Arnhem Plateau Bioregion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Nature of Northern Australia
THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF). -
The Nature of Northern Australia
THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF). -
Decision-Making in Conservation: a Model to Improve the Allocation of Resources Amongst National Parks
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Decision-Making in Conservation: A Model to Improve the Allocation of Resources amongst National Parks Abigail Jane Margaret Allan 2008 Decision-Making in Conservation: A Model to Improve the Allocation of Resources amongst National Parks A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Natural Resource Management at Massey University, Palmerston North, New Zealand Abigail Jane Margaret Allan 2008 ABSTRACT Protected areas are of prime importance to conservation efforts worldwide because they provide society with a range of important environmental, economic, and social benefits. The ability of government agencies to manage threats to their national parks is often compromised by limited resources. There is a growing need to improve decisions about how resources are allocated amongst conservation responsibilities. Multiple Criteria Analysis (MCA) techniques are integrated decision systems that have the potential to reduce the complexity normally associated with decisions about public and quasi-public goods. The explicit expression of a decision-maker’s preferences for certain decision attributes is a key stage in the MCA process. The ability of MCA to increase the understanding, transparency, and robustness of decisions has been demonstrated in many disciplines. This research describes the development of a MCA model to assist decision- makers with the allocation of resources amongst national parks. After a thorough review of the conservation and protected area literature, a MCA model is developed to determine the utility of a group of national parks based upon environmental, economic, and social significance. -
Human Refugia in Australia During the Last Glacial Maximum and Terminal Pleistocene: a Geospatial Analysis of the 25E12 Ka Australian Archaeological Record
Journal of Archaeological Science 40 (2013) 4612e4625 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25e12 ka Australian archaeological record Alan N. Williams a,*, Sean Ulm b, Andrew R. Cook c, Michelle C. Langley d, Mark Collard e a Fenner School of Environment and Society, The Australian National University, Building 48, Linnaeus Way, Canberra, ACT 0200, Australia b Department of Anthropology, Archaeology and Sociology, School of Arts and Social Sciences, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia c School of Biological, Earth and Environmental Sciences, The University of New South Wales, NSW 2052, Australia d Institute of Archaeology, University of Oxford, Oxford OX1 2PG, United Kingdom e Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada article info abstract Article history: A number of models, developed primarily in the 1980s, propose that Aboriginal Australian populations Received 13 February 2013 contracted to refugia e well-watered ranges and major riverine systems e in response to climatic Received in revised form instability, most notably around the Last Glacial Maximum (LGM) (w23e18 ka). We evaluate these 3 June 2013 models using a comprehensive continent-wide dataset of archaeological radiocarbon ages and geospatial Accepted 17 June 2013 techniques. Calibrated median radiocarbon ages are allocated to over-lapping time slices, and then K-means cluster analysis and cluster centroid and point dispersal pattern analysis are used to define Keywords: Minimum Bounding Rectangles (MBR) representing human demographic patterns. -
Final Re Ort P
