Single-Layer and Bilayer Graphene Quantum Dot Devices Single-Layer and Bilayer Graphene

Total Page:16

File Type:pdf, Size:1020Kb

Single-Layer and Bilayer Graphene Quantum Dot Devices Single-Layer and Bilayer Graphene Christian Volk Christian Volk Single-layer and bilayer graphene quantum dot devices Single-layer and bilayer graphene This thesis reports low temperature transport experiments on sing- quantum dot devices le-layer and bilayer graphene quantum dot (QD) devices focusing on the analysis of excited state spectra and the investigation of the relaxa- tion dynamics of excited states. Finite-bias spectroscopy measurements unveil the excited state spec- trum of a graphene QD. RF pulsed gate spectroscopy is used to probe the relaxation dynamics of excited state to ground state transitions. Transient current spectroscopy yields an estimate of a lower bound for charge relaxation times on the order of 60 to 100 ns. The experimental results are compared to a basic model regarding electron-phonon coupling as the dominant relaxation mechanism. A bilayer graphene double quantum dot device is characterized. The capacitive interdot coupling can be tuned systematically by a local gate. The electronic excited state spectrum of a features a single-par- ticle level spacing independent on the number of charge carriers on the QDs which is in contrast to single-layer graphene. Graphene nanoribbon based charge sensors are characterized as an important tool to detect individual charging events in close-by QDs. Back action effects of the detector on the probed QD are studied. Dissertation 2015 · 2nd Institute of Physics · RWTH Aachen University Single-layer and bilayer graphene quantum dot devices | Christian Volk graphene quantum and bilayer Single-layer Single-layer and bilayer graphene quantum dot devices Von der Fakult¨atf¨ur Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Physiker Christian Volk aus K¨oln Berichter: Universit¨atsprofessorDr. Christoph Stampfer apl. Professor Dr. Thomas Sch¨apers Tag der m¨undlichen Pr¨ufung:26. Februar 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. Abstract Graphene quantum devices, such as single electron transistors and quantum dots, have been a vital field of research receiving increasing attention over the past six years. Quantum dots (QDs) made from graphene have been suggested to be an in- teresting system for implementing spin qubits. Compared to the well-established GaAs-based devices their advantages are the smaller hyperfine interaction and spin-orbit coupling promising more favorable spin coherence times. However, while the preparation, manipulation, and read-out of single spins have been demon- strated in GaAs QDs, research on graphene QDs is still at an early stage. So far, effects like Coulomb blockade, electron-hole crossover and spin-states have been studied in graphene QDs. This thesis reports low temperature transport experiments on single-layer and bilayer graphene quantum dot devices focusing on the analysis of excited state spectra and the investigation of the relaxation dynamics of excited states. Graphene nanoribbon based charge sensors are characterized as an important tool to detect individual charging events in close-by QDs. All devices are fabricated following the concept of width-modulated graphene nanostructures. Carving nanoribbons out of graphene sheets opens an effective band gap and offers the chance to circumvent the limitations originating from the gapless band structure in "bulk" graphene. Shaping graphene into small islands (with typical diameters between 50 and 120 nm) connected to contacts via narrow ribbons (typical widths between 30 and 50 nm) allows the confinement of electrons and the formation of QDs with gate-tunable tunneling barriers. Graphene nanoribbon-based charge detectors coupled to QDs are characterized. They allow the resolution of charging events on the QD even in regimes where the direct current is below the noise floor and excited states of the QD can be i resolved by this technique as well. The detector remains operating even in adverse conditions like under the influence of magnetic fields of several Teslas or while RF pulses in the MHz regime are applied to the QD. These findings are in particular relevant for experiments addressing spin states or relaxation processes in graphene QDs. Special emphasis lies on the influence of the detector on the transport properties of the probed QD. The effects of back action and counter flow are measured and discussed. The relaxation dynamics of excited states of graphene QDs is investigated. Finite-bias spectroscopy measurements unveil the excited state spectrum of the device. Long and narrow