Combined Global Navigation Satellite Systems in the Space Service Volume
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
50 Satellite Formation-Flying and Rendezvous
Parkinson, et al.: Global Positioning System: Theory and Applications — Chap. 50 — 2017/11/26 — 19:03 — page 1 1 50 Satellite Formation-Flying and Rendezvous Simone D’Amico1) and J. Russell Carpenter2) 50.1 Introduction to Relative Navigation GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at dis- tributed precise relative navigation between tens of swarming nano- and micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are pre- sented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (m- to cm-level accuracy). -
Galileo FOC-M7 SAT 19-20-21-22
LAUNCH KIT December 2017 VA240 Galileo FOC-M7 SAT 19-20-21-22 VA240 Galileo FOC-M7 SAT 19-20-21-22 ARIANESPACE’S SECOND ARIANE 5 LAUNCH FOR THE GALILEO CONSTELLATION AND EUROPE For its 11th launch of the year, and the sixth Ariane 5 liftoff from the Guiana Space Center (CSG) in French Guiana during 2017, Arianespace will orbit four more satellites for the Galileo constellation. This mission is being performed on behalf of the European Commission under a contract with the European Space Agency (ESA). For the second time, an Ariane 5 ES version will be used to orbit satellites in Europe’s own satellite navigation system. At the completion of this flight, designated Flight VA240 in Arianespace’s launcher family numbering system, 22 Galileo spacecraft will have been launched by Arianespace. Arianespace is proud to deploy its entire family of launch vehicles to address Europe’s needs and guarantee its independent access to space. Galileo, an iconic European program Galileo is Europe’s own global navigation satellite system. Under civilian control, Galileo offers guaranteed high-precision positioning around the world. Its initial services began in December CONTENTS 2016, allowing users equipped with Galileo-enabled devices to combine Galileo and GPS data for better positioning accuracy. The complete Galileo constellation will comprise a total of 24 operational satellites (along with > THE LAUNCH spares); 18 of these satellites already have been orbited by Arianespace. ESA transferred formal responsibility for oversight of Galileo in-orbit operations to the GSA VA240 mission (European GNSS Agency) in July 2017. Page 3 Therefore, as of this launch, the GSA will be in charge of the operation of the Galileo satellite Galileo FOC-M7 satellites navigation systems on behalf of the European Union. -
The Navy Navigation Satellite System (Transit)
ROBERT J. DANCHIK THE NAVY NAVIGATION SATELLITE SYSTEM (TRANSIT) This article provides an update on the status of the Navy Navigation Satellite System (TRANSIT). Some insights are provided on the evolution of the system into its current configuration, as well as a discussion of future plans. BACKGROUND sign goal was never achieved for long in those early In 1958, research scientists at APL solved the orbit days because the satellites had short operational life of the first Russian satellite, Sputnik-I, by analysis of times. The failures largely resulted from inadequate the observed Doppler shift of its transmitted signal. component quality and the large number of wiring in This led immediately to the concept of satellite navi terconnections. However, after OSCAR 2 10 and OS gation and the development of the U.S. Navy Navi CAR 12 were launched in 1966 and 1967, respectively, gation Satellite System (TRANSIT) by APL, under the enough data on the failure mechanisms became avail sponsorship of the Navy's Special Projects Office, to able to APL to achieve the desired advances in reli provide position fixes for the Fleet Ballistic Missile ability. The integrated circuit introduced in OSCAR Weapon System submarines. (The articles in Ref. 1, 10 significantly extended the satellite lifetime by im a previous issue of the fohns Hopkins APL Techni proving component reliability and reducing the num cal Digest devoted to TRANSIT, give the principles ber of interconnections. Subsequently, the last major of operation and early history of the system.) Now, design change made to the solar cell interconnections, 26 years after its conception, the system is mature. -
IAC-18-B2.1.7 Page 1 of 16 a Technical Comparison of Three
A Technical Comparison of Three Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband Inigo del Portilloa,*, Bruce G. Cameronb, Edward F. Crawleyc a Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] b Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] c Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] * Corresponding Author Abstract The idea of providing Internet access from space has made a strong comeback in recent years. After a relatively quiet period following the setbacks suffered by the projects proposed in the 90’s, a new wave of proposals for large constellations of low Earth orbit (LEO) satellites to provide global broadband access emerged between 2014 and 2016. Compared to their predecessors, the main differences of these systems are: increased performance that results from the use of digital communication payloads, advanced modulation schemes, multi-beam antennas, and more sophisticated frequency reuse schemes, as well as the cost reductions from advanced manufacturing processes (such as assembly line, highly automated, and continuous testing) and reduced launch costs. This paper compares three such large LEO satellite constellations, namely SpaceX’s 4,425 satellites Ku-Ka-band system, OneWeb’s 720 satellites Ku-Ka-band system, and Telesat’s 117 satellites Ka-band system. First, we present the system architecture of each of the constellations (as described in their respective FCC filings as of September 2018), highlighting the similarities and differences amongst the three systems. -
