Phylogénie De L'édition Des ARN De Transfert Mitochondriaux Chez Les

Total Page:16

File Type:pdf, Size:1020Kb

Phylogénie De L'édition Des ARN De Transfert Mitochondriaux Chez Les Université de Montréal Phylogénie de l'édition des ARN de transfert mitochondriaux chez les chytridiomycètes Marie-Josée Laforest Département de biochimie Faculté de médecine Thèse présentée a la Faculté de études supérieures en vue de l'obtention du grade de Philosophiae doctor (PhD.) en Biochimie Juin 2001 O Marie-Josée Laforest, 2001 National Libraq Bibliothèque nationale 1+1 of,mda du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 WeUington Street 395. me Wellinm Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothéque nationale du Canada de reproduce, Ioan, disîriibute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. Ia fonne de microfiche/fïlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son ?ermission. autorisation. Université de Montréal Faculté de études supérieures Cette thèse intitulée: Phylogénie de l'édition des ARN de transfert rnitochondriaux chez les chytridiomycètes présentée par : Marie-Josée Laforest a été évaluée par un jury composé des personnes suivantes: Président-rapporteur: Scephen Michnick Directeur de recherche: Franz Lang Membre du jury: Léa Brakier-Gingras Examinateur externe: Gregory Brown thèse acceptée le: Sommaire Les recherches qui ont mené à cette thèse de doctorat ont pour sujet principal l'origine évolutive de I'édition des ARN de transfert (ARNt) présente dans les mitochondries du chytridiom ycète Spizellomyces punctafus et du protiste Acanfhamoeba castellanii. L'édition des ARN réfère à une catégorie de mécanismes qui changent les séquences des ARN par des insertions ou modifications de nucléotides spécifiques, ce qui permet de synthétiser plusieurs protéines a partir d'un gène ou d'améliorer la conservation de la séquence du transcrit. Chez S. punctatus et A. castellanii, la plupart des ARNt codés par leurs génomes mitochondriauxsont édités par un mécanisme qui remplace des nudéotides mésappariésaux trois premières positions des extrémités 5', par des nucléotides qui forment des paires de bases A-U et G-C. Ce mécanisme d'édition restaure la structure conventionnelle des ARNt et, en principe, est essentiel à fa formation dlARNt fonctionels. La découverte de I'édition des ARNt chez ces organismes, qui ne sont pas relies phylogénétiquement, suggérait soit un transfert latéral du ou des gènes codant pour les composantes de l'activité d'édition, soit une évolution indépendante et convergente de mécanismes d'édition des ARNt en apparence similaires. Afin de mieux comprendre l'origine évolutive de ce mécanisme d'édition des ARNt, j'ai développé ce projet de recherche dont le but principal consistait à déterminer la distribution phylogénétiquede I'édition chez les chyttidiomycètes, un groupe de champignons primitifs très diversifiés et peu étudiés. Le premier article présenté dans cette thèse rapporte les résulats du séquençage des ADNmt de quatres espèces de chytridiornycètes, soit Harpochytriumsp. #94, Harpochytn'um #i05, Monoblepharella sp. #15 (Monobléphandales)et Rhizophydiumsp. #A36 (Chytridiales). Comme chez S. punctatus, les ADNmt de ces 4 espèces codent pour des répertoires dJARNt réduits, avec seulement 7 a 9 gènes. L'analyse de ces gènes d'ARNt a révélé que I'édition est présente chez les Monobléphandales, mais est absente chez Rhkophydium sp.. Le séquençage des ARNt, selon un protocole de RT-PCR dlARNt circularisés, a confirmé la présence de l'édition chez les Monobléphandales. Ces résultats ont aussi montré quelques particularités de I'édition des Monobléphandales, incluant des ARNt matures non-édités et I'édition partielle de I'ARNtMM,qui ne sont pas présentes chez S. punctafus. L'analyse phylogénétiquedes protéines rnitochondriales Cob, Coxl ,Cox2, (20x3, Atp6 et Atp9, regroupées en un seul alignement a permis de déduire la phylogénie des chytridiomycètes. Cette phylogénie moléculaire montre que les chytridiomycètesconstituent un groupe paraphylétiquedivisé en trois lignées distinctes: 1) les Blastocladiales (Allomyces macrogynus), 2) les Monoblepharidales et 3) les Spizellomycétales-Chytridiales.Ces deux dernières lignées constituent un clade qui diverge très tbt dans la lignée des champignons, alors que les Blastocladiales divergent à la base des "champignons supérieurs". Selon cette phylogénie mitochondriale, les gènes d'ARNt ont été éliminés avant la divergence des Monobiépharidales, Spizellomycétales et Chytridiales, alors que les