constrictions are used as tunneling barriers which allow driving the overall tunneling rate to a few MHz. In such a regime rectangular RF pulse schemes are applied to an in-plane gate to probe the relaxation dynamics of excited state to ground state transitions. Measurements of the current averaged over a large number of pulse cycles yield an estimate of a lower bound for charge relaxation times on the order of 60 to 100 ns which is roughly a factor of 5 to 10 larger than what has been reported in III/V quantum dots. The experimental results are compared to a basic model regarding electron-phonon coupling as the dominant relaxation mechanism. A bilayer graphene double quantum dot device is characterized. The capacitive interdot coupling can be tuned systematically by a local gate. The electronic excited state spectrum features a single-particle level spacing independent on the number of charge carriers on the QDs which is in contrast to single-layer graphene. In in-plane magnetic fields a level splitting of the order of Zeeman splittings is observed. ii Zusammenfassung Graphen-Quantenbauelemente wie Einzelelektronentransistoren und Quantenpunk- te sind seit sechs Jahren ein lebendiges Forschungsgebiet von steigendem Interesse. Graphen-Quantenpunkte werden als ein interessantes System zur Implementierung von Spin-Quantenbits angesehen. Im Vergleich zu den verbreiteten auf GaAs basie- renden Bauelementen besteht der Vorteil in einer kleineren Hyperfein- und Spin- Bahn-Wechselwirkung, was vorteilhafte Spin-Koh¨arenzzeiten verspricht. W¨ahrend die Pr¨aparation, Manipulation und das Auslesen einzelner Spins in GaAs Quanten- punkten bereits gezeigt wurden, steht die Forschung an Graphen-Quantenpunkten noch am Anfang. Effekte wie Coulomb-Blockade, Elektron-Loch-Ubergang¨ und Spin-Zust¨ande wurden bereits untersucht. Diese Arbeit zeigt Tieftemperatur-Transportexperimente an ein- und zweilagi- gen Graphen-Quantenpunkten mit dem Fokus auf der Analyse von Anregungsspek- tren und der Untersuchung der Relaxationsdynamik von angeregten Zust¨anden. Ladungssensoren basierend auf Graphen-Streifen werden charakterisiert und als wichtiges Instrument eingesetzt um Ladungsuberg¨ ¨ange in einem benachbarten Quantenpunkt nachzuweisen. Alle Proben sind basierend auf dem Konzept der breiten-modulierten Nano- strukturen hergestellt. Wird Graphen in Streifen mit einer Breite auf Nanometers- kala geschnitten ¨offnet sich effektiv eine Bandlucke.¨ Das bietet eine M¨oglichkeit die Einschr¨ankungen zu umgehen, die darauf beruhen, dass ausgedehntes Graphen keine Bandlucke¨ besitzt. Es werden kleine Inseln (typische Durchmesser zwischen 50 und 120 nm) hergestellt, die mit den Kontakten uber¨ schmale Streifen (Brei- te zwischen 30 und 50 nm) verbunden sind. Dadurch entstehen Quantenpunkte verbunden mit gate-steuerbaren Tunnelbarrieren. Ladungsdetektoren basierend auf Graphen-Nanostreifen gekoppelt an Quanten- iii punkte werden charakterisiert. Sie erlauben Ladungsvorg¨ange des Quantenpunkts aufzul¨osen, selbst wenn der direkte Strom durch den Quantenpunkt unterhalb des Rauschniveaus liegt. Weiterhin k¨onnen angeregte Zust¨ande des Quantenpunkts mit dieser Technik nachgewiesen werden. Der Detektor funktioniert auch noch unter ungunstigen¨ Bedingungen, wie dem Einfluss eines mehrere Tesla starken Magnet- fels oder wenn Hochfrequenz-Pulse im MHz-Bereich an den Quantenpunkt angelegt werden. Diese Ergebnisse sind besonders fur¨ Experimente an Spin-Zust¨anden oder zur Untersuchung von Relaxationsprozessen interessant. Ein weiterer Schwerpunkt liegt auf dem Einfluss des Detektors auf die Transporteigenschaften des Quanten- punkts. Die Relaxationsdynamik von angeregten Zust¨anden in Graphen-Quantenpunkten wird untersucht. Bias-Spektroskopie-Messungen l¨osen das Spektrum der angereg- ten Zust¨ande auf. Lange und schmale Zuleitungen zum Quantenpunkt erm¨oglichen, die Tunnelrate bis zu wenigen MHz zu reduzieren. In einem solchen Bereich wer- den Sequenzen aus Rechteckpulsen an ein Gate angelegt um damit die Relaxation von angeregten Zust¨anden zum Grundzustand zu untersuchen. Messungen des uber¨ mehrere Pulszyklen gemittelten Stroms erlauben eine untere Absch¨atzung der Ladungsrelaxationszeit in der Gr¨oßenordnung von 60 bis 100 ns, was etwa 5 bis 10 mal gr¨oßer ist als was fur¨ III/V-Quantenpunkte berichtet wurde. Die ex- perimentellen Ergebnisse werden mit einem vereinfachten Modell verglichen, das Elektron-Kopplung als den wesentlichen Relaxationsmechanismus annimmt. Ein Doppel-Quantenpunkt aus zweilagigem Graphen wird charakterisiert. Die kapazitive Kopplung zwischen beiden Quantenpunkten kann systematisch durch Gates gesteuert werden. Das elektronische Anregungsspektrum weist Einteilchen- Energieabst¨ande auf, die (im Gegensatz zu einlagigem Graphen) unabh¨angig von der Anzahl der Ladungstr¨ager auf dem Quantenpunkt sind. Ein paralleles Ma- gnetfeld fuhrt¨ zu einem Aufspalten der Energieniveaus