Supporting the Sustainable Development Goals
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030. -
NGSO Large Constellations SES
ITU Satellite Symposium 2019 - Bariloche NGSO Constellations - O3b, mPower PRESENTED BY PRESENTED ON Suzanne Malloy 24 septiembre 2019 SES Proprietary and Confidential | With the world’s largest multi-orbit, multi-band satellite fleet, we are building a next-generation network for our customers’ growth Unique Driver of 50+ GEO-MEO INNOVATION satellites covering constellation complemented in building a cloud-scale, by a ground segment, automated, “virtual fibre” network of together forming a flexible the future. Leading in the industry’s 99% network architecture that is most influential standards groups of the globe and world globally scalable population SES Proprietary and Confidential | Suzanne Malloy, ITU Satellite Symposium 2019 2 SES Constellations GEO wide beam Over 50 satellite constellation Reaching >350 million TV households worldwide GEO HTS Expanding HTS fleet: SES-12, SES-14, SES-15, future SES-17 Improving value proposition for data applications MEO HTS Operational since 2015, now 20 satellites High throughput, low latency 7 next-generation satellites in 2021 SES Proprietary and Confidential | Suzanne Malloy, ITU Satellite Symposium 2019 Across industries, business customers are embracing digital technologies, the cloud, IoT and big data IT spending priorities E-learning revenues in LATAM shifting to digital business, have doubled IoT, big data¹ over last 5 years² Enterprise Education Mobile banking, omni-channel 82% of mining execs will experience driving bandwidth increase digitalization growth spending over next 3 -
GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists. -
Russian and Chinese Responses to U.S. Military Plans in Space
Russian and Chinese Responses to U.S. Military Plans in Space Pavel Podvig and Hui Zhang © 2008 by the American Academy of Arts and Sciences All rights reserved. ISBN: 0-87724-068-X The views expressed in this volume are those held by each contributor and are not necessarily those of the Officers and Fellows of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, MA 02138-1996 Telephone: (617) 576-5000 Fax: (617) 576-5050 Email: [email protected] Visit our website at www.amacad.org Contents v PREFACE vii ACRONYMS 1 CHAPTER 1 Russia and Military Uses of Space Pavel Podvig 31 CHAPTER 2 Chinese Perspectives on Space Weapons Hui Zhang 79 CONTRIBUTORS Preface In recent years, Russia and China have urged the negotiation of an interna - tional treaty to prevent an arms race in outer space. The United States has responded by insisting that existing treaties and rules governing the use of space are sufficient. The standoff has produced a six-year deadlock in Geneva at the United Nations Conference on Disarmament, but the parties have not been inactive. Russia and China have much to lose if the United States were to pursue the programs laid out in its planning documents. This makes prob - able the eventual formulation of responses that are adverse to a broad range of U.S. interests in space. The Chinese anti-satellite test in January 2007 was prelude to an unfolding drama in which the main act is still subject to revi - sion. -
Global Navigation Satellite Systems and Their Applications Dr
ISSN (Print): 2279-0063 International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Online): 2279-0071 International Journal of Software and Web Sciences (IJSWS) www.iasir.net Global Navigation Satellite Systems and Their Applications Dr. G. Manoj Someswar1, T. P. Surya Chandra Rao2, Dhanunjaya Rao. Chigurukota3 1Principal and Professor, Department of CSE, AUCET, Vikarabad, A.P. 2Associate Professor in Department of CSE 3Associate Professor in Nasimhareddy Engineering Collge ABSTRACT: Global Navigation Satellite System (GNSS) plays a significant role in high precision navigation, positioning, timing, and scientific questions related to precise positioning. Ofcourse in the widest sense, this is a highly precise, continuous, all-weather and a real-time technique. This Research Article is devoted to presenting recent results and developments in GNSS theory, system, signal, receiver, method and errors sources such as multipath effects and atmospheric delays. To make it more elaborative, this varied GNSS applications are demonstrated and evaluated in hybrid positioning, multi- sensor integration, height system, Network Real Time Kinematic (NRTK), wheeled robots, status and engineering surveying. This research paper provides a good reference for GNSS designers, engineers, and scientists as well as the user market. I. USE AND APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS In the year 2001, pursuant to the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE-III), the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) established the Action Team on Global Navigation Satellite Systems (GNSS) under the leadership of the United States and Italy and with the voluntary participation of 38 Member States and 15 organizations. -