Blastocladiales et les "champignons supérieurs" possèdent des répertoires de gènes d'ARNt complets. De plus, nous avons découvert que Rhizophydium sp. utilise le code génétique modifié (UAG pour leucine), comme Spizellomyces. II s'agit d'un caractère dérivé qui est apparu chez un ancêtre des Spizellomycétales et des Chytridiales, alors que les Monoblépharidales et les Blastocladiales ont préservé le code génétique standard, un caractère ancestral des mitochondries. Finalement, cette phylogénie montre que l'édition est présente chez deux lignées distinctes, celles de S. punctatus et des Monoblépharidales, alors qu'elle est absente chez le Chytridiales et les autres champignons. Au cours de ce projet, l'analyse de la séquence de I'ADNmt de S. punctatus a aussi suggéré que le transcrit de son gene cob devait être édité, par des insertion de nucléotides, afin de corriger le cadre de lecture conservé. Le séquençage de ce transcrit par RT-PCR a démontré qu'il n'était pas édité, alors qu'un intron de groupe I de 144 nucléotides, le second intron du gène cob de S. punctatus (Spcob-2), n'avait pas été détecté lors de t'analyse de séquence. De plus, le séquençage du transcrit du gene ml de Rhizophydiurn sp. a aussi permis de confirmer l'absence d'éditior! et la présence d'un intron miniature dans le gene rnl de Rhizophydium sp. (Rdml-S), similaire à Spcob-2. Donc, le second article présenté dans cette thèse rapporte la découverte fortuite d'un nouveau type d'introns de groupe I extrêmement divergents, qui ont moins de 200 nucléotides. Cet article discute principalement des caractéristiques structurales des introns Spcob-2 et Rdml-5, les introns de groupe 1 les plus petits connus jusqu'à maintenant, avec 144 et 142 nucléotides. Cet article rapporte aussi les structures de trois autres introns similaires; Spnad3-1, Rdcoxl-8 et Rdcob-5 avec 164, 180 et 189 nucléotides. Ces introns de groupe I miniatures ont des structures périphériques réduites (ou absentes) et ne possèdent pas les interaction périphériques conservées chez les introns du sous-groupe IB. Par contre, Spcob-2, Rdml-5, Spnad3-1 et Rdcoxl-8 ont des interactions d'appariement potentiels (Pl7*), entre leurs boucles L5 et leurs exons en aval, qui pourraient compenser certains problèmes structuraux de ces introns. De plus, les expériences d'épissage in vitro ont permis de déterminer que les trois introns les plus petits n'ont pas d'activité autocatalytique détectable. Les nombreuses particularités structurales des petits introns Spcob-2 et Rdml-5 montrent qu'il s'agit d'introns extrêmement divergents, ayant évolué à partir d'introns de groupe I canoniques. En conclusion, la distribution phylogénétiquede ce type d'édition des ARNt dans trois lignées mitochondriales distinctes peut ëtre expliquée par une évolution convergente de mécanismes d'édition similaires. Selon les informations actuelles, cette édition des ARNt est apparue au moins trois fois au cours de l'évolution des mitochondries; deux fois chez les chytridiomycètes et une fois dans la lignée de A. castellanii. L'exploration des génomes rnitochondnaux d'autres protistes et champignons, ainsi que la caractérisation des enzymes responsables de ce type d'édition seront nécessaire afin de tester cette hypothèse. Table des matières Sommaire ............................................................ iii Tabledesmatières ..................................................... vi Listedesfigures ....................................................... x Liste des tableaux ...................................................... xii Sigles et abréviations .................................................. xiii Siglesdesacidesarninés ............................................... xvii Dédicace ........................................................... xviii Préface .............................................................. xx Chapitre 1: Introduction ................................................. 1 I. L'évolution moléculaire des mitochondries ............................ 2 1 . 1. Introduction ............................................ 2 1 . 1. 1. Qu'est-ce que la mitochondrie? ..................... 2 1 . 2 . 1. L'origine évolutive de la mitochondrie ................ 3 1.2. La phylogénie moléculaire ................................ 5 1. 2 . 1. Principes de la phylogenie moléculaire .-............. 5 1.2.2. Les méthodes phylogénétiques .................... 6 1. 2 . 3 . Les limitations des phylogénies moléculaires .......... 8 1 . 2 . 4 . Phylogénies moléculaires mitochondriales ...........