Recommended publications
  • Allan Hugh Macdonald Date and Place of Birth
    10/31/2014 CURRICULUM VITAE ALLAN H. MACDONALD Full name: Allan Hugh MacDonald Date and place of birth: December 1, 1951 Antigonish, Nova Scotia, Canada Citizenships: Canadian and American Present address: 2519 Harris Boulevard Austin, Texas 78703 USA Phone (512) 495-9192 Institutional affiliation: The University of Texas at Austin Austin, Texas 78712 Phone (512) 232-9113 FAX (512) 471-9621 e-mail: [email protected] Title: Sid W. Richardson Foundation Regents Chair Field of Specialization: Condensed Matter Theory Employment: September 1973 -- April 1978 Ph.D. Student University of Toronto May 1978 -- October 1980 Research Associate --- National Research Council November 1980 -- June 1982 Assistant Research Officer -- National Research Council of Canada August 1982 -- August 1987 Associate Research Officer --- National Research Council of Canada September 1987 -- August 1992 Professor of Physics --- Indiana University September 1992 -- August 2000 Distinguished Professor of Physics --- Indiana University September 2000 -- present Sid W. Richardson Foundation Regents Chair --- The University of Texas at Austin 1 10/31/2014 Scholarships and Honors: President's Scholarship, St. Francis Xavier University, 1969–1973 Governor-General's Medal, St. Francis Xavier University, 1973 (Highest academic standing in graduating class) NSERC 1967 Science Scholarship, University of Toronto, 1973–1977 Herzberg Medal, 1987 (Awarded by the Canadian Association of Physicists) Fellow of the American Physical Society, 1989 Sid W. Richardson Foundation Regents
    [Show full text]
  • Quantum Dots
    Quantum Dots www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 1 Outline • Introduction • Quantum Confinement • QD Synthesis – Colloidal Methods – Epitaxial Growth • Applications – Biological – Light Emitters – Additional Applications www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 2 Introduction Definition: • Quantum dots (QD) are nanoparticles/structures that exhibit 3 dimensional quantum confinement, which leads to many unique optical and transport properties. Lin-Wang Wang, National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. <http://www.nersc.gov> GaAs Quantum dot containing just 465 atoms. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 3 Introduction • Quantum dots are usually regarded as semiconductors by definition. • Similar behavior is observed in some metals. Therefore, in some cases it may be acceptable to speak about metal quantum dots. • Typically, quantum dots are composed of groups II-VI, III-V, and IV-VI materials. • QDs are bandgap tunable by size which means their optical and electrical properties can be engineered to meet specific applications. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 4 Quantum Confinement Definition: • Quantum Confinement is the spatial confinement of electron-hole pairs (excitons) in one or more dimensions within a material. – 1D confinement: Quantum Wells – 2D confinement: Quantum Wire – 3D confinement: Quantum Dot • Quantum confinement is more prominent in semiconductors because they have an energy gap in their electronic band structure. • Metals do not have a bandgap, so quantum size effects are less prevalent. Quantum confinement is only observed at dimensions below 2 nm. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 5 Quantum Confinement • Recall that when atoms are brought together in a bulk material the number of energy states increases substantially to form nearly continuous bands of states.
    [Show full text]
  • Moiré Band Topology in Twisted Bilayer Graphene
    Moiré Band Topology in Twisted Bilayer Graphene Chao Ma, † Qiyue Wang, ‡ Scott Mills,§ Xiaolong Chen, †# Bingchen Deng, † Shaofan Yuan, † Cheng Li, † Kenji Watanabe, || Takashi Taniguchi, || Du Xu, *§ Fan Zhang, *‡ and Fengnian Xia*† †Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA ‡Department of Physics, The University of Texas at Dallas, Richardson, TX 7508, USA §Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794, USA ||National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 1 ABSTRACT Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moiré Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in K- theory. The moiré band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two Z2 invariants characterize the topology of the moiré Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.