final report Project code: B.CCH.2056 Prepared by: Garry Cook CSIRO Date published: May 2014 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 ished by The identification of rangeland regions where severe fire regimes affect cattle producers Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. The identification of rangeland regions where severe fire regimes affect cattle producers Abstract This project identified cattle producing regions where the Australian Government’s Carbon Farming Initiative (CFI) Savanna Burning Methodology to account for reductions in greenhouse gas emissions or a similar lower-rainfall methodology could be applied. Across seven bioregions in northern Australia where late dry season fires dominated, 73 properties with a total of 537 000 head of cattle had an average of 36% of their properties burnt annually. Only one of these bioregions had a mean annual rainfall greater than 1000 mm required for the current Methodology. The other bioregions may be able to use a lower-rainfall Methodology that is currently under development. In other bioregions, there may be individual properties that may find it advantageous to participate in savanna burning management under the CFI. -
GLOBAL ECOLOGICAL ZONES for FAO FOREST REPORTING: 2010 Update
Forest Resources Assessment Working Paper 179 GLOBAL ECOLOGICAL ZONES FOR FAO FOREST REPORTING: 2010 UPDate NOVEMBER, 2012 Forest Resources Assessment Working Paper 179 Global ecological zones for FAO forest reporting: 2010 Update FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. Contents Acknowledgements v Executive Summary vi Acronyms vii 1. Introduction 1 1.1 Background 1 1.2 The GEZ 2000 map 1 2. Methods 6 2.1 The GEZ 2010 map update. -
Australia's 89 Bioregions (PDF
ARC Arnhem Coast ARP Arnhem Plateau TIW AUA Australian Alps AVW Avon Wheatbelt BBN Brigalow Belt North DARWIN ! ARC BBS Brigalow Belt South BEL Ben Lomond ITI DAC PCK ARP BHC Broken Hill Complex CEA BRT Burt Plain CAR Carnarvon ARC CEA Central Arnhem DAB CYP CEK Central Kimberley CER Central Ranges NOK VIB CHC Channel Country CMC Central Mackay Coast GUC COO Coolgardie GFU STU COP Cobar Peneplain COS Coral Sea CEK CYP Cape York Peninsula OVP DAB Daly Basin DAC Darwin Coastal DAL WET GUP EIU DAL Dampierland DEU Desert Uplands DMR Davenport Murchison Ranges COS DRP Darling Riverine Plains DMR TAN EIU Einasleigh Uplands MII ESP Esperance Plains GSD EYB Eyre Yorke Block FIN Finke FLB Flinders Lofty Block CMC FUR Furneaux BRT GAS Gascoyne PIL DEU GAW Gawler MGD BBN GES Geraldton Sandplains GFU Gulf Fall and Uplands MAC GID Gibson Desert LSD GID GSD Great Sandy Desert GUC Gulf Coastal GUP Gulf Plains CAR GAS CER FIN CHC GVD Great Victoria Desert HAM Hampton ITI Indian Tropical Islands SSD JAF Jarrah Forest KAN Kanmantoo KIN King GVD LSD Little Sandy Desert STP BBS MUR SEQ MAC MacDonnell Ranges MUL MAL Mallee ! BRISBANE MDD Murray Darling Depression YAL MGD GES Mitchell Grass Downs STP MII Mount Isa Inlier MUL Mulga Lands NUL MUR Murchison NAN Nandewar GAW NET NCP Naracoorte Coastal Plain SWA COO NAN NET New England Tablelands AVW HAM BHC DRP NNC NSW North Coast FLB NOK Northern Kimberley ! COP PERTH NSS NSW South Western Slopes MDD NNC NUL Nullarbor MAL EYB OVP Ord Victoria Plain PCK Pine Creek JAF ESP SYB PSI PIL Pilbara ADELAIDE ! ! PSI Pacific -
Using Generalised Dissimilarity Modelling and Targeted Field Surveys to Gap-Fill an Ecosystem Surveillance Network