Recommended publications
  • Culturing and Environmental DNA Sequencing Uncover Hidden Kinetoplastid Biodiversity and a Major Marine Clade Within Ancestrally Freshwater Neobodo Designis
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 2605–2621 DOI 10.1099/ijs.0.63606-0 Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis Sophie von der Heyden3 and Thomas Cavalier-Smith Correspondence Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Thomas Cavalier-Smith [email protected] Bodonid flagellates (class Kinetoplastea) are abundant, free-living protozoa in freshwater, soil and marine habitats, with undersampled global biodiversity. To investigate overall bodonid diversity, kinetoplastid-specific PCR primers were used to amplify and sequence 18S rRNA genes from DNA extracted from 16 diverse environmental samples; of 39 different kinetoplastid sequences, 35 belong to the subclass Metakinetoplastina, where most group with the genus Neobodo or the species Bodo saltans, whilst four group with the subclass Prokinetoplastina (Ichthyobodo). To study divergence between freshwater and marine members of the genus Neobodo, 26 new Neobodo designis strains were cultured and their 18S rRNA genes were sequenced. It is shown that the morphospecies N. designis is a remarkably ancient species complex with a major marine clade nested among older freshwater clades, suggesting that these lineages were constrained physiologically from moving between these environments for most of their long history. Other major bodonid clades show less-deep separation between marine and freshwater strains, but have extensive genetic diversity within all lineages and an apparently biogeographically distinct distribution of B. saltans subclades. Clade-specific 18S rRNA gene primers were used for two N. designis subclades to test their global distribution and genetic diversity.
    [Show full text]
  • The Microbial Food Web of the Coastal Southern Baltic Sea As Influenced by Wind-Induced Sediment Resuspension
    THE MICROBIAL FOOD WEB OF THE COASTAL SOUTHERN BALTIC SEA AS INFLUENCED BY WIND-INDUCED SEDIMENT RESUSPENSION I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von TOBIAS GARSTECKI aus Magdeburg Köln, 2001 Berichterstatter: Prof. Dr. STEPHEN A. WICKHAM Prof. Dr. HARTMUT ARNDT Tag der letzten mündlichen Prüfung: 29.06.2001 Inhaltsverzeichnis Angabe von verwendeten Fremddaten .............................................. 5 Abkürzungsverzeichnis ..................................................................... 6 1. Einleitung ........................................................................................................ 7 1.1. Begründung der Fragestellung ......................................................... 7 1.2. Herangehensweise ..................................................................... 11 2. A comparison of benthic and planktonic heterotrophic protistan community structure in shallow inlets of the Southern Baltic Sea ........… 13 2.1. Summary ................... ........................................................................ 13 2.2. Introduction ................................................................................. 14 2.3. Materials and Methods ..................................................................... 15 2.3.1. Study sites ..................................................................... 15 2.3.2. Sampling design ........................................................
    [Show full text]
  • Heme Pathway Evolution in Kinetoplastid Protists Ugo Cenci1,2, Daniel Moog1,2, Bruce A
    Cenci et al. BMC Evolutionary Biology (2016) 16:109 DOI 10.1186/s12862-016-0664-6 RESEARCH ARTICLE Open Access Heme pathway evolution in kinetoplastid protists Ugo Cenci1,2, Daniel Moog1,2, Bruce A. Curtis1,2, Goro Tanifuji3, Laura Eme1,2, Julius Lukeš4,5 and John M. Archibald1,2,5* Abstract Background: Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results: Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba.Wealso use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion: We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Keywords: Heme, Kinetoplastea, Paramoeba pemaquidensis, Perkinsela, Evolution, Endosymbiosis, Prokinetoplastina, Lateral gene transfer Background are poorly understood and the evolutionary relationship Kinetoplastea is a diverse group of unicellular flagellated amongst bodonids is still debated [8, 10, 12].