    [Show full text]
  • Exploring the Electrical Properties of Twisted Bilayer Graphene
    Linfield University DigitalCommons@Linfield Senior Theses Student Scholarship & Creative Works 5-2019 Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/physstud_theses Part of the Condensed Matter Physics Commons, Energy Systems Commons, Engineering Physics Commons, Materials Science and Engineering Commons, and the Power and Energy Commons Recommended Citation Shannon, William, "Exploring the Electrical Properties of Twisted Bilayer Graphene" (2019). Senior Theses. 45. https://digitalcommons.linfield.edu/physstud_theses/45 This Thesis (Open Access) is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Thesis (Open Access) must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon A THESIS Presented to the Department of Physics LINFIELD COLLEGE McMinnville, Oregon In partial fulfillment of the requirements for the Degree of BACHELOR OF SCIENCE May, 2019 THESIS COPYRIGHT PERMISSIONS Pleaseread this document carefully before signing. If you have questions about any of these permissions,please contact the DigitalCommonsCoordinator. Title of the Thesis: Exploring the Electrical Properties of Twisted Bilayer Graphene Author's Name: (Last name, first name) Shannon, William111 Advisor's Name DigitalCommons@Linfield(DC@L) is our web-based, open access-compliantinstitutional repository for digital content produced by Linfield faculty, students, staff, and their collaborators.
    [Show full text]
  • Critical Point for Bose–Einstein Condensation of Excitons in Graphite
    Critical point for Bose–Einstein condensation of excitons in graphite Jinhua Wanga,b , Pan Niea,b , Xiaokang Lia,b, Huakun Zuoa,b, Benoˆıt Fauque´ c, Zengwei Zhua,b,1 , and Kamran Behniad aWuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; bSchool of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; cJeunes Equipes´ de l’Institut de Physique, Unite´ Mixte de Service et de Recherche 3573, CNRS, College` de France, Paris Sciences et Lettres Research University, 75231 Paris Cedex 05, France; and dLaboratoire de Physique et d’Etude´ des Materiaux,´ CNRS, Ecole´ Superieure´ de Physique et de Chimie Industrielles Paris, Paris Sciences et Lettres Research University, 75005 Paris, France Edited by Zachary Fisk, University of California, Irvine, CA, and approved October 15, 2020 (received for review June 22, 2020) An exciton is an electron–hole pair bound by attractive Coulomb nature of EI unexpected in the alternative Peierls-driven charge interaction. Short-lived excitons have been detected by a vari- density wave (CDW) (9). Other indirect signatures of BEC ety of experimental probes in numerous contexts. An excitonic transition have been reported in two-dimensional systems, such insulator, a collective state of such excitons, has been more elu- as quantum wells (11), graphene (12–14), and transition metal sive. Here, thanks to Nernst measurements in pulsed magnetic dichalcogenides heterostructures (15, 16). fields, we show that in graphite there is a critical temperature Here, we present the case of graphite subject to strong mag- (T = 9.2 K) and a critical magnetic field (B = 47 T) for Bose–Einstein netic field where the existence of a thermodynamic phase transi- condensation of excitons.
    [Show full text]
  • Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor
    Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee§, Kyunghoon Lee§, Zhaohui Zhong * Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109, USA § These authors contributed equally to this work. *Corresponding author. Electronic mail: [email protected] ABSTRACT The discovery of electric field induced bandgap opening in bilayer graphene opens new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to µm2 size scale thus far, and synthesis of wafer scale bilayer graphene posts tremendous challenge. Here we report homogeneous bilayer graphene films over at least 2 inch × 2 inch area, synthesized by chemical vapor deposition on copper foil and subsequently transferred to arbitrary substrates. The bilayer nature of graphene film is verified by Raman spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). Importantly, spatially resolved Raman spectroscopy confirms a bilayer coverage of over 99%. The homogeneity of the film is further supported by electrical transport measurements on dual-gate bilayer graphene transistors, in which bandgap opening is observed in 98% of the devices. 1 KEYWORDS Graphene, bilayer, chemical vapor deposition, wafer scale, bandgap opening Single and few-layer graphene1-5 are promising materials for post-silicon electronics because of their potential of integrating bottom-up nanomaterial synthesis with top-down lithographic fabrication at wafer scale.4,6 However, single layer graphene is intrinsically semimetal; introducing energy bandgap requires patterning nanometer-width graphene ribbons7-9 or utilizing special substrates.10-12 Bilayer graphene, instead, has an electric field induced bandgap up to 250 meV,13-18 thus eliminating the need for extreme scaling or costly substrates.
