Loss of function – Duration Trismus – Symptoms Difficulty in breathing, swallowing, chewing Severity of the Infection Physical Examination • Vital Signs • How the patient – Temperature‐ feels‐ Malaise systemic involvement >101 F • Previous treatment – Blood Pressure‐ mild • Self treatment elevation • Past Medical – Pulse‐ >100 History – Increased Respiratory • Review of Systems Rate‐ normal 14‐16 – Lymphadenopathy Fascial Planes/Spaces Fascial Planes/Spaces • Potential spaces for • Primary spaces infectious spread – Canine between loose – Buccal connective tissue – Submandibular – Submental
    [Show full text]
  • GI Motility-I (Deglutition and Motor Functions of Stomach)
    Lecture series Gastrointestinal tract Professor Shraddha Singh, Department of Physiology, KGMU, Lucknow GASTROINTESTINAL MOTILITY-1 (Deglutation and motor function of stomach) Mastication (Chewing) - the anterior teeth (incisors) providing a strong cutting action and the posterior teeth (molars), a grinding action – canine tearing - All the jaw muscles working together can close the teeth with a force as great as 25 Kg on the incisors and 90 Kg on the molars. - Most of the muscles of chewing are innervated by the motor branch of the 5th cranial nerve, and the chewing process is controlled by nuclei in the brain stem. - Stimulation of areas in the hypothalamus, amygdala, and even the cerebral cortex near the sensory areas for taste and smell can often cause chewing Chewing Reflex - The presence of a bolus of food in the mouth at first initiates reflex inhibition of the muscles of mastication, which allows the lower jaw to drop. ↓ - The drop in turn initiates a stretch reflex of the jaw muscles that leads to rebound contraction ↓ - raises the jaw to cause closure of the teeth ↓ - compresses the bolus again against the linings of the mouth, which inhibits the jaw muscles once again Chewing Reflex - most fruits and raw vegetables because these have indigestible cellulose membranes around their nutrient portions that must be broken before the food can be digested - Digestive enzymes act only on the surfaces of food particles - grinding the food to a very fine particulate consistency prevents excoriation of the GIT (Stomach) Swallowing (Deglutition)
    [Show full text]
  • The Arrest of Intestinal Epithelial ' Turnover' by the Use of X-Irradiation
    Gut, 1962, 3, 26 Gut: first published as 10.1136/gut.3.1.26 on 1 March 1962. Downloaded from The arrest of intestinal epithelial ' turnover' by the use of x-irradiation G. WIERNIK, R. G. SHORTER, AND B. CREAMER From St. Thomas's Hospital and Medical School, London sYNoPsIs Mitotic activity and hence cell turnover has been abolished by x-irradiation with 1,000 r. in segments of the rat's gut. The whole stomach, the ascending colon, and 5 cm. of jejunum and ileum were irradiated and the changes observed histologically up to three days. Cessation of cell turnover in the small intestine is followed by cell death and desquamation within 24 hours, leading to denudation of the epithelium and collapse of villous structure. The pylorus and colon showed similar but less marked changes. In contrast the fundus and body of the stomach were unaffected by the absence of mitosis over a period of three days. It is concluded that cell turnover is, in part, necessary to maintain the mucosal structure, particularly the villous pattern in the small intestine. The gastro-intestinal epithelium is a dynamic METHODS structure. Although it appears an intact and lush Wistar rats of either sex weighing 200 g. were used. The membrane to histological examination, it is being animals were anaesthetized with intraperitoneal pento- continuously replaced and desquamated extremely barbitone sodium B.P. The segment of gut to be irradiated quickly. This replacement ofcells results from intense was delivered through an abdominal incision and its http://gut.bmj.com/ division in the crypts, the cells so formed migrating extent marked by fine silk loops.
    [Show full text]