    [Show full text]
  • AQPX-Cluster Aquaporins and Aquaglyceroporins Are
    ARTICLE https://doi.org/10.1038/s42003-021-02472-9 OPEN AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes ✉ ✉ Fiorella Carla Tesan 1,2, Ramiro Lorenzo 3, Karina Alleva 1,2,4 & Ana Romina Fox 3,4 Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP 1234567890():,; families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypano- somatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes spe- cifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs. 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Buenos Aires, Argentina. 2 CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina. 3 Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CICPBA-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro ✉ de la Provincia de Buenos Aires, Tandil, Argentina.
    [Show full text]
  • The Paracaedibacter-Like Endosymbiont of Bodo Saltans
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.217133; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Paracaedibacter-like endosymbiont of 2 Bodo saltans (Kinetoplastida) uses multiple 3 putative toxin-antitoxin systems to maintain its 4 host association 5 6 Samriti Midha1*, Daniel J. Rigden2, Stefanos Siozios1, Gregory D. D. Hurst1, Andrew P. 7 Jackson1 8 9 1 Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 10 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF. United Kingdom. 11 2 Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., 12 Liverpool, L69 7ZB. United Kingdom. 13 14 Address for correspondence: [email protected] 15 16 17 Running Title: Host association of Bodo endosymbiont 18 19 Keywords: kinetoplastida, Holosporales, endosymbiosis, toxin, antitoxin, genome 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.217133; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 24 Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both 25 mutualistic, dependent and parasitic associations. Here we characterize an intracellular 26 bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida).
    [Show full text]
  • Kingdom Protozoa and Its 18Phyla
    MICROBIOLOGICAL REVIEWS, Dec. 1993, p. 953-994 Vol. 57, No. 4 0146-0749/93/040953-42$02.00/0 Copyright © 1993, American Society for Microbiology Kingdom Protozoa and Its 18 Phyla T. CAVALIER-SMITH Evolutionary Biology Program of the Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 INTRODUCTION .......................................................................... 954 Changing Views of Protozoa as a Taxon.......................................................................... 954 EXCESSIVE BREADTH OF PROTISTA OR PROTOCTISTA ......................................................955 DISTINCTION BETWEEN PROTOZOA AND PLANTAE............................................................956 DISTINCTION BETWEEN PROTOZOA AND FUNGI ................................................................957 DISTINCTION BETWEEN PROTOZOA AND CHROMISTA .......................................................960 DISTINCTION BETWEEN PROTOZOA AND ANIMALIA ..........................................................962 DISTINCTION BETWEEN PROTOZOA AND ARCHEZOA.........................................................962 Transitional Problems in Narrowing the Definition of Protozoa ....................................................963 Exclusion of Parabasalia from Archezoa .......................................................................... 964 Exclusion of Entamoebia from Archezoa .......................................................................... 964 Are Microsporidia
    [Show full text]
  • New Molecular Approach for the Detection of Kinetoplastida Parasites of Medical and Veterinary Interest
    New molecular approach for the detection of Kinetoplastida parasites of medical and veterinary interest Hacène Medkour IHU Mediterranee Infection Marie Varloud CEVA Sante Animale Bernard Davoust IHU Mediterranee Infection Oleg Mediannikov ( [email protected] ) IHU Mediterranee Infection Research Keywords: Kinetoplastida, diagnostic, qPCR, PCR, Leishmania, Trypanosoma Posted Date: December 6th, 2019 DOI: https://doi.org/10.21203/rs.2.18359/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/13 Abstract Background Kinetoplastids are a remarkable group of protists, containing a range of ubiquitous free-living species–pathogens of invertebrates, vertebrates and even some plants. Trypanosoma species cause sleeping sickness and Chagas disease, whereas the leishmaniases kill and debilitate hundreds of thousands of people worldwide. The diagnosis of a series of pathogenic kinetoplastids is based on clinical manifestations, epidemiological and laboratory data and, for laboratory methods, a gold standard is often missing for human or animal patients. The aim of this study was to implement a molecular approach for the diagnosis and study of Kinetoplastida. Methods The TaqMan qPCR assays targeting: the 24Sa LSU for Kinetoplastida, 28S LSU for Leishmania/ Trypanosoma spp., 5.8S rRNA for Trypanosoma spp., 18S SSU for Leishmania spp., Kinetoplast minicircle DNA (kDNA) L. donovani complex and the L. infantum specic qPCR were designed, validated for their sensitivity and specicity in silico and then in vitro using a panel of known DNAs and after that they were used in the screening of 369 blood samples (358 dogs, 2 equids, 9 monkeys) . In addition, the new 28S LSU primer sets are presented for use in Kinetoplastida's identification by PCR and sequencing.