    [Show full text]
  • Gate Controlled Valley Polarizer in Bilayer Graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3
    ARTICLE https://doi.org/10.1038/s41467-020-15117-y OPEN Gate controlled valley polarizer in bilayer graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3 Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated 1234567890():,; regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical mea- surements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field. 1 Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore, Singapore. 2 Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore, Singapore. 3Present address:
    [Show full text]
  • Arxiv:2105.05857V1 [Cond-Mat.Str-El] 12 May 2021
    Kekul´espiral order at all nonzero integer fillings in twisted bilayer graphene Y.H. Kwan,1 G. Wagner,1 T. Soejima,2 M.P. Zaletel,2, 3 S.H. Simon,1 S.A. Parameswaran,1 and N. Bultinck1, 4 1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom 2Department of Physics, University of California, Berkeley, California 94720, USA 3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Physics, Ghent University, 9000 Ghent, Belgium We study magic angle graphene in the presence of both strain and particle-hole symmetry break- ing due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a com- prehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the `incommensurate Kekul´e spiral' (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moir´e translation symmetries, but preserves a modified translation symmetry T^0 | which simultaneously shifts the spatial coordinates and rotates the U(1) angle which characterizes the spontaneous inter- valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
    [Show full text]
  • Hyperbolic Metamaterials Based on Quantum-Dot Plasmon-Resonator Nanocomposites
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.; Gaponik, N.; Eychmuller, A.; Lavrinenko, Andrei; Demir, H. V.; Gaponenko, S. V. Published in: Optics Express Link to article, DOI: 10.1364/OE.22.018290 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Zhukovsky, S., Ozel, T., Mutlugun, E., Gaponik, N., Eychmuller, A., Lavrinenko, A., Demir, H. V., & Gaponenko, S. V. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 22(15), 18290-18298. https://doi.org/10.1364/OE.22.018290 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites 1, 2 2,3 4 S. V. Zhukovsky, ∗ T. Ozel, E. Mutlugun, N. Gaponik, A.
    [Show full text]
  • Quantum Dot and Electron Acceptor Nano-Heterojunction For
    www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5.
    [Show full text]
  • 1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA ª 2011 Elsevier B.V. All rights reserved. 1.07.1 Introduction 189 1.07.2 Single-Particle Methods 190 1.07.2.1 Density Functional Theory 191 1.07.2.2 Empirical Pseudopotential Method 193 1.07.2.3 Tight-Binding Methods 194 1.07.2.4 k ? p Method 195 1.07.2.5 The Effect of Strain 198 1.07.3 Many-Body Approaches 201 1.07.3.1 Time-Dependent DFT 201 1.07.3.2 Configuration Interaction Method 202 1.07.3.3 GW and BSE Approach 203 1.07.3.4 Quantum Monte Carlo Methods 204 1.07.4 Application to Different Physical Effects: Some Examples 205 1.07.4.1 Electron and Hole Wave Functions 205 1.07.4.2 Intraband Optical Processes in Embedded Quantum Dots 206 1.07.4.3 Size Dependence of the Band Gap in Colloidal Quantum Dots 208 1.07.4.4 Excitons 209 1.07.4.5 Auger Effects 210 1.07.4.6 Electron–Phonon Interaction 212 1.07.5 Conclusions 213 References 213 1.07.1 Introduction laterally by electrostatic gates or vertically by etch- ing techniques [1,2]. The properties of this type of Since the early 1980s, remarkable progress in technology quantum dots, sometimes termed as electrostatic has been made, enabling the production of nanometer- quantum dots, can be controlled by changing the sized semiconductor structures. This is the length scale applied potential at gates, the choice of the geometry where the laws of quantum mechanics rule and a range of gates, or external magnetic field.
    [Show full text]
  • Landau Quantization of Dirac Fermions in Graphene and Its Multilayers
    Front. Phys. 12(4), 127208 (2017) DOI 10.1007/s11467-016-0655-5 REVIEW ARTICLE Landau quantization of Dirac fermions in graphene and its multilayers Long-jing Yin (殷隆晶), Ke-ke Bai (白珂珂), Wen-xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)ǂ The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China Corresponding author. E-mail: ǂ[email protected] Received December 28, 2016; accepted January 26, 2017 When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. Keywords Landau quantization, graphene, STM/STS, stacking order, strain and defect PACS numbers Contents 1 Introduction ....................................................................................................................... 2 2 Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer ...........
    [Show full text]