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.107391; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Using generalised dissimilarity modelling and targeted field surveys 2 to gap-fill an ecosystem surveillance network 3 4 Greg R. Guerin1,2*, Kristen J. Williams3, Emrys Leitch1,2, Andrew J. Lowe1, Ben Sparrow1,2 5 6 1School of Biological Science, The University of Adelaide, Adelaide, South Australia 5005, 7 Australia 8 2Terrestrial Ecosystem Research Network 9 3CSIRO Land and Water, Canberra, Australian Capital Territory 2601, Australia 10 11 *Email: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.107391; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 13 Abstract 14 1. When considering which sites or land parcels complement existing conservation or 15 monitoring networks, there are many strategies for optimising ecological coverage in the 16 absence of ground observations. However, such optimisation is often implemented 17 theoretically in conservation prioritisation frameworks and real-world implementation is 18 rarely assessed, particularly for networks of monitoring sites. 19 2. We assessed the performance of adding new survey sites informed by predictive modelling 20 in gap-filling the ecological coverage of the Terrestrial Ecosystem Research Network’s 21 (TERN) continental network of ecosystem surveillance plots, Ausplots. -
AUSTRALIA– Country Data Dossier for Protected Areas Summary Sheet
Country data dossier for protected areas AUSTRALIA– Country Data Dossier for Protected Areas Summary Sheet Estimated current PA coverage (Source: DOPA, see footnote on next page) 14.61% Terrestrial (1 126 825 km2) 39.47% Marine (3 267 871 km2) Terrestrial and Marine Ecoregions Out of 41 terrestrial ecological regions: 14 ecological regions (Mitchell grass downs, Western Australian Mulga shrublands, Tirari-Sturt stony desert, Carpentaria tropical savanna, Kimberly tropical savanna, Brigalow tropical savanna, Southeast Australia temperate savanna, Eastern Australia mulga shrublands, Victoria Plains tropical savanna, Pilbara shrublands, Southwest Australia savanna, Einasleigh upland savanna, Carnarvon xeric shrublands, Mount Lofty woodlands) are the highest priority candidate sites for further protection. Out of 23 marine ecological regions: 2 ecological regions (Bassian, Cape Howe) are the highest priority candidate sites for further protection. Important Bird and Biodiversity Areas (IBAs) Australia has 309 IBAs: 71 IBAs have no protection, 152 IBAs have partial protection and 86 IBAs have complete protection. Bringing some IBAs that have no protection or having partial protection under protected areas and improving the management effectiveness of all IBA PAs are priority actions. Important Bird and Biodiversity Areas (IBAs) in Danger Out of the 4 IBAs in danger impacted by fire and fire suppression, residential and commercial development, and agriculture/aquaculture, 2 IBAs have little or no protection. Although 1 IBA is mostly protected and 1 IBA is fully protected, they face a number of threats. Bringing unprotected IBAs under protection either by expanding existing PAs or establishing new PAs and improving management effectiveness through addressing threats are potential further actions. Alliance for Zero Extinction Sites (AZEs) Australia has 17 AZEs: 2 AZEs have no protection, 2 AZEs have partial protection and 13 AZEs have complete protection. -
Interim Biogeographic Regionalisation for Australia, Version 7 Data Used Are Assumed to Be Correct As Received from the Data Suppliers
ARC Arnhem Coast ARP Arnhem Plateau TIW AUA Australian Alps AVW Avon Wheatbelt DARWIN BBN Brigalow Belt North ARC BBS Brigalow Belt South BEL Ben Lomond ITI DAC PCK ARP BHC Broken Hill Complex CEA BRT Burt Plain CAR Carnarvon ARC CEA Central Arnhem DAB CYP CEK Central Kimberley CER Central Ranges NOK VIB CHC Channel Country CMC Central Mackay Coast GUC COO Coolgardie GFU STU COP Cobar Peneplain COS Coral Sea CEK CYP Cape York Peninsula OVP DAB Daly Basin DAC Darwin Coastal DAL WET GUP EIU DAL Dampierland DEU Desert Uplands DMR Davenport Murchison Ranges COS DRP Darling Riverine Plains DMR TAN EIU Einasleigh Uplands MII ESP Esperance Plains GSD EYB Eyre Yorke Block FIN Finke FLB Flinders Lofty Block CMC FUR Furneaux BRT GAS Gascoyne PIL DEU GAW Gawler MGD BBN GES Geraldton Sandplains GFU Gulf Fall and Uplands MAC GID Gibson Desert LSD GID GSD Great Sandy Desert GUC Gulf Coastal GUP