    [Show full text]
  • Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity
    Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Raven, John A., and Andrew H. Knoll. 2010. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiology Journal 27(6&7): 572-584. Published Version doi:10.1080/01490451003702990 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4795339 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity John A. Raven Division of Plant Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK Andrew H. Knoll Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA Abstract Skeletal biomineralisation by microbial eukaryotes significantly affects the global biogeochemical cycles of carbon, silicon and calcium. Non-skeletal biomineralisation by eukaryotic cells, with precipitates retained within the cell interior, can duplicate some of the functions of skeletal minerals, e.g. increased cell density, but not the mechanical and antibiophage functions of extracellular biominerals. However, skeletal biomineralisation does not duplicate many of the functions of non-skeletal biominerals. These functions include magnetotaxis (magnetite), gravity sensing (intracellular barite, bassanite, celestite and gypsum), buffering and storage of elements in an osmotically inactive form (calcium as carbonate, oxalate 2 polyphosphate and sulfate; phosphate as polyphosphate) and acid-base regulation, disposing of excess hydroxyl ions via an osmotically inactive product (calcium carbonate, calcium oxalate).
    [Show full text]
  • Steatitis in Fish
    Fish Health News You Can Use Brought to you by the Pacific Region Fish Health Program September 2019 edition This Issue Flagellated Parasites Page 1 – Flagellated Parasites – Inside and Out Inside and Out Page 1 Ichthyobodo Fish that live in surface water are constantly Page 3 Cryptobia exposed to parasites that can cause disease. Page 3 Hexamita/spironucleus Low levels of parasite infestation are normal, Page 4 Trypanosomes and common parasites are unlikely to cause Page 5 – Fun Flagellate Factoids serious problems. Among the common Page 6 – Steatitis parasites that are quick to take advantage of a Page 9 – Carbon Dioxide and Fish weakened host are several single celled Page 10 – PRFHP Update protozoans (Ichthyobodo, Cryptobia, and Page 11 - Mystery parasite of the day Hexamita) that possess flagella (whip-like extremities) to swim and to attach to fish or Contact Us substrates. All four of these parasites are common in hatcheries and they are also carried Pacific Region Fish Health Program Manager by wild fish at low levels. Andrew Goodwin Ichthyobodo necator (formerly known as Costia US Fish and Wildlife Service, Pacific Region necatrix) is a very small parasite that lives on 911 N.E. 11th Avenue the external surfaces of fish, including the gills. Portland, OR 97232 Phone: (503) 231-6784 Email: [email protected] Website www.fws.gov/pacific/Fisheries/fishhealth/ In the Next Issue . Climate change and disease . Proliferative Kidney Disease and C Shasta . Fun factoids . PRFHP updates . Mystery parasite of the day Figure 1: Teardrop-shaped Ichthyobodo on the gill of a fish. 1 Despite the similarity of their name, this is not the parasite commonly referred to as “Ich.” Ichthyobodo is hardy and can survive in a wide range of temperatures, from about 36 to 86°F (2°- 30°C) but in salmonids it tends to cause disease in the lower end of its temperature range.