Risk Analysis and the Regulation of Reusable Launch Vehicles Roscoe M
CORE Metadata, citation and similar papers at core.ac.uk Provided by Southern Methodist University Journal of Air Law and Commerce Volume 64 | Issue 1 Article 13 1998 Risk Analysis and the Regulation of Reusable Launch Vehicles Roscoe M. Moore III Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Roscoe M. Moore III, Risk Analysis and the Regulation of Reusable Launch Vehicles, 64 J. Air L. & Com. 245 (1998) https://scholar.smu.edu/jalc/vol64/iss1/13 This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. RISK ANALYSIS AND THE REGULATION OF REUSABLE LAUNCH VEHICLES ROSCOE M. MooRE, III* ** TABLE OF CONTENTS I. INTRODUCTION .................................. 246 II. BACKGROUND .................................... 248 A. OUTER SPACE TREATY AND THE INTERNATIONAL LIABILITY CONVENTION ......................... 248 B. COMMERCIAL SPACE LAUNCH ACT OF 1984 ...... 249 C. THE ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION ........... 249 III. THE NEW REGULATORY ENVIRONMENT ...... 250 A. INTRODUCTION TO SPACE LAUNCH VEHICLES .... 250 B. THE REUSABLE LAUNCH VEHICLE ............... 251 C. STATUS OF REGULATION FOR REUSABLE LAUNCH VEHICLES ....................................... 252 IV. CONDITIONS OF A LAUNCH LICENSE ......... 253 A. AGGREGATE REQUIREMENTS FOR A LAUNCH LICENSE ........................................ 253 B. POLICY REVIEW ................................. 254 C. PAYLOAD REVIEW ............................... 255 D. SAFETY REVIEW .................................. 255 E. FINANCIAL RESPONSIBILITY REQUIREMENTS ....... 256 V. RISK-BASED ANALYSIS OF RLV OPERATIONS .. 256 * The author is an Astronautical Engineer who received his degree from the U.S. -
Beidou Short-Message Satellite Resource Allocation Algorithm Based on Deep Reinforcement Learning
entropy Article BeiDou Short-Message Satellite Resource Allocation Algorithm Based on Deep Reinforcement Learning Kaiwen Xia 1, Jing Feng 1,*, Chao Yan 1,2 and Chaofan Duan 1 1 Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha 410005, China; [email protected] (K.X.); [email protected] (C.Y.); [email protected] (C.D.) 2 Basic Department, Nanjing Tech University Pujiang Institute, Nanjing 211112, China * Correspondence: [email protected] Abstract: The comprehensively completed BDS-3 short-message communication system, known as the short-message satellite communication system (SMSCS), will be widely used in traditional blind communication areas in the future. However, short-message processing resources for short-message satellites are relatively scarce. To improve the resource utilization of satellite systems and ensure the service quality of the short-message terminal is adequate, it is necessary to allocate and schedule short-message satellite processing resources in a multi-satellite coverage area. In order to solve the above problems, a short-message satellite resource allocation algorithm based on deep reinforcement learning (DRL-SRA) is proposed. First of all, using the characteristics of the SMSCS, a multi-objective joint optimization satellite resource allocation model is established to reduce short-message terminal path transmission loss, and achieve satellite load balancing and an adequate quality of service. Then, the number of input data dimensions is reduced using the region division strategy and a feature extraction network. The continuous spatial state is parameterized with a deep reinforcement learning algorithm based on the deep deterministic policy gradient (DDPG) framework. The simulation Citation: Xia, K.; Feng, J.; Yan, C.; results show that the proposed algorithm can reduce the transmission loss of the short-message Duan, C. -
Space Communications and Navigation: Scan
Table of Contents • SCaN Organization • SCaN Network • SCaN Architecture • SCaN Technology • Spectrum Management • Policy and Strategic Communications 2 NASA Organization Human Exploration and Operations Organization Chief Technologist Public Affairs/Communications Associate Administrator Chief Scientist Deputy Associate Administrator Legislative Affairs Chief Engineer Int’l/Interagency Relations Deputy AA for Policy & Plans Safety & Mission Assurance General Counsel Chief Health & Medical Officer Strategic Analysis Mission Support Resources Space Launch & Integration Services Office Management Comm & Services Division Office Navigation Office • HR Division • Architecture studies & analysis • E & PO • Mission analysis • IT • Risk and requirements • Mgt processes & coordination internal controls Space Exploration Human ISS Commercial Advanced Space Life & Systems • System O&M Physical Shuttle Spaceflight Spaceflight Exploration Sciences Development Capabilities • Crew & Cargo Development Systems • SLS Transportation Research & • Commercial • AES • MPCV Services Applications • Core Capabilities Crew • Robotic • HRP • 21st Century RPT • COTS precursor Ground Systems • • Fund. Space Bio SFCO measurements • • Physical Sciences • MAF • MOD • EVA • CHS ISS Nat’l Lab Mgt. 4 SCaN Organization 5 SCaN’s Vision To build and maintain a scalable integrated mission support infrastructure that can readily evolve to accommodate new and changing technologies, while providing comprehensive, robust, cost effective, and exponentially higher data rate space