Gulf Plains CAR GAS CER FIN CHC GVD Great Victoria Desert HAM Hampton ITI Indian Tropical Islands SSD JAF Jarrah Forest KAN Kanmantoo KIN King GVD LSD Little Sandy Desert STP BBS MUR SEQ MAC MacDonnell Ranges MUL BRISBANE MAL Mallee MDD Murray Darling Depression YAL MGD GES Mitchell Grass Downs STP MII Mount Isa Inlier MUL Mulga Lands NUL MUR Murchison NAN Nandewar GAW NET NCP Naracoorte Coastal Plain SWA COO NAN NET New England Tablelands AVW HAM BHC DRP NNC NSW North Coast FLB NOK Northern Kimberley PERTH COP NSS NSW South Western Slopes MDD NNC NUL Nullarbor MAL EYB OVP Ord Victoria Plain PCK Pine Creek JAF ESP SYB PIL Pilbara ADELAIDE SYDNEY PSI PSI Pacific -
Interim Biogeographic Regionalisation for Australia, Version 7 419 Sub Regions
SEQ02 SEQ04 BBS19 BBS17 BBS20 BBS18 SEQ03 SEQ10 CYP03 SEQ11 TIW02 ARC05 NAN01 NET15 TIW01 ARC01 NNC02 CYP04 ARC02 BBS22 NET12 SEQ13 DAC01 DRP03 NET14 NNC18 ITI03 ARP01 BBS21 DARWIN ARC03 NET10 NET06 PCK01 ARP02 SEQ12 CEA02 NAN02 NET11 CEA01 CYP07 NET07 NNC03 NNC05 VIB02 NET17 ARC04 NET18 CYP01 NAN03 NET09 NNC04 DAB01 CYP09 NET01 NET05 NOK02 BBS23 NET16 NET08 NNC06 CYP08 NET04 VIB01 VIB03 CYP06 NAN04 NET13 NOK01 STU03 GUC02 NNC08 GFU01 GUC01 CYP02 NNC09 OVP03 NNC07 CYP05 BBS25 NNC10 GUP10 NET03 STU02 WET09 CEK01 GUP04 EIU03 CEK03 OVP01 GUP06 WET08 NNC11 GUP07 BBS24 OVP04 GFU02 WET07 NNC14 OVP02 STU01 GUP01 NNC12 DAL01 WET04 WET03 CEK02 GUP02 BBS26 NNC15 NNC13 DAL02 EIU02 EIU06 WET02 BBS27 MGD01 EIU01 NNC17 DMR01 GUP08 WET06 WET01 MII02 SYB01 SYB02 WET05 NSS01 NNC16 DMR03 GUP03 GUP05 EIU04 SYB04 SYB05 TAN02 MGD02 GUP09 GSD01 TAN01 MII01 EIU05 BBN01 COS01 DMR02 MII03 CMC06 MGD06 PIL04 TAN03 DEU03 BBN02 GSD02 CMC01 BBN03 BBN04 PIL01 CMC02 BRT01 DEU01 BBN05 CHC01 MGD03 MGD07 DEU02 BRT02 BRT04 MGD05 BBN06 CMC03 LSD01 GSD05 GSD06 BBN07 PIL02 BRT03 MGD04 PIL03 GSD03 MAC03 BBN12 CAR01 GID02 MAC01 BBN09 BBN10 CMC04 DEU04 BBN11 BBN14 CMC05 GAS01 LSD02 MAC02 SSD01 BBN08 BBN13 GID01 GSD04 CHC03 BBS03 SEQ14 FIN01 MGD08 FIN02 SSD02 CHC04 BBS02 BBS05 BBS01 GAS03 CER01 BBS04 MUL09 BBS09 BBS06 BBS07 FIN03 SEQ01 CAR02 GAS02 BBS10 STP06 CHC02 BBS08 CHC05 FIN04 MUL06 SEQ08 MUL10 MUL04 BBS11 GVD04 CER03 STP05 CHC07 BBS12 SEQ07 MUR02 CER02 BBS13 STP01 MUL08 SEQ09 STP02 SSD03 SEQ05 CHC06 CHC08 BBS14 SEQ04 YAL01 GVD02 MUL02 SEQ06 MUL03 BBS16 BRISBANE MUR01 GVD05 -
IBRA7 Subregions and Codes
SUB_CODE_7 SUB_NAME_7 REG_CODE_7 REG_NAME_7 HECTARES REC_ID SUB_CODE_6 SUB_NAME_6 SUB_NO_61_ REG_CODE_6 REG_NAME_6 REG_NO_61 ARC01 Murgenella ARC Arnhem Coast 113,180 1 ARC1 Arnhem Coast P1 3 ARC Arnhem Coast 81 ARC02 Maningrida ARC Arnhem Coast 1,741,376 2 ARC2 Arnhem Coast P2 4 ARC Arnhem Coast 81 ARC03 Nhulunbuy ARC Arnhem Coast 1,159,659 3 ARC3 Arnhem Coast P3 5 ARC Arnhem Coast 81 ARC04 Groote ARC Arnhem Coast 268,735 4 ARC4 Arnhem Coast P4 Groote 6 ARC Arnhem Coast 81 ARC05 Wessels ARC Arnhem Coast 52,720 5 ARC5 Arnhem Coast P5 Wessels 7 ARC Arnhem Coast 81 ARP01 Alligator ARP Arnhem Plateau 1,038,621 6 ARP1 Arnhem Plateau P1 8 ARP Arnhem Plateau 82 ARP02 Mainoru ARP Arnhem Plateau 1,267,401 7 ARP2 Arnhem Plateau P2 9 ARP Arnhem Plateau 82 AUA01 Snowy Mountains AUA Australian Alps 713,114 8 AA1 Australian Alps 1 AA Australian Alps 6 AUA02 Victorian Alps AUA Australian Alps 519,866 9 AA2 Victorian Alps 2 AA Australian Alps 6 AVW01 Merredin AVW Avon Wheatbelt 6,524,175 10 AW1 Avon Wheatbelt P1 10 AW Avon Wheatbelt 70 AVW02 Katanning AVW Avon Wheatbelt 2,992,929 11 AW2 Avon Wheatbelt P2 11 AW Avon Wheatbelt 70 BBN01 Townsville Plains BBN Brigalow Belt North 763,495 12 BBN1 Townsville Plains 12 BBN Brigalow Belt North 22 BBN02 Bogie River Hills BBN Brigalow Belt North 1,054,392 13 BBN2 Bogie River Hills 18 BBN Brigalow Belt North 22 BBN03 Cape River Hills BBN Brigalow Belt North 747,993 14 BBN3 Cape River Hills 19 BBN Brigalow Belt North 22 BBN04 Beucazon Hills BBN Brigalow Belt North 95,821 15 BBN4 Beucazon Hills 20 BBN Brigalow Belt