    [Show full text]
  • Repurposing of Synaptonemal Complex Proteins for Kinetochores in Kinetoplastida
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.06.430040; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Repurposing of Synaptonemal Complex Proteins for Kinetochores in Kinetoplastida Eelco C. Tromer1 , Thomas A. Wemyss1 , Ross F. Waller1 & Bungo Akiyoshi2 Abstract Chromosome segregation in eukaryotes is driven by a macromolecular protein complex called the kinetochore that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well- studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. In contrast, unicellular flagellates of the class Kinetoplastida have a unique set of kinetochore components. The evolutionary origin and history of these kinetochores remains unknown. Here, we report evidence of homology between three kinetoplastid kinetochore proteins KKT16–18 and axial element components of the synaptonemal complex, such as the SYCP2:SYCP3 multimers found in vertebrates. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. Using a sensitive homology detection protocol, we identify divergent orthologues of SYCP2:SYCP3 in most eukaryotic supergroups including other experimentally established axial element components, such as Red1 and Rec10 in budding and fission yeast, and the ASY3:ASY4 multimers in land plants. These searches also identify KKT16–18 as part of this rapidly evolving protein family. The widespread presence of the SYCP2-3 gene family in extant eukaryotes suggests that the synaptonemal complex was likely present in the last eukaryotic common ancestor.
    [Show full text]
  • Higher Classification and Phylogeny of Euglenozoa
    Accepted Manuscript Title: Higher Classification and Phylogeny of Euglenozoa Author: Thomas Cavalier-Smith PII: S0932-4739(16)30083-9 DOI: http://dx.doi.org/doi:10.1016/j.ejop.2016.09.003 Reference: EJOP 25453 To appear in: Received date: 2-3-2016 Revised date: 5-9-2016 Accepted date: 8-9-2016 Please cite this article as: Cavalier-Smith, Thomas, Higher Classification and Phylogeny of Euglenozoa.European Journal of Protistology http://dx.doi.org/10.1016/j.ejop.2016.09.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Higher Classification and Phylogeny of Euglenozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK Corresponding author: e-mail [email protected] (T. Cavalier-Smith). Abstract Discoveries of numerous new taxa and advances in ultrastructure and sequence phylogeny (including here the first site-heterogeneous 18S rDNA trees) require major improvements to euglenozoan higher-level taxonomy. I therefore divide Euglenozoa into three subphyla of substantially different body plans: Euglenoida with pellicular strips; anaerobic Postgaardia (class Postgaardea) dependent on surface bacteria and with uniquely modified feeding apparatuses; and new subphylum Glycomonada characterised by glycosomes (Kinetoplastea, Diplonemea).
    [Show full text]
  • Protozoologica (1994) 33: 1 - 51
    Acta Protozoologica (1994) 33: 1 - 51 ¿ i U PROTOZOOLOGICA k ' $ ; /M An Interim Utilitarian (MUser-friendlyM) Hierarchical Classification and Characterization of the Protists John O. CORLISS Albuquerque, N ew Mexico, USA Summary. Continuing studies on the ultrastructure and the molecular biology of numerous species of protists are producing data of importance in better understanding the phylogenetic interrelationships of the many morphologically and genetically diverse groups involved. Such information, in turn, makes possible the production of new systems of classification, which are sorely needed as the older schemes become obsolete. Although it has been clear for several years that a Kingdom PROTISTA can no longer be justified, no one has offered a single and compact hierarchical classification and description of all high-level taxa of protists as widely scattered members of the entire eukaryotic assemblage of organisms. Such a macrosystem is proposed here, recognizing Cavalier-Smith’s six kingdoms of eukaryotes, five of which contain species of protists. Some 34 phyla and 83 classes are described, with mention of included orders and with listings of many representative genera. An attempt is made, principally through use of well-known names and authorships of the described taxa, to relate this new classification to past systematic treatments of protists. At the same time, the system will provide a bridge to the more refined phylogenetically based arrangements expected by the turn of the century as future data (particularly molecular) make them possible. The present interim scheme should be useful to students and teachers, information retrieval systems, and general biologists, as well as to the many professional phycologists, mycologists, protozoologists, and cell and evolutionary biologists who are engaged in research on diverse groups of the protists, those fascinating "lower" eukaryotes that (with important exceptions) are mainly microscopic in size and unicellular in structure.
    